openocd/src/target/image.c

1292 lines
39 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009 by Franck Hereson *
* franck.hereson@secad.fr *
* *
* Copyright (C) 2018 by Advantest *
* florian.meister@advantest.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "image.h"
#include "target.h"
#include <helper/log.h>
/* convert ELF header field to host endianness */
#define field16(elf, field) \
((elf->endianness == ELFDATA2LSB) ? \
le_to_h_u16((uint8_t *)&field) : be_to_h_u16((uint8_t *)&field))
#define field32(elf, field) \
((elf->endianness == ELFDATA2LSB) ? \
le_to_h_u32((uint8_t *)&field) : be_to_h_u32((uint8_t *)&field))
#define field64(elf, field) \
((elf->endianness == ELFDATA2LSB) ? \
le_to_h_u64((uint8_t *)&field) : be_to_h_u64((uint8_t *)&field))
static int autodetect_image_type(struct image *image, const char *url)
{
int retval;
struct fileio *fileio;
size_t read_bytes;
uint8_t buffer[9];
/* read the first 9 bytes of image */
retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY);
if (retval != ERROR_OK)
return retval;
retval = fileio_read(fileio, 9, buffer, &read_bytes);
if (retval == ERROR_OK) {
if (read_bytes != 9)
retval = ERROR_FILEIO_OPERATION_FAILED;
}
fileio_close(fileio);
if (retval != ERROR_OK)
return retval;
/* check header against known signatures */
if (strncmp((char *)buffer, ELFMAG, SELFMAG) == 0) {
LOG_DEBUG("ELF image detected.");
image->type = IMAGE_ELF;
} else if ((buffer[0] == ':') /* record start byte */
&& (isxdigit(buffer[1]))
&& (isxdigit(buffer[2]))
&& (isxdigit(buffer[3]))
&& (isxdigit(buffer[4]))
&& (isxdigit(buffer[5]))
&& (isxdigit(buffer[6]))
&& (buffer[7] == '0') /* record type : 00 -> 05 */
&& (buffer[8] >= '0') && (buffer[8] < '6')) {
LOG_DEBUG("IHEX image detected.");
image->type = IMAGE_IHEX;
} else if ((buffer[0] == 'S') /* record start byte */
&& (isxdigit(buffer[1]))
&& (isxdigit(buffer[2]))
&& (isxdigit(buffer[3]))
&& (buffer[1] >= '0') && (buffer[1] < '9')) {
LOG_DEBUG("S19 image detected.");
image->type = IMAGE_SRECORD;
} else
image->type = IMAGE_BINARY;
return ERROR_OK;
}
static int identify_image_type(struct image *image, const char *type_string, const char *url)
{
if (type_string) {
if (!strcmp(type_string, "bin"))
image->type = IMAGE_BINARY;
else if (!strcmp(type_string, "ihex"))
image->type = IMAGE_IHEX;
else if (!strcmp(type_string, "elf"))
image->type = IMAGE_ELF;
else if (!strcmp(type_string, "mem"))
image->type = IMAGE_MEMORY;
else if (!strcmp(type_string, "s19"))
image->type = IMAGE_SRECORD;
else if (!strcmp(type_string, "build"))
image->type = IMAGE_BUILDER;
else
return ERROR_IMAGE_TYPE_UNKNOWN;
} else
return autodetect_image_type(image, url);
return ERROR_OK;
}
static int image_ihex_buffer_complete_inner(struct image *image,
char *lpsz_line,
struct imagesection *section)
{
struct image_ihex *ihex = image->type_private;
struct fileio *fileio = ihex->fileio;
uint32_t full_address;
uint32_t cooked_bytes;
bool end_rec = false;
/* we can't determine the number of sections that we'll have to create ahead of time,
* so we locally hold them until parsing is finished */
size_t filesize;
int retval;
retval = fileio_size(fileio, &filesize);
if (retval != ERROR_OK)
return retval;
ihex->buffer = malloc(filesize >> 1);
cooked_bytes = 0x0;
image->num_sections = 0;
while (!fileio_feof(fileio)) {
full_address = 0x0;
section[image->num_sections].private = &ihex->buffer[cooked_bytes];
section[image->num_sections].base_address = 0x0;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
while (fileio_fgets(fileio, 1023, lpsz_line) == ERROR_OK) {
uint32_t count;
uint32_t address;
uint32_t record_type;
uint32_t checksum;
uint8_t cal_checksum = 0;
size_t bytes_read = 0;
/* skip comments and blank lines */
if ((lpsz_line[0] == '#') || (strlen(lpsz_line + strspn(lpsz_line, "\n\t\r ")) == 0))
continue;
if (sscanf(&lpsz_line[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32, &count,
&address, &record_type) != 3)
return ERROR_IMAGE_FORMAT_ERROR;
bytes_read += 9;
cal_checksum += (uint8_t)count;
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
cal_checksum += (uint8_t)record_type;
if (record_type == 0) { /* Data Record */
if ((full_address & 0xffff) != address) {
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0) {
