openocd/src/target/target.c

7217 lines
188 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007-2010 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008, Duane Ellis *
* openocd@duaneeellis.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by Rick Altherr *
* kc8apf@kc8apf.net> *
* *
* Copyright (C) 2011 by Broadcom Corporation *
* Evan Hunter - ehunter@broadcom.com *
* *
* Copyright (C) ST-Ericsson SA 2011 *
* michel.jaouen@stericsson.com : smp minimum support *
* *
* Copyright (C) 2011 Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/align.h>
#include <helper/time_support.h>
#include <jtag/jtag.h>
#include <flash/nor/core.h>
#include "target.h"
#include "target_type.h"
#include "target_request.h"
#include "breakpoints.h"
#include "register.h"
#include "trace.h"
#include "image.h"
#include "rtos/rtos.h"
#include "transport/transport.h"
#include "arm_cti.h"
#include "smp.h"
#include "semihosting_common.h"
/* default halt wait timeout (ms) */
#define DEFAULT_HALT_TIMEOUT 5000
static int target_read_buffer_default(struct target *target, target_addr_t address,
uint32_t count, uint8_t *buffer);
static int target_write_buffer_default(struct target *target, target_addr_t address,
uint32_t count, const uint8_t *buffer);
static int target_array2mem(Jim_Interp *interp, struct target *target,
int argc, Jim_Obj * const *argv);
static int target_mem2array(Jim_Interp *interp, struct target *target,
int argc, Jim_Obj * const *argv);
static int target_register_user_commands(struct command_context *cmd_ctx);
static int target_get_gdb_fileio_info_default(struct target *target,
struct gdb_fileio_info *fileio_info);
static int target_gdb_fileio_end_default(struct target *target, int retcode,
int fileio_errno, bool ctrl_c);
/* targets */
extern struct target_type arm7tdmi_target;
extern struct target_type arm720t_target;
extern struct target_type arm9tdmi_target;
extern struct target_type arm920t_target;
extern struct target_type arm966e_target;
extern struct target_type arm946e_target;
extern struct target_type arm926ejs_target;
extern struct target_type fa526_target;
extern struct target_type feroceon_target;
extern struct target_type dragonite_target;
extern struct target_type xscale_target;
extern struct target_type xtensa_chip_target;
extern struct target_type cortexm_target;
extern struct target_type cortexa_target;
extern struct target_type aarch64_target;
extern struct target_type cortexr4_target;
extern struct target_type arm11_target;
extern struct target_type ls1_sap_target;
extern struct target_type mips_m4k_target;
extern struct target_type mips_mips64_target;
extern struct target_type avr_target;
extern struct target_type dsp563xx_target;
extern struct target_type dsp5680xx_target;
extern struct target_type testee_target;
extern struct target_type avr32_ap7k_target;
extern struct target_type hla_target;
extern struct target_type nds32_v2_target;
extern struct target_type nds32_v3_target;
extern struct target_type nds32_v3m_target;
extern struct target_type esp32_target;
extern struct target_type esp32s2_target;
extern struct target_type esp32s3_target;
extern struct target_type or1k_target;
extern struct target_type quark_x10xx_target;
extern struct target_type quark_d20xx_target;
extern struct target_type stm8_target;
extern struct target_type riscv_target;
extern struct target_type mem_ap_target;
extern struct target_type esirisc_target;
extern struct target_type arcv2_target;
static struct target_type *target_types[] = {
&arm7tdmi_target,
&arm9tdmi_target,
&arm920t_target,
&arm720t_target,
&arm966e_target,
&arm946e_target,
&arm926ejs_target,
&fa526_target,
&feroceon_target,
&dragonite_target,
&xscale_target,
&xtensa_chip_target,
&cortexm_target,
&cortexa_target,
&cortexr4_target,
&arm11_target,
&ls1_sap_target,
&mips_m4k_target,
&avr_target,
&dsp563xx_target,
&dsp5680xx_target,
&testee_target,
&avr32_ap7k_target,
&hla_target,
&nds32_v2_target,
&nds32_v3_target,
&nds32_v3m_target,
&esp32_target,
&esp32s2_target,
&esp32s3_target,
&or1k_target,
&quark_x10xx_target,
&quark_d20xx_target,
&stm8_target,
&riscv_target,
&mem_ap_target,
&esirisc_target,
&arcv2_target,
&aarch64_target,
&mips_mips64_target,
NULL,
};
struct target *all_targets;
static struct target_event_callback *target_event_callbacks;
static struct target_timer_callback *target_timer_callbacks;
static int64_t target_timer_next_event_value;
static LIST_HEAD(target_reset_callback_list);
static LIST_HEAD(target_trace_callback_list);
