openocd/src/target/nds32_v3_common.c

665 lines
19 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Andes Technology *
* Hsiangkai Wang <hkwang@andestech.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "nds32_reg.h"
#include "nds32_disassembler.h"
#include "nds32.h"
#include "nds32_aice.h"
#include "nds32_v3_common.h"
static struct nds32_v3_common_callback *v3_common_callback;
static int nds32_v3_register_mapping(struct nds32 *nds32, int reg_no)
{
if (reg_no == PC)
return IR11;
return reg_no;
}
static int nds32_v3_get_debug_reason(struct nds32 *nds32, uint32_t *reason)
{
uint32_t edmsw;
struct aice_port_s *aice = target_to_aice(nds32->target);
aice_read_debug_reg(aice, NDS_EDM_SR_EDMSW, &edmsw);
*reason = (edmsw >> 12) & 0x0F;
return ERROR_OK;
}
/**
* Save processor state. This is called after a HALT instruction
* succeeds, and on other occasions the processor enters debug mode
* (breakpoint, watchpoint, etc).
*/
static int nds32_v3_debug_entry(struct nds32 *nds32, bool enable_watchpoint)
{
LOG_DEBUG("nds32_v3_debug_entry");
enum target_state backup_state = nds32->target->state;
nds32->target->state = TARGET_HALTED;
if (nds32->init_arch_info_after_halted == false) {
/* init architecture info according to config registers */
CHECK_RETVAL(nds32_config(nds32));
nds32->init_arch_info_after_halted = true;
}
/* REVISIT entire cache should already be invalid !!! */
register_cache_invalidate(nds32->core_cache);
/* deactivate all hardware breakpoints */
CHECK_RETVAL(v3_common_callback->deactivate_hardware_breakpoint(nds32->target));
if (enable_watchpoint)
CHECK_RETVAL(v3_common_callback->deactivate_hardware_watchpoint(nds32->target));
struct breakpoint *syscall_break = &(nds32->syscall_break);
if (nds32->virtual_hosting) {
if (syscall_break->is_set) {
/** disable virtual hosting */
/* remove breakpoint at syscall entry */
target_remove_breakpoint(nds32->target, syscall_break);
syscall_break->is_set = false;
uint32_t value_pc;
nds32_get_mapped_reg(nds32, PC, &value_pc);
if (value_pc == syscall_break->address)
/** process syscall for virtual hosting */
nds32->hit_syscall = true;
}
}
if (nds32_examine_debug_reason(nds32) != ERROR_OK) {
nds32->target->state = backup_state;
/* re-activate all hardware breakpoints & watchpoints */
CHECK_RETVAL(v3_common_callback->activate_hardware_breakpoint(nds32->target));
if (enable_watchpoint)
CHECK_RETVAL(v3_common_callback->activate_hardware_watchpoint(nds32->target));
return ERROR_FAIL;
}
/* Save registers. */
nds32_full_context(nds32);
/* check interrupt level */
v3_common_callback->check_interrupt_stack(nds32);
return ERROR_OK;
}
/**
* Restore processor state.
*/
static int nds32_v3_leave_debug_state(struct nds32 *nds32, bool enable_watchpoint)
{
LOG_DEBUG("nds32_v3_leave_debug_state");
struct target *target = nds32->target;
/* activate all hardware breakpoints */
CHECK_RETVAL(v3_common_callback->activate_hardware_breakpoint(target));
if (enable_watchpoint) {
/* activate all watchpoints */
CHECK_RETVAL(v3_common_callback->activate_hardware_watchpoint(target));
}
/* restore interrupt stack */
v3_common_callback->restore_interrupt_stack(nds32);
/* REVISIT once we start caring about MMU and cache state,
* address it here ...
*/
/* restore PSW, PC, and R0 ... after flushing any modified
* registers.