image->num_sections++;
if (image->num_sections >= IMAGE_MAX_SECTIONS) {
/* too many sections */
LOG_ERROR("Too many sections found in IHEX file");
return ERROR_IMAGE_FORMAT_ERROR;
}
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private =
&ihex->buffer[cooked_bytes];
}
section[image->num_sections].base_address =
(full_address & 0xffff0000) | address;
full_address = (full_address & 0xffff0000) | address;
}
while (count-- > 0) {
unsigned value;
sscanf(&lpsz_line[bytes_read], "%2x", &value);
ihex->buffer[cooked_bytes] = (uint8_t)value;
cal_checksum += (uint8_t)ihex->buffer[cooked_bytes];
bytes_read += 2;
cooked_bytes += 1;
section[image->num_sections].size += 1;
full_address++;
}
} else if (record_type == 1) { /* End of File Record */
/* finish the current section */
image->num_sections++;
/* copy section information */
image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
for (unsigned int i = 0; i < image->num_sections; i++) {
image->sections[i].private = section[i].private;
image->sections[i].base_address = section[i].base_address;
image->sections[i].size = section[i].size;
image->sections[i].flags = section[i].flags;
}
end_rec = true;
break;
} else if (record_type == 2) { /* Linear Address Record */
uint16_t upper_address;
sscanf(&lpsz_line[bytes_read], "%4hx", &upper_address);
cal_checksum += (uint8_t)(upper_address >> 8);
cal_checksum += (uint8_t)upper_address;
bytes_read += 4;
if ((full_address >> 4) != upper_address) {
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0) {
image->num_sections++;
if (image->num_sections >= IMAGE_MAX_SECTIONS) {
/* too many sections */
LOG_ERROR("Too many sections found in IHEX file");
return ERROR_IMAGE_FORMAT_ERROR;
}
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private =
&ihex->buffer[cooked_bytes];
}
section[image->num_sections].base_address =
(full_address & 0xffff) | (upper_address << 4);
full_address = (full_address & 0xffff) | (upper_address << 4);
}
} else if (record_type == 3) { /* Start Segment Address Record */
uint32_t dummy;
/* "Start Segment Address Record" will not be supported
* but we must consume it, and do not create an error. */
while (count-- > 0) {
sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &dummy);
cal_checksum += (uint8_t)dummy;
bytes_read += 2;
}
} else if (record_type == 4) { /* Extended Linear Address Record */
uint16_t upper_address;
sscanf(&lpsz_line[bytes_read], "%4hx", &upper_address);
cal_checksum += (uint8_t)(upper_address >> 8);
cal_checksum += (uint8_t)upper_address;
bytes_read += 4;
if ((full_address >> 16) != upper_address) {
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0) {
image->num_sections++;
if (image->num_sections >= IMAGE_MAX_SECTIONS) {
/* too many sections */
LOG_ERROR("Too many sections found in IHEX file");
return ERROR_IMAGE_FORMAT_ERROR;
}
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private =
&ihex->buffer[cooked_bytes];
}
section[image->num_sections].base_address =
(full_address & 0xffff) | (upper_address << 16);
full_address = (full_address & 0xffff) | (upper_address << 16);
}
} else if (record_type == 5) { /* Start Linear Address Record */
uint32_t start_address;
sscanf(&lpsz_line[bytes_read], "%8" SCNx32, &start_address);
cal_checksum += (uint8_t)(start_address >> 24);
cal_checksum += (uint8_t)(start_address >> 16);
cal_checksum += (uint8_t)(start_address >> 8);
cal_checksum += (uint8_t)start_address;
bytes_read += 8;
image->start_address_set = true;
image->start_address = be_to_h_u32((uint8_t *)&start_address);
} else {
LOG_ERROR("unhandled IHEX record type: %i", (int)record_type);
return ERROR_IMAGE_FORMAT_ERROR;
}
sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &checksum);
if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1)) {
/* checksum failed */
LOG_ERROR("incorrect record checksum found in IHEX file");
return ERROR_IMAGE_CHECKSUM;
}
if (end_rec) {
end_rec = false;
LOG_WARNING("continuing after end-of-file record: %.40s", lpsz_line);
}
}
}
if (end_rec)
return ERROR_OK;
else {
LOG_ERROR("premature end of IHEX file, no matching end-of-file record found");
return ERROR_IMAGE_FORMAT_ERROR;
}
}
/**
* Allocate memory dynamically instead of on the stack. This
* is important w/embedded hosts.