static const int polling_interval = TARGET_DEFAULT_POLLING_INTERVAL;
static LIST_HEAD(empty_smp_targets);
static const struct jim_nvp nvp_assert[] = {
{ .name = "assert", NVP_ASSERT },
{ .name = "deassert", NVP_DEASSERT },
{ .name = "T", NVP_ASSERT },
{ .name = "F", NVP_DEASSERT },
{ .name = "t", NVP_ASSERT },
{ .name = "f", NVP_DEASSERT },
{ .name = NULL, .value = -1 }
};
static const struct jim_nvp nvp_error_target[] = {
{ .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
{ .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
{ .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
{ .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
{ .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
{ .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
{ .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
{ .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
{ .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
{ .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
{ .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
{ .value = -1, .name = NULL }
};
static const char *target_strerror_safe(int err)
{
const struct jim_nvp *n;
n = jim_nvp_value2name_simple(nvp_error_target, err);
if (!n->name)
return "unknown";
else
return n->name;
}
static const struct jim_nvp nvp_target_event[] = {
{ .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
{ .value = TARGET_EVENT_HALTED, .name = "halted" },
{ .value = TARGET_EVENT_RESUMED, .name = "resumed" },
{ .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
{ .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
{ .value = TARGET_EVENT_STEP_START, .name = "step-start" },
{ .value = TARGET_EVENT_STEP_END, .name = "step-end" },
{ .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
{ .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
{ .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
{ .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
{ .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
{ .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
{ .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
{ .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
{ .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
{ .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
{ .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
{ .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
{ .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
{ .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
{ .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
{ .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
{ .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
{ .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
{ .value = TARGET_EVENT_GDB_FLASH_WRITE_END, .name = "gdb-flash-write-end" },
{ .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
{ .value = TARGET_EVENT_GDB_FLASH_ERASE_END, .name = "gdb-flash-erase-end" },
{ .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x100, .name = "semihosting-user-cmd-0x100" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x101, .name = "semihosting-user-cmd-0x101" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x102, .name = "semihosting-user-cmd-0x102" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x103, .name = "semihosting-user-cmd-0x103" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x104, .name = "semihosting-user-cmd-0x104" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x105, .name = "semihosting-user-cmd-0x105" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x106, .name = "semihosting-user-cmd-0x106" },
{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x107, .name = "semihosting-user-cmd-0x107" },
{ .name = NULL, .value = -1 }
};
static const struct jim_nvp nvp_target_state[] = {
{ .name = "unknown", .value = TARGET_UNKNOWN },
{ .name = "running", .value = TARGET_RUNNING },
{ .name = "halted", .value = TARGET_HALTED },
{ .name = "reset", .value = TARGET_RESET },
{ .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
{ .name = NULL, .value = -1 },
};
static const struct jim_nvp nvp_target_debug_reason[] = {
{ .name = "debug-request", .value = DBG_REASON_DBGRQ },
{ .name = "breakpoint", .value = DBG_REASON_BREAKPOINT },
{ .name = "watchpoint", .value = DBG_REASON_WATCHPOINT },
{ .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
{ .name = "single-step", .value = DBG_REASON_SINGLESTEP },
{ .name = "target-not-halted", .value = DBG_REASON_NOTHALTED },