*/
CHECK_RETVAL(nds32_restore_context(target));
if (nds32->virtual_hosting) {
/** enable virtual hosting */
uint32_t value_ir3;
uint32_t entry_size;
uint32_t syscall_address;
/* get syscall entry address */
nds32_get_mapped_reg(nds32, IR3, &value_ir3);
entry_size = 0x4 << (((value_ir3 >> 14) & 0x3) << 1);
syscall_address = (value_ir3 & 0xFFFF0000) + entry_size * 8; /* The index of SYSCALL is 8 */
if (nds32->hit_syscall) {
/* single step to skip syscall entry */
/* use IRET to skip syscall */
struct aice_port_s *aice = target_to_aice(target);
uint32_t value_ir9;
uint32_t value_ir6;
uint32_t syscall_id;
nds32_get_mapped_reg(nds32, IR6, &value_ir6);
syscall_id = (value_ir6 >> 16) & 0x7FFF;
if (syscall_id == NDS32_SYSCALL_EXIT) {
/* If target hits exit syscall, do not use IRET to skip handler. */
aice_step(aice);
} else {
/* use api->read/write_reg to skip nds32 register cache */
uint32_t value_dimbr;
aice_read_debug_reg(aice, NDS_EDM_SR_DIMBR, &value_dimbr);
aice_write_register(aice, IR11, value_dimbr + 0xC);
aice_read_register(aice, IR9, &value_ir9);
value_ir9 += 4; /* syscall is always 4 bytes */
aice_write_register(aice, IR9, value_ir9);
/* backup hardware breakpoint 0 */
uint32_t backup_bpa, backup_bpam, backup_bpc;
aice_read_debug_reg(aice, NDS_EDM_SR_BPA0, &backup_bpa);
aice_read_debug_reg(aice, NDS_EDM_SR_BPAM0, &backup_bpam);
aice_read_debug_reg(aice, NDS_EDM_SR_BPC0, &backup_bpc);
/* use hardware breakpoint 0 to stop cpu after skipping syscall */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0, value_ir9);
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0, 0);
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0, 0xA);
/* Execute two IRET.
* First IRET is used to quit debug mode.
* Second IRET is used to quit current syscall. */
uint32_t dim_inst[4] = {NOP, NOP, IRET, IRET};
aice_execute(aice, dim_inst, 4);
/* restore origin hardware breakpoint 0 */
aice_write_debug_reg(aice, NDS_EDM_SR_BPA0, backup_bpa);
aice_write_debug_reg(aice, NDS_EDM_SR_BPAM0, backup_bpam);
aice_write_debug_reg(aice, NDS_EDM_SR_BPC0, backup_bpc);
}
nds32->hit_syscall = false;
}
/* insert breakpoint at syscall entry */
struct breakpoint *syscall_break = &(nds32->syscall_break);
syscall_break->address = syscall_address;
syscall_break->type = BKPT_SOFT;
syscall_break->is_set = true;
target_add_breakpoint(target, syscall_break);
}
return ERROR_OK;
}
static int nds32_v3_get_exception_address(struct nds32 *nds32,
uint32_t *address, uint32_t reason)
{
LOG_DEBUG("nds32_v3_get_exception_address");
struct aice_port_s *aice = target_to_aice(nds32->target);
struct target *target = nds32->target;
uint32_t edmsw;
uint32_t edm_cfg;
uint32_t match_bits;
uint32_t match_count;
int32_t i;
static int32_t number_of_hard_break;
uint32_t bp_control;
if (number_of_hard_break == 0) {
aice_read_debug_reg(aice, NDS_EDM_SR_EDM_CFG, &edm_cfg);
number_of_hard_break = (edm_cfg & 0x7) + 1;
}
aice_read_debug_reg(aice, NDS_EDM_SR_EDMSW, &edmsw);
/* clear matching bits (write-one-clear) */
aice_write_debug_reg(aice, NDS_EDM_SR_EDMSW, edmsw);
match_bits = (edmsw >> 4) & 0xFF;
match_count = 0;
for (i = 0 ; i < number_of_hard_break ; i++) {
if (match_bits & (1 << i)) {
aice_read_debug_reg(aice, NDS_EDM_SR_BPA0 + i, address);
match_count++;
/* If target hits multiple read/access watchpoint,
* select the first one. */
aice_read_debug_reg(aice, NDS_EDM_SR_BPC0 + i, &bp_control);
if (0x3 == (bp_control & 0x3)) {
match_count = 1;
break;
}
}
}
if (match_count > 1) { /* multiple hits */
*address = 0;
return ERROR_OK;
} else if (match_count == 1) {
uint32_t val_pc;
uint32_t opcode;
struct nds32_instruction instruction;
struct watchpoint *wp;
bool hit;
nds32_get_mapped_reg(nds32, PC, &val_pc);
if ((reason == NDS32_DEBUG_DATA_ADDR_WATCHPOINT_NEXT_PRECISE) ||