*/
static int image_ihex_buffer_complete(struct image *image)
{
char *lpsz_line = malloc(1023);
if (!lpsz_line) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
if (!section) {
free(lpsz_line);
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
int retval;
retval = image_ihex_buffer_complete_inner(image, lpsz_line, section);
free(section);
free(lpsz_line);
return retval;
}
static int image_elf32_read_headers(struct image *image)
{
struct image_elf *elf = image->type_private;
size_t read_bytes;
uint32_t i, j;
int retval;
uint32_t nload;
bool load_to_vaddr = false;
retval = fileio_seek(elf->fileio, 0);
if (retval != ERROR_OK) {
LOG_ERROR("cannot seek to ELF file header, read failed");
return retval;
}
elf->header32 = malloc(sizeof(Elf32_Ehdr));
if (!elf->header32) {
LOG_ERROR("insufficient memory to perform operation");
return ERROR_FILEIO_OPERATION_FAILED;
}
retval = fileio_read(elf->fileio, sizeof(Elf32_Ehdr), (uint8_t *)elf->header32, &read_bytes);
if (retval != ERROR_OK) {
LOG_ERROR("cannot read ELF file header, read failed");
return ERROR_FILEIO_OPERATION_FAILED;
}
if (read_bytes != sizeof(Elf32_Ehdr)) {
LOG_ERROR("cannot read ELF file header, only partially read");
return ERROR_FILEIO_OPERATION_FAILED;
}
elf->segment_count = field16(elf, elf->header32->e_phnum);
if (elf->segment_count == 0) {
LOG_ERROR("invalid ELF file, no program headers");
return ERROR_IMAGE_FORMAT_ERROR;
}
retval = fileio_seek(elf->fileio, field32(elf, elf->header32->e_phoff));
if (retval != ERROR_OK) {
LOG_ERROR("cannot seek to ELF program header table, read failed");
return retval;
}
elf->segments32 = malloc(elf->segment_count*sizeof(Elf32_Phdr));
if (!elf->segments32) {
LOG_ERROR("insufficient memory to perform operation");
return ERROR_FILEIO_OPERATION_FAILED;
}
retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf32_Phdr),
(uint8_t *)elf->segments32, &read_bytes);
if (retval != ERROR_OK) {
LOG_ERROR("cannot read ELF segment headers, read failed");
return retval;
}
if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr)) {
LOG_ERROR("cannot read ELF segment headers, only partially read");
return ERROR_FILEIO_OPERATION_FAILED;
}
/* count useful segments (loadable), ignore BSS section */
image->num_sections = 0;
for (i = 0; i < elf->segment_count; i++)
if ((field32(elf,
elf->segments32[i].p_type) == PT_LOAD) &&
(field32(elf, elf->segments32[i].p_filesz) != 0))
image->num_sections++;
if (image->num_sections == 0) {
LOG_ERROR("invalid ELF file, no loadable segments");
return ERROR_IMAGE_FORMAT_ERROR;
}
/**
* some ELF linkers produce binaries with *all* the program header
* p_paddr fields zero (there can be however one loadable segment
* that has valid physical address 0x0).
* If we have such a binary with more than
* one PT_LOAD header, then use p_vaddr instead of p_paddr
* (ARM ELF standard demands p_paddr = 0 anyway, and BFD
* library uses this approach to workaround zero-initialized p_paddrs
* when obtaining lma - look at elf.c of BDF)
*/
for (nload = 0, i = 0; i < elf->segment_count; i++)
if (elf->segments32[i].p_paddr != 0)
break;
else if ((field32(elf,
elf->segments32[i].p_type) == PT_LOAD) &&
(field32(elf, elf->segments32[i].p_memsz) != 0))
++nload;
if (i >= elf->segment_count && nload > 1)
load_to_vaddr = true;
/* alloc and fill sections array with loadable segments */
image->sections = malloc(image->num_sections * sizeof(struct imagesection));
if (!image->sections) {
LOG_ERROR("insufficient memory to perform operation");
return ERROR_FILEIO_OPERATION_FAILED;
}
for (i = 0, j = 0; i < elf->segment_count; i++) {
if ((field32(elf,
elf->segments32[i].p_type) == PT_LOAD) &&
(field32(elf, elf->segments32[i].p_filesz) != 0)) {
image->sections[j].size = field32(elf, elf->segments32[i].p_filesz);
if (load_to_vaddr)
image->sections[j].base_address = field32(elf,
elf->segments32[i].p_vaddr);
else
image->sections[j].base_address = field32(elf,
elf->segments32[i].p_paddr);
image->sections[j].private = &elf->segments32[i];
image->sections[j].flags = field32(elf, elf->segments32[i].p_flags);
j++;
}
}
image->start_address_set = true;
image->start_address = field32(elf, elf->header32->e_entry);
return ERROR_OK;
}