{ .name = "program-exit", .value = DBG_REASON_EXIT },
{ .name = "exception-catch", .value = DBG_REASON_EXC_CATCH },
{ .name = "undefined", .value = DBG_REASON_UNDEFINED },
{ .name = NULL, .value = -1 },
};
static const struct jim_nvp nvp_target_endian[] = {
{ .name = "big", .value = TARGET_BIG_ENDIAN },
{ .name = "little", .value = TARGET_LITTLE_ENDIAN },
{ .name = "be", .value = TARGET_BIG_ENDIAN },
{ .name = "le", .value = TARGET_LITTLE_ENDIAN },
{ .name = NULL, .value = -1 },
};
static const struct jim_nvp nvp_reset_modes[] = {
{ .name = "unknown", .value = RESET_UNKNOWN },
{ .name = "run", .value = RESET_RUN },
{ .name = "halt", .value = RESET_HALT },
{ .name = "init", .value = RESET_INIT },
{ .name = NULL, .value = -1 },
};
const char *debug_reason_name(struct target *t)
{
const char *cp;
cp = jim_nvp_value2name_simple(nvp_target_debug_reason,
t->debug_reason)->name;
if (!cp) {
LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
cp = "(*BUG*unknown*BUG*)";
}
return cp;
}
const char *target_state_name(struct target *t)
{
const char *cp;
cp = jim_nvp_value2name_simple(nvp_target_state, t->state)->name;
if (!cp) {
LOG_ERROR("Invalid target state: %d", (int)(t->state));
cp = "(*BUG*unknown*BUG*)";
}
if (!target_was_examined(t) && t->defer_examine)
cp = "examine deferred";
return cp;
}
const char *target_event_name(enum target_event event)
{
const char *cp;
cp = jim_nvp_value2name_simple(nvp_target_event, event)->name;
if (!cp) {
LOG_ERROR("Invalid target event: %d", (int)(event));
cp = "(*BUG*unknown*BUG*)";
}
return cp;
}
const char *target_reset_mode_name(enum target_reset_mode reset_mode)
{
const char *cp;
cp = jim_nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
if (!cp) {
LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
cp = "(*BUG*unknown*BUG*)";
}
return cp;
}
/* determine the number of the new target */
static int new_target_number(void)
{
struct target *t;
int x;
/* number is 0 based */
x = -1;
t = all_targets;
while (t) {
if (x < t->target_number)
x = t->target_number;
t = t->next;
}
return x + 1;
}
static void append_to_list_all_targets(struct target *target)
{
struct target **t = &all_targets;
while (*t)
t = &((*t)->next);
*t = target;
}
/* read a uint64_t from a buffer in target memory endianness */
uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u64(buffer);
else
return be_to_h_u64(buffer);
}
/* read a uint32_t from a buffer in target memory endianness */
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u32(buffer);
else
return be_to_h_u32(buffer);
}
/* read a uint24_t from a buffer in target memory endianness */
uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u24(buffer);
else
return be_to_h_u24(buffer);
}
/* read a uint16_t from a buffer in target memory endianness */
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u16(buffer);
else
return be_to_h_u16(buffer);
}
/* write a uint64_t to a buffer in target memory endianness */
void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u64_to_le(buffer, value);
else
h_u64_to_be(buffer, value);
}
/* write a uint32_t to a buffer in target memory endianness */
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u32_to_le(buffer, value);
else
h_u32_to_be(buffer, value);
}
/* write a uint24_t to a buffer in target memory endianness */
void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u24_to_le(buffer, value);
else
h_u24_to_be(buffer, value);
}
/* write a uint16_t to a buffer in target memory endianness */
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u16_to_le(buffer, value);
else
h_u16_to_be(buffer, value);
}
/* write a uint8_t to a buffer in target memory endianness */
static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
{
*buffer = value;
}
/* write a uint64_t array to a buffer in target memory endianness */
void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
{
uint32_t i;
for (i = 0; i < count; i++)
dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
}
/* write a uint32_t array to a buffer in target memory endianness */
void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
{
uint32_t i;
for (i = 0; i < count; i++)
dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
}
/* write a uint16_t array to a buffer in target memory endianness */
void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
{
uint32_t i;
for (i = 0; i < count; i++)
dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
}
/* write a uint64_t array to a buffer in target memory endianness */