(reason == NDS32_DEBUG_DATA_VALUE_WATCHPOINT_NEXT_PRECISE)) {
if (edmsw & 0x4) /* check EDMSW.IS_16BIT */
val_pc -= 2;
else
val_pc -= 4;
}
nds32_read_opcode(nds32, val_pc, &opcode);
nds32_evaluate_opcode(nds32, opcode, val_pc, &instruction);
LOG_DEBUG("PC: 0x%08" PRIx32 ", access start: 0x%08" PRIx32 ", end: 0x%08" PRIx32,
val_pc, instruction.access_start, instruction.access_end);
/* check if multiple hits in the access range */
uint32_t in_range_watch_count = 0;
for (wp = target->watchpoints; wp; wp = wp->next) {
if ((instruction.access_start <= wp->address) &&
(wp->address < instruction.access_end))
in_range_watch_count++;
}
if (in_range_watch_count > 1) {
/* Hit LSMW instruction. */
*address = 0;
return ERROR_OK;
}
/* dispel false match */
hit = false;
for (wp = target->watchpoints; wp; wp = wp->next) {
if (((*address ^ wp->address) & (~wp->mask)) == 0) {
uint32_t watch_start;
uint32_t watch_end;
watch_start = wp->address;
watch_end = wp->address + wp->length;
if ((watch_end <= instruction.access_start) ||
(instruction.access_end <= watch_start))
continue;
hit = true;
break;
}
}
if (hit)
return ERROR_OK;
else
return ERROR_FAIL;
} else if (match_count == 0) {
/* global stop is precise exception */
if ((reason == NDS32_DEBUG_LOAD_STORE_GLOBAL_STOP) && nds32->global_stop) {
/* parse instruction to get correct access address */
uint32_t val_pc;
uint32_t opcode;
struct nds32_instruction instruction;
nds32_get_mapped_reg(nds32, PC, &val_pc);
nds32_read_opcode(nds32, val_pc, &opcode);
nds32_evaluate_opcode(nds32, opcode, val_pc, &instruction);
*address = instruction.access_start;
return ERROR_OK;
}
}
*address = 0xFFFFFFFF;
return ERROR_FAIL;
}
void nds32_v3_common_register_callback(struct nds32_v3_common_callback *callback)
{
v3_common_callback = callback;
}
/** target_type functions: */
/* target request support */
int nds32_v3_target_request_data(struct target *target,
uint32_t size, uint8_t *buffer)
{
/* AndesCore could use DTR register to communicate with OpenOCD
* to output messages
* Target data will be put in buffer
* The format of DTR is as follow
* DTR[31:16] => length, DTR[15:8] => size, DTR[7:0] => target_req_cmd
* target_req_cmd has three possible values:
* TARGET_REQ_TRACEMSG
* TARGET_REQ_DEBUGMSG
* TARGET_REQ_DEBUGCHAR
* if size == 0, target will call target_asciimsg(),
* else call target_hexmsg()
*/
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_OK;
}
int nds32_v3_checksum_memory(struct target *target,
target_addr_t address, uint32_t count, uint32_t *checksum)
{
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
/**
* find out which watchpoint hits
* get exception address and compare the address to watchpoints
*/
int nds32_v3_hit_watchpoint(struct target *target,
struct watchpoint **hit_watchpoint)
{
static struct watchpoint scan_all_watchpoint;
uint32_t exception_address;
struct watchpoint *wp;
struct nds32 *nds32 = target_to_nds32(target);
exception_address = nds32->watched_address;
if (exception_address == 0xFFFFFFFF)
return ERROR_FAIL;
if (exception_address == 0) {
scan_all_watchpoint.address = 0;
scan_all_watchpoint.rw = WPT_WRITE;
scan_all_watchpoint.next = 0;
scan_all_watchpoint.unique_id = 0x5CA8;
*hit_watchpoint = &scan_all_watchpoint;
return ERROR_OK;
}
for (wp = target->watchpoints; wp; wp = wp->next) {
if (((exception_address ^ wp->address) & (~wp->mask)) == 0) {
*hit_watchpoint = wp;
return ERROR_OK;
}
}
return ERROR_FAIL;
}
int nds32_v3_target_create_common(struct target *target, struct nds32 *nds32)
{
nds32->register_map = nds32_v3_register_mapping;
nds32->get_debug_reason = nds32_v3_get_debug_reason;
nds32->enter_debug_state = nds32_v3_debug_entry;
nds32->leave_debug_state = nds32_v3_leave_debug_state;
nds32->get_watched_address = nds32_v3_get_exception_address;
/* Init target->arch_info in nds32_init_arch_info().