static int image_elf64_read_headers(struct image *image)
{
struct image_elf *elf = image->type_private;
size_t read_bytes;
uint32_t i, j;
int retval;
uint32_t nload;
bool load_to_vaddr = false;
retval = fileio_seek(elf->fileio, 0);
if (retval != ERROR_OK) {
LOG_ERROR("cannot seek to ELF file header, read failed");
return retval;
}
elf->header64 = malloc(sizeof(Elf64_Ehdr));
if (!elf->header64) {
LOG_ERROR("insufficient memory to perform operation");
return ERROR_FILEIO_OPERATION_FAILED;
}
retval = fileio_read(elf->fileio, sizeof(Elf64_Ehdr), (uint8_t *)elf->header64, &read_bytes);
if (retval != ERROR_OK) {
LOG_ERROR("cannot read ELF file header, read failed");
return ERROR_FILEIO_OPERATION_FAILED;
}
if (read_bytes != sizeof(Elf64_Ehdr)) {
LOG_ERROR("cannot read ELF file header, only partially read");
return ERROR_FILEIO_OPERATION_FAILED;
}
elf->segment_count = field16(elf, elf->header64->e_phnum);
if (elf->segment_count == 0) {
LOG_ERROR("invalid ELF file, no program headers");
return ERROR_IMAGE_FORMAT_ERROR;
}
retval = fileio_seek(elf->fileio, field64(elf, elf->header64->e_phoff));
if (retval != ERROR_OK) {
LOG_ERROR("cannot seek to ELF program header table, read failed");
return retval;
}
elf->segments64 = malloc(elf->segment_count*sizeof(Elf64_Phdr));
if (!elf->segments64) {
LOG_ERROR("insufficient memory to perform operation");
return ERROR_FILEIO_OPERATION_FAILED;
}
retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf64_Phdr),
(uint8_t *)elf->segments64, &read_bytes);
if (retval != ERROR_OK) {
LOG_ERROR("cannot read ELF segment headers, read failed");
return retval;
}
if (read_bytes != elf->segment_count*sizeof(Elf64_Phdr)) {
LOG_ERROR("cannot read ELF segment headers, only partially read");
return ERROR_FILEIO_OPERATION_FAILED;
}
/* count useful segments (loadable), ignore BSS section */
image->num_sections = 0;
for (i = 0; i < elf->segment_count; i++)
if ((field32(elf,
elf->segments64[i].p_type) == PT_LOAD) &&
(field64(elf, elf->segments64[i].p_filesz) != 0))
image->num_sections++;
if (image->num_sections == 0) {
LOG_ERROR("invalid ELF file, no loadable segments");
return ERROR_IMAGE_FORMAT_ERROR;
}
/**
* some ELF linkers produce binaries with *all* the program header
* p_paddr fields zero (there can be however one loadable segment
* that has valid physical address 0x0).
* If we have such a binary with more than
* one PT_LOAD header, then use p_vaddr instead of p_paddr
* (ARM ELF standard demands p_paddr = 0 anyway, and BFD
* library uses this approach to workaround zero-initialized p_paddrs
* when obtaining lma - look at elf.c of BDF)
*/
for (nload = 0, i = 0; i < elf->segment_count; i++)
if (elf->segments64[i].p_paddr != 0)
break;
else if ((field32(elf,
elf->segments64[i].p_type) == PT_LOAD) &&
(field64(elf, elf->segments64[i].p_memsz) != 0))
++nload;
if (i >= elf->segment_count && nload > 1)
load_to_vaddr = true;
/* alloc and fill sections array with loadable segments */
image->sections = malloc(image->num_sections * sizeof(struct imagesection));
if (!image->sections) {
LOG_ERROR("insufficient memory to perform operation");
return ERROR_FILEIO_OPERATION_FAILED;
}
for (i = 0, j = 0; i < elf->segment_count; i++) {
if ((field32(elf,
elf->segments64[i].p_type) == PT_LOAD) &&
(field64(elf, elf->segments64[i].p_filesz) != 0)) {
image->sections[j].size = field64(elf, elf->segments64[i].p_filesz);
if (load_to_vaddr)
image->sections[j].base_address = field64(elf,
elf->segments64[i].p_vaddr);
else
image->sections[j].base_address = field64(elf,
elf->segments64[i].p_paddr);
image->sections[j].private = &elf->segments64[i];
image->sections[j].flags = field64(elf, elf->segments64[i].p_flags);
j++;
}
}
image->start_address_set = true;
image->start_address = field64(elf, elf->header64->e_entry);
return ERROR_OK;
}
static int image_elf_read_headers(struct image *image)
{
struct image_elf *elf = image->type_private;
size_t read_bytes;
unsigned char e_ident[EI_NIDENT];
int retval;
retval = fileio_read(elf->fileio, EI_NIDENT, e_ident, &read_bytes);
if (retval != ERROR_OK) {
LOG_ERROR("cannot read ELF file header, read failed");
return ERROR_FILEIO_OPERATION_FAILED;
}
if (read_bytes != EI_NIDENT) {