void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
{
uint32_t i;
for (i = 0; i < count; i++)
target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
}
/* write a uint32_t array to a buffer in target memory endianness */
void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
{
uint32_t i;
for (i = 0; i < count; i++)
target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
}
/* write a uint16_t array to a buffer in target memory endianness */
void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
{
uint32_t i;
for (i = 0; i < count; i++)
target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
}
/* return a pointer to a configured target; id is name or number */
struct target *get_target(const char *id)
{
struct target *target;
/* try as tcltarget name */
for (target = all_targets; target; target = target->next) {
if (!target_name(target))
continue;
if (strcmp(id, target_name(target)) == 0)
return target;
}
/* It's OK to remove this fallback sometime after August 2010 or so */
/* no match, try as number */
unsigned num;
if (parse_uint(id, &num) != ERROR_OK)
return NULL;
for (target = all_targets; target; target = target->next) {
if (target->target_number == (int)num) {
LOG_WARNING("use '%s' as target identifier, not '%u'",
target_name(target), num);
return target;
}
}
return NULL;
}
/* returns a pointer to the n-th configured target */
struct target *get_target_by_num(int num)
{
struct target *target = all_targets;
while (target) {
if (target->target_number == num)
return target;
target = target->next;
}
return NULL;
}
struct target *get_current_target(struct command_context *cmd_ctx)
{
struct target *target = get_current_target_or_null(cmd_ctx);
if (!target) {
LOG_ERROR("BUG: current_target out of bounds");
exit(-1);
}
return target;
}
struct target *get_current_target_or_null(struct command_context *cmd_ctx)
{
return cmd_ctx->current_target_override
? cmd_ctx->current_target_override
: cmd_ctx->current_target;
}
int target_poll(struct target *target)
{
int retval;
/* We can't poll until after examine */
if (!target_was_examined(target)) {
/* Fail silently lest we pollute the log */
return ERROR_FAIL;
}
retval = target->type->poll(target);
if (retval != ERROR_OK)
return retval;
if (target->halt_issued) {
if (target->state == TARGET_HALTED)
target->halt_issued = false;
else {
int64_t t = timeval_ms() - target->halt_issued_time;
if (t > DEFAULT_HALT_TIMEOUT) {
target->halt_issued = false;
LOG_INFO("Halt timed out, wake up GDB.");
target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
}
}
}
return ERROR_OK;
}
int target_halt(struct target *target)
{
int retval;
/* We can't poll until after examine */
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
retval = target->type->halt(target);
if (retval != ERROR_OK)
return retval;
target->halt_issued = true;
target->halt_issued_time = timeval_ms();
return ERROR_OK;
}
/**
* Make the target (re)start executing using its saved execution
* context (possibly with some modifications).
*
* @param target Which target should start executing.
* @param current True to use the target's saved program counter instead
* of the address parameter
* @param address Optionally used as the program counter.
* @param handle_breakpoints True iff breakpoints at the resumption PC
* should be skipped. (For example, maybe execution was stopped by
* such a breakpoint, in which case it would be counterproductive to
* let it re-trigger.
* @param debug_execution False if all working areas allocated by OpenOCD
* should be released and/or restored to their original contents.
* (This would for example be true to run some downloaded "helper"
* algorithm code, which resides in one such working buffer and uses
* another for data storage.)
*
* @todo Resolve the ambiguity about what the "debug_execution" flag
* signifies. For example, Target implementations don't agree on how
* it relates to invalidation of the register cache, or to whether
* breakpoints and watchpoints should be enabled. (It would seem wrong
* to enable breakpoints when running downloaded "helper" algorithms
* (debug_execution true), since the breakpoints would be set to match
* target firmware being debugged, not the helper algorithm.... and
* enabling them could cause such helpers to malfunction (for example,
* by overwriting data with a breakpoint instruction. On the other
* hand the infrastructure for running such helpers might use this
* procedure but rely on hardware breakpoint to detect termination.)