* After this, user could use target_to_nds32() to get nds32 object */
nds32_init_arch_info(target, nds32);
return ERROR_OK;
}
int nds32_v3_run_algorithm(struct target *target,
int num_mem_params,
struct mem_param *mem_params,
int num_reg_params,
struct reg_param *reg_params,
target_addr_t entry_point,
target_addr_t exit_point,
int timeout_ms,
void *arch_info)
{
LOG_WARNING("Not implemented: %s", __func__);
return ERROR_FAIL;
}
int nds32_v3_read_buffer(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
int result;
struct aice_port_s *aice = target_to_aice(target);
/* give arbitrary initial value to avoid warning messages */
enum nds_memory_access origin_access_channel = NDS_MEMORY_ACC_CPU;
if (nds32->hit_syscall) {
/* Use bus mode to access memory during virtual hosting */
origin_access_channel = memory->access_channel;
memory->access_channel = NDS_MEMORY_ACC_BUS;
aice_memory_access(aice, NDS_MEMORY_ACC_BUS);
}
result = nds32_read_buffer(target, address, size, buffer);
if (nds32->hit_syscall) {
/* Restore access_channel after virtual hosting */
memory->access_channel = origin_access_channel;
aice_memory_access(aice, origin_access_channel);
}
return result;
}
int nds32_v3_write_buffer(struct target *target, target_addr_t address,
uint32_t size, const uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
if (nds32->hit_syscall) {
struct aice_port_s *aice = target_to_aice(target);
enum nds_memory_access origin_access_channel;
origin_access_channel = memory->access_channel;
/* If target has no cache, use BUS mode to access memory. */
if ((memory->dcache.line_size == 0)
|| (memory->dcache.enable == false)) {
/* There is no Dcache or Dcache is disabled. */
memory->access_channel = NDS_MEMORY_ACC_BUS;
aice_memory_access(aice, NDS_MEMORY_ACC_BUS);
}
int result;
result = nds32_gdb_fileio_write_memory(nds32, address, size, buffer);
if (origin_access_channel == NDS_MEMORY_ACC_CPU) {
memory->access_channel = NDS_MEMORY_ACC_CPU;
aice_memory_access(aice, NDS_MEMORY_ACC_CPU);
}
return result;
}
return nds32_write_buffer(target, address, size, buffer);
}
int nds32_v3_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
struct aice_port_s *aice = target_to_aice(target);
/* give arbitrary initial value to avoid warning messages */
enum nds_memory_access origin_access_channel = NDS_MEMORY_ACC_CPU;
int result;
if (nds32->hit_syscall) {
/* Use bus mode to access memory during virtual hosting */
origin_access_channel = memory->access_channel;
memory->access_channel = NDS_MEMORY_ACC_BUS;
aice_memory_access(aice, NDS_MEMORY_ACC_BUS);
}
result = nds32_read_memory(target, address, size, count, buffer);
if (nds32->hit_syscall) {
/* Restore access_channel after virtual hosting */
memory->access_channel = origin_access_channel;
aice_memory_access(aice, origin_access_channel);
}
return result;
}
int nds32_v3_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
struct nds32 *nds32 = target_to_nds32(target);
struct nds32_memory *memory = &(nds32->memory);
if ((memory->access_channel == NDS_MEMORY_ACC_CPU) &&
(target->state != TARGET_HALTED)) {
LOG_WARNING("target was not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_addr_t physical_address;
/* BUG: If access range crosses multiple pages, the translation will not correct
* for second page or so. */
/* When DEX is set to one, hardware will enforce the following behavior without
* modifying the corresponding control bits in PSW.
*
* Disable all interrupts
* Become superuser mode
* Turn off IT/DT
* Use MMU_CFG.DE as the data access endian
* Use MMU_CFG.DRDE as the device register access endian if MMU_CTL.DREE is asserted
* Disable audio special features
* Disable inline function call
*
* Because hardware will turn off IT/DT by default, it MUST translate virtual address
* to physical address.
*/
if (target->type->virt2phys(target, address, &physical_address) == ERROR_OK)
address = physical_address;
else
return ERROR_FAIL;
return nds32_write_memory(target, address, size, count, buffer);
}
int nds32_v3_init_target(struct command_context *cmd_ctx,
struct target *target)
{
/* Initialize anything we can set up without talking to the target */
struct nds32 *nds32 = target_to_nds32(target);
nds32_init(nds32);
target->fileio_info = malloc(sizeof(struct gdb_fileio_info));
target->fileio_info->identifier = NULL;
return ERROR_OK;
}