LOG_ERROR("cannot read ELF file header, only partially read");
return ERROR_FILEIO_OPERATION_FAILED;
}
if (strncmp((char *)e_ident, ELFMAG, SELFMAG) != 0) {
LOG_ERROR("invalid ELF file, bad magic number");
return ERROR_IMAGE_FORMAT_ERROR;
}
elf->endianness = e_ident[EI_DATA];
if ((elf->endianness != ELFDATA2LSB)
&& (elf->endianness != ELFDATA2MSB)) {
LOG_ERROR("invalid ELF file, unknown endianness setting");
return ERROR_IMAGE_FORMAT_ERROR;
}
switch (e_ident[EI_CLASS]) {
case ELFCLASS32:
LOG_DEBUG("ELF32 image detected.");
elf->is_64_bit = false;
return image_elf32_read_headers(image);
case ELFCLASS64:
LOG_DEBUG("ELF64 image detected.");
elf->is_64_bit = true;
return image_elf64_read_headers(image);
default:
LOG_ERROR("invalid ELF file, only 32/64 bit ELF files are supported");
return ERROR_IMAGE_FORMAT_ERROR;
}
}
static int image_elf32_read_section(struct image *image,
int section,
target_addr_t offset,
uint32_t size,
uint8_t *buffer,
size_t *size_read)
{
struct image_elf *elf = image->type_private;
Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private;
size_t read_size, really_read;
int retval;
*size_read = 0;
LOG_DEBUG("load segment %d at 0x%" TARGET_PRIxADDR " (sz = 0x%" PRIx32 ")", section, offset, size);
/* read initialized data in current segment if any */
if (offset < field32(elf, segment->p_filesz)) {
/* maximal size present in file for the current segment */
read_size = MIN(size, field32(elf, segment->p_filesz) - offset);
LOG_DEBUG("read elf: size = 0x%zx at 0x%" TARGET_PRIxADDR "", read_size,
field32(elf, segment->p_offset) + offset);
/* read initialized area of the segment */
retval = fileio_seek(elf->fileio, field32(elf, segment->p_offset) + offset);
if (retval != ERROR_OK) {
LOG_ERROR("cannot find ELF segment content, seek failed");
return retval;
}
retval = fileio_read(elf->fileio, read_size, buffer, &really_read);
if (retval != ERROR_OK) {
LOG_ERROR("cannot read ELF segment content, read failed");
return retval;
}
size -= read_size;
*size_read += read_size;
/* need more data ? */
if (!size)
return ERROR_OK;
}
return ERROR_OK;
}
static int image_elf64_read_section(struct image *image,
int section,
target_addr_t offset,
uint32_t size,
uint8_t *buffer,
size_t *size_read)
{
struct image_elf *elf = image->type_private;
Elf64_Phdr *segment = (Elf64_Phdr *)image->sections[section].private;
size_t read_size, really_read;
int retval;
*size_read = 0;
LOG_DEBUG("load segment %d at 0x%" TARGET_PRIxADDR " (sz = 0x%" PRIx32 ")", section, offset, size);
/* read initialized data in current segment if any */
if (offset < field64(elf, segment->p_filesz)) {
/* maximal size present in file for the current segment */
read_size = MIN(size, field64(elf, segment->p_filesz) - offset);
LOG_DEBUG("read elf: size = 0x%zx at 0x%" TARGET_PRIxADDR "", read_size,
field64(elf, segment->p_offset) + offset);
/* read initialized area of the segment */
retval = fileio_seek(elf->fileio, field64(elf, segment->p_offset) + offset);
if (retval != ERROR_OK) {
LOG_ERROR("cannot find ELF segment content, seek failed");
return retval;
}
retval = fileio_read(elf->fileio, read_size, buffer, &really_read);
if (retval != ERROR_OK) {
LOG_ERROR("cannot read ELF segment content, read failed");
return retval;
}
size -= read_size;
*size_read += read_size;
/* need more data ? */
if (!size)
return ERROR_OK;
}
return ERROR_OK;
}
static int image_elf_read_section(struct image *image,
int section,
target_addr_t offset,
uint32_t size,
uint8_t *buffer,
size_t *size_read)
{
struct image_elf *elf = image->type_private;
if (elf->is_64_bit)
return image_elf64_read_section(image, section, offset, size, buffer, size_read);
else
return image_elf32_read_section(image, section, offset, size, buffer, size_read);
}
static int image_mot_buffer_complete_inner(struct image *image,
char *lpsz_line,
struct imagesection *section)
{
struct image_mot *mot = image->type_private;
struct fileio *fileio = mot->fileio;
uint32_t full_address;
uint32_t cooked_bytes;
bool end_rec = false;
/* we can't determine the number of sections that we'll have to create ahead of time,
* so we locally hold them until parsing is finished */
int retval;
size_t filesize;
retval = fileio_size(fileio, &filesize);