*/
int target_resume(struct target *target, int current, target_addr_t address,
int handle_breakpoints, int debug_execution)
{
int retval;
/* We can't poll until after examine */
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
/* note that resume *must* be asynchronous. The CPU can halt before
* we poll. The CPU can even halt at the current PC as a result of
* a software breakpoint being inserted by (a bug?) the application.
*/
/*
* resume() triggers the event 'resumed'. The execution of TCL commands
* in the event handler causes the polling of targets. If the target has
* already halted for a breakpoint, polling will run the 'halted' event
* handler before the pending 'resumed' handler.
* Disable polling during resume() to guarantee the execution of handlers
* in the correct order.
*/
bool save_poll_mask = jtag_poll_mask();
retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
jtag_poll_unmask(save_poll_mask);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
return retval;
}
static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
{
char buf[100];
int retval;
struct jim_nvp *n;
n = jim_nvp_value2name_simple(nvp_reset_modes, reset_mode);
if (!n->name) {
LOG_ERROR("invalid reset mode");
return ERROR_FAIL;
}
struct target *target;
for (target = all_targets; target; target = target->next)
target_call_reset_callbacks(target, reset_mode);
/* disable polling during reset to make reset event scripts
* more predictable, i.e. dr/irscan & pathmove in events will
* not have JTAG operations injected into the middle of a sequence.
*/
bool save_poll_mask = jtag_poll_mask();
sprintf(buf, "ocd_process_reset %s", n->name);
retval = Jim_Eval(cmd->ctx->interp, buf);
jtag_poll_unmask(save_poll_mask);
if (retval != JIM_OK) {
Jim_MakeErrorMessage(cmd->ctx->interp);
command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
return ERROR_FAIL;
}
/* We want any events to be processed before the prompt */
retval = target_call_timer_callbacks_now();
for (target = all_targets; target; target = target->next) {
target->type->check_reset(target);
target->running_alg = false;
}
return retval;
}
static int identity_virt2phys(struct target *target,
target_addr_t virtual, target_addr_t *physical)
{
*physical = virtual;
return ERROR_OK;
}
static int no_mmu(struct target *target, int *enabled)
{
*enabled = 0;
return ERROR_OK;
}
/**
* Reset the @c examined flag for the given target.
* Pure paranoia -- targets are zeroed on allocation.
*/
static inline void target_reset_examined(struct target *target)
{
target->examined = false;
}
static int default_examine(struct target *target)
{
target_set_examined(target);
return ERROR_OK;
}
/* no check by default */
static int default_check_reset(struct target *target)
{
return ERROR_OK;
}
/* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
* Keep in sync */
int target_examine_one(struct target *target)
{
target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
int retval = target->type->examine(target);
if (retval != ERROR_OK) {
target_reset_examined(target);
target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_FAIL);
return retval;
}
target_set_examined(target);
target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
return ERROR_OK;
}
static int jtag_enable_callback(enum jtag_event event, void *priv)
{
struct target *target = priv;
if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
return ERROR_OK;
jtag_unregister_event_callback(jtag_enable_callback, target);
return target_examine_one(target);
}
/* Targets that correctly implement init + examine, i.e.
* no communication with target during init:
*
* XScale
*/
int target_examine(void)
{
int retval = ERROR_OK;
struct target *target;
for (target = all_targets; target; target = target->next) {
/* defer examination, but don't skip it */
if (!target->tap->enabled) {
jtag_register_event_callback(jtag_enable_callback,
target);
continue;
}
if (target->defer_examine)
continue;
int retval2 = target_examine_one(target);
if (retval2 != ERROR_OK) {
LOG_WARNING("target %s examination failed", target_name(target));
retval = retval2;
}
}
return retval;
}
const char *target_type_name(struct target *target)
{
return target->type->name;
}
static int target_soft_reset_halt(struct target *target)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (!target->type->soft_reset_halt) {
LOG_ERROR("Target %s does not support soft_reset_halt",
target_name(target));
return ERROR_FAIL;
}
return target->type->soft_reset_halt(target);
}
/**
* Downloads a target-specific native code algorithm to the target,
* and executes it. * Note that some targets may need to set up, enable,
* and tear down a breakpoint (hard or * soft) to detect algorithm
* termination, while others may support lower overhead schemes where
* soft breakpoints embedded in the algorithm automatically terminate the
* algorithm.