if (retval != ERROR_OK)
return retval;
mot->buffer = malloc(filesize >> 1);
cooked_bytes = 0x0;
image->num_sections = 0;
while (!fileio_feof(fileio)) {
full_address = 0x0;
section[image->num_sections].private = &mot->buffer[cooked_bytes];
section[image->num_sections].base_address = 0x0;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
while (fileio_fgets(fileio, 1023, lpsz_line) == ERROR_OK) {
uint32_t count;
uint32_t address;
uint32_t record_type;
uint32_t checksum;
uint8_t cal_checksum = 0;
uint32_t bytes_read = 0;
/* skip comments and blank lines */
if ((lpsz_line[0] == '#') || (strlen(lpsz_line + strspn(lpsz_line, "\n\t\r ")) == 0))
continue;
/* get record type and record length */
if (sscanf(&lpsz_line[bytes_read], "S%1" SCNx32 "%2" SCNx32, &record_type,
&count) != 2)
return ERROR_IMAGE_FORMAT_ERROR;
bytes_read += 4;
cal_checksum += (uint8_t)count;
/* skip checksum byte */
count -= 1;
if (record_type == 0) {
/* S0 - starting record (optional) */
int value;
while (count-- > 0) {
sscanf(&lpsz_line[bytes_read], "%2x", &value);
cal_checksum += (uint8_t)value;
bytes_read += 2;
}
} else if (record_type >= 1 && record_type <= 3) {
switch (record_type) {
case 1:
/* S1 - 16 bit address data record */
sscanf(&lpsz_line[bytes_read], "%4" SCNx32, &address);
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
bytes_read += 4;
count -= 2;
break;
case 2:
/* S2 - 24 bit address data record */
sscanf(&lpsz_line[bytes_read], "%6" SCNx32, &address);
cal_checksum += (uint8_t)(address >> 16);
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
bytes_read += 6;
count -= 3;
break;
case 3:
/* S3 - 32 bit address data record */
sscanf(&lpsz_line[bytes_read], "%8" SCNx32, &address);
cal_checksum += (uint8_t)(address >> 24);
cal_checksum += (uint8_t)(address >> 16);
cal_checksum += (uint8_t)(address >> 8);
cal_checksum += (uint8_t)address;
bytes_read += 8;
count -= 4;
break;
}
if (full_address != address) {
/* we encountered a nonconsecutive location, create a new section,
* unless the current section has zero size, in which case this specifies
* the current section's base address
*/
if (section[image->num_sections].size != 0) {
image->num_sections++;
section[image->num_sections].size = 0x0;
section[image->num_sections].flags = 0;
section[image->num_sections].private =
&mot->buffer[cooked_bytes];
}
section[image->num_sections].base_address = address;
full_address = address;
}
while (count-- > 0) {
unsigned value;
sscanf(&lpsz_line[bytes_read], "%2x", &value);
mot->buffer[cooked_bytes] = (uint8_t)value;
cal_checksum += (uint8_t)mot->buffer[cooked_bytes];
bytes_read += 2;
cooked_bytes += 1;
section[image->num_sections].size += 1;
full_address++;
}
} else if (record_type == 5 || record_type == 6) {
/* S5 and S6 are the data count records, we ignore them */
uint32_t dummy;
while (count-- > 0) {
sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &dummy);
cal_checksum += (uint8_t)dummy;
bytes_read += 2;
}
} else if (record_type >= 7 && record_type <= 9) {
/* S7, S8, S9 - ending records for 32, 24 and 16bit */
image->num_sections++;
/* copy section information */
image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
for (unsigned int i = 0; i < image->num_sections; i++) {
image->sections[i].private = section[i].private;
image->sections[i].base_address = section[i].base_address;
image->sections[i].size = section[i].size;
image->sections[i].flags = section[i].flags;
}
end_rec = true;
break;
} else {
LOG_ERROR("unhandled S19 record type: %i", (int)(record_type));
return ERROR_IMAGE_FORMAT_ERROR;
}
/* account for checksum, will always be 0xFF */
sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &checksum);
cal_checksum += (uint8_t)checksum;
if (cal_checksum != 0xFF) {
/* checksum failed */
LOG_ERROR("incorrect record checksum found in S19 file");
return ERROR_IMAGE_CHECKSUM;
}
if (end_rec) {
end_rec = false;
LOG_WARNING("continuing after end-of-file record: %.40s", lpsz_line);
}
}
}
if (end_rec)
return ERROR_OK;
else {
LOG_ERROR("premature end of S19 file, no matching end-of-file record found");
return ERROR_IMAGE_FORMAT_ERROR;
}
}
/**
* Allocate memory dynamically instead of on the stack. This
* is important w/embedded hosts.
*/
static int image_mot_buffer_complete(struct image *image)
{
char *lpsz_line = malloc(1023);
if (!lpsz_line) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
if (!section) {
free(lpsz_line);
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
int retval;
retval = image_mot_buffer_complete_inner(image, lpsz_line, section);
free(section);
free(lpsz_line);
return retval;
}
int image_open(struct image *image, const char *url, const char *type_string)
{
int retval = ERROR_OK;
retval = identify_image_type(image, type_string, url);
if (retval != ERROR_OK)
return retval;
if (image->type == IMAGE_BINARY) {
struct image_binary *image_binary;
image_binary = image->type_private = malloc(sizeof(struct image_binary));
retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY);
if (retval != ERROR_OK)
return retval;
size_t filesize;
retval = fileio_size(image_binary->fileio, &filesize);
if (retval != ERROR_OK) {
fileio_close(image_binary->fileio);
return retval;
}
image->num_sections = 1;
image->sections = malloc(sizeof(struct imagesection));
image->sections[0].base_address = 0x0;
image->sections[0].size = filesize;
image->sections[0].flags = 0;
} else if (image->type == IMAGE_IHEX) {
struct image_ihex *image_ihex;
image_ihex = image->type_private = malloc(sizeof(struct image_ihex));
retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT);
if (retval != ERROR_OK)
return retval;
retval = image_ihex_buffer_complete(image);
if (retval != ERROR_OK) {
LOG_ERROR(
"failed buffering IHEX image, check server output for additional information");
fileio_close(image_ihex->fileio);
return retval;
}
} else if (image->type == IMAGE_ELF) {
struct image_elf *image_elf;
image_elf = image->type_private = malloc(sizeof(struct image_elf));
retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY);
if (retval != ERROR_OK)
return retval;
retval = image_elf_read_headers(image);
if (retval != ERROR_OK) {
fileio_close(image_elf->fileio);
return retval;
}
} else if (image->type == IMAGE_MEMORY) {
struct target *target = get_target(url);
if (!target) {
LOG_ERROR("target '%s' not defined", url);
return ERROR_FAIL;
}
struct image_memory *image_memory;
image->num_sections = 1;
image->sections = malloc(sizeof(struct imagesection));
image->sections[0].base_address = 0x0;
image->sections[0].size = 0xffffffff;
image->sections[0].flags = 0;
image_memory = image->type_private = malloc(sizeof(struct image_memory));
image_memory->target = target;
image_memory->cache = NULL;
image_memory->cache_address = 0x0;
} else if (image->type == IMAGE_SRECORD) {
struct image_mot *image_mot;
image_mot = image->type_private = malloc(sizeof(struct image_mot));
retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT);
if (retval != ERROR_OK)
return retval;
retval = image_mot_buffer_complete(image);
if (retval != ERROR_OK) {
LOG_ERROR(
"failed buffering S19 image, check server output for additional information");
fileio_close(image_mot->fileio);
return retval;
}
} else if (image->type == IMAGE_BUILDER) {
image->num_sections = 0;
image->base_address_set = false;
image->sections = NULL;
image->type_private = NULL;
}
if (image->base_address_set) {
/* relocate */
for (unsigned int section = 0; section < image->num_sections; section++)
image->sections[section].base_address += image->base_address;
/* we're done relocating. The two statements below are mainly
* for documentation purposes: stop anyone from empirically
* thinking they should use these values henceforth. */
image->base_address = 0;
image->base_address_set = false;
}
return retval;
};
int image_read_section(struct image *image,
int section,
target_addr_t offset,
uint32_t size,
uint8_t *buffer,
size_t *size_read)
{
int retval;
/* don't read past the end of a section */
if (offset + size > image->sections[section].size) {
LOG_DEBUG(
"read past end of section: 0x%8.8" TARGET_PRIxADDR " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "",
offset,
size,
image->sections[section].size);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (image->type == IMAGE_BINARY) {
struct image_binary *image_binary = image->type_private;
/* only one section in a plain binary */
if (section != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
/* seek to offset */
retval = fileio_seek(image_binary->fileio, offset);
if (retval != ERROR_OK)
return retval;
/* return requested bytes */
retval = fileio_read(image_binary->fileio, size, buffer, size_read);
if (retval != ERROR_OK)
return retval;
} else if (image->type == IMAGE_IHEX) {
memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
*size_read = size;
return ERROR_OK;
} else if (image->type == IMAGE_ELF) {
return image_elf_read_section(image, section, offset, size, buffer, size_read);
} else if (image->type == IMAGE_MEMORY) {
struct image_memory *image_memory = image->type_private;
uint32_t address = image->sections[section].base_address + offset;
*size_read = 0;
while ((size - *size_read) > 0) {
uint32_t size_in_cache;
if (!image_memory->cache
|| (address < image_memory->cache_address)
|| (address >=
(image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE))) {
if (!image_memory->cache)
image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE);
if (target_read_buffer(image_memory->target, address &
~(IMAGE_MEMORY_CACHE_SIZE - 1),
IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK) {
free(image_memory->cache);
image_memory->cache = NULL;
return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE;
}
image_memory->cache_address = address &
~(IMAGE_MEMORY_CACHE_SIZE - 1);
}
size_in_cache =
(image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address;
memcpy(buffer + *size_read,
image_memory->cache + (address - image_memory->cache_address),
(size_in_cache > size) ? size : size_in_cache
);
*size_read += (size_in_cache > size) ? size : size_in_cache;
address += (size_in_cache > size) ? size : size_in_cache;
}
} else if (image->type == IMAGE_SRECORD) {
memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
*size_read = size;
return ERROR_OK;
} else if (image->type == IMAGE_BUILDER) {
memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
*size_read = size;
return ERROR_OK;
}
return ERROR_OK;
}
int image_add_section(struct image *image, target_addr_t base, uint32_t size, uint64_t flags, uint8_t const *data)
{
struct imagesection *section;
/* only image builder supports adding sections */
if (image->type != IMAGE_BUILDER)
return ERROR_COMMAND_SYNTAX_ERROR;
/* see if there's a previous section */
if (image->num_sections) {
section = &image->sections[image->num_sections - 1];
/* see if it's enough to extend the last section,
* adding data to previous sections or merging is not supported */
if (((section->base_address + section->size) == base) &&
(section->flags == flags)) {
section->private = realloc(section->private, section->size + size);
memcpy((uint8_t *)section->private + section->size, data, size);
section->size += size;
return ERROR_OK;
}
}
/* allocate new section */
image->num_sections++;
image->sections =
realloc(image->sections, sizeof(struct imagesection) * image->num_sections);
section = &image->sections[image->num_sections - 1];
section->base_address = base;
section->size = size;
section->flags = flags;
section->private = malloc(sizeof(uint8_t) * size);
memcpy((uint8_t *)section->private, data, size);
return ERROR_OK;
}
void image_close(struct image *image)
{
if (image->type == IMAGE_BINARY) {
struct image_binary *image_binary = image->type_private;
fileio_close(image_binary->fileio);
} else if (image->type == IMAGE_IHEX) {
struct image_ihex *image_ihex = image->type_private;
fileio_close(image_ihex->fileio);
free(image_ihex->buffer);
image_ihex->buffer = NULL;
} else if (image->type == IMAGE_ELF) {
struct image_elf *image_elf = image->type_private;
fileio_close(image_elf->fileio);
if (image_elf->is_64_bit) {
free(image_elf->header64);
image_elf->header64 = NULL;
free(image_elf->segments64);
image_elf->segments64 = NULL;
} else {
free(image_elf->header32);
image_elf->header32 = NULL;
free(image_elf->segments32);
image_elf->segments32 = NULL;
}
} else if (image->type == IMAGE_MEMORY) {
struct image_memory *image_memory = image->type_private;
free(image_memory->cache);
image_memory->cache = NULL;
} else if (image->type == IMAGE_SRECORD) {
struct image_mot *image_mot = image->type_private;
fileio_close(image_mot->fileio);
free(image_mot->buffer);
image_mot->buffer = NULL;
} else if (image->type == IMAGE_BUILDER) {
for (unsigned int i = 0; i < image->num_sections; i++) {
free(image->sections[i].private);
image->sections[i].private = NULL;
}
}
free(image->type_private);
image->type_private = NULL;
free(image->sections);
image->sections = NULL;
}
int image_calculate_checksum(const uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
{
uint32_t crc = 0xffffffff;
LOG_DEBUG("Calculating checksum");
static uint32_t crc32_table[256];
static bool first_init;
if (!first_init) {
/* Initialize the CRC table and the decoding table. */
unsigned int i, j, c;
for (i = 0; i < 256; i++) {
/* as per gdb */
for (c = i << 24, j = 8; j > 0; --j)
c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
crc32_table[i] = c;
}
first_init = true;
}
while (nbytes > 0) {
int run = nbytes;
if (run > 32768)
run = 32768;
nbytes -= run;
while (run--) {
/* as per gdb */
crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255];
}
keep_alive();
}
LOG_DEBUG("Calculating checksum done; checksum=0x%" PRIx32, crc);
*checksum = crc;
return ERROR_OK;
}