*
* @param target used to run the algorithm
* @param num_mem_params
* @param mem_params
* @param num_reg_params
* @param reg_param
* @param entry_point
* @param exit_point
* @param timeout_ms
* @param arch_info target-specific description of the algorithm.
*/
int target_run_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_param,
target_addr_t entry_point, target_addr_t exit_point,
int timeout_ms, void *arch_info)
{
int retval = ERROR_FAIL;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
goto done;
}
if (!target->type->run_algorithm) {
LOG_ERROR("Target type '%s' does not support %s",
target_type_name(target), __func__);
goto done;
}
target->running_alg = true;
retval = target->type->run_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_param,
entry_point, exit_point, timeout_ms, arch_info);
target->running_alg = false;
done:
return retval;
}
/**
* Executes a target-specific native code algorithm and leaves it running.
*
* @param target used to run the algorithm
* @param num_mem_params
* @param mem_params
* @param num_reg_params
* @param reg_params
* @param entry_point
* @param exit_point
* @param arch_info target-specific description of the algorithm.
*/
int target_start_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t entry_point, target_addr_t exit_point,
void *arch_info)
{
int retval = ERROR_FAIL;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
goto done;
}
if (!target->type->start_algorithm) {
LOG_ERROR("Target type '%s' does not support %s",
target_type_name(target), __func__);
goto done;
}
if (target->running_alg) {
LOG_ERROR("Target is already running an algorithm");
goto done;
}
target->running_alg = true;
retval = target->type->start_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
entry_point, exit_point, arch_info);
done:
return retval;
}
/**
* Waits for an algorithm started with target_start_algorithm() to complete.
*
* @param target used to run the algorithm
* @param num_mem_params
* @param mem_params
* @param num_reg_params
* @param reg_params
* @param exit_point
* @param timeout_ms
* @param arch_info target-specific description of the algorithm.
*/
int target_wait_algorithm(struct target *target,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
target_addr_t exit_point, int timeout_ms,
void *arch_info)
{
int retval = ERROR_FAIL;
if (!target->type->wait_algorithm) {
LOG_ERROR("Target type '%s' does not support %s",
target_type_name(target), __func__);
goto done;
}
if (!target->running_alg) {
LOG_ERROR("Target is not running an algorithm");
goto done;
}
retval = target->type->wait_algorithm(target,
num_mem_params, mem_params,
num_reg_params, reg_params,
exit_point, timeout_ms, arch_info);
if (retval != ERROR_TARGET_TIMEOUT)
target->running_alg = false;
done:
return retval;
}
/**
* Streams data to a circular buffer on target intended for consumption by code
* running asynchronously on target.
*
* This is intended for applications where target-specific native code runs
* on the target, receives data from the circular buffer, does something with
* it (most likely writing it to a flash memory), and advances the circular
* buffer pointer.
*
* This assumes that the helper algorithm has already been loaded to the target,
* but has not been started yet. Given memory and register parameters are passed
* to the algorithm.
*
* The buffer is defined by (buffer_start, buffer_size) arguments and has the
* following format:
*
* [buffer_start + 0, buffer_start + 4):
* Write Pointer address (aka head). Written and updated by this
* routine when new data is written to the circular buffer.
* [buffer_start + 4, buffer_start + 8):
* Read Pointer address (aka tail). Updated by code running on the
* target after it consumes data.
* [buffer_start + 8, buffer_start + buffer_size):
* Circular buffer contents.
*
* See contrib/loaders/flash/stm32f1x.S for an example.
*
* @param target used to run the algorithm
* @param buffer address on the host where data to be sent is located
* @param count number of blocks to send
* @param block_size size in bytes of each block
* @param num_mem_params count of memory-based params to pass to algorithm
* @param mem_params memory-based params to pass to algorithm
* @param num_reg_params count of register-based params to pass to algorithm
* @param reg_params memory-based params to pass to algorithm
* @param buffer_start address on the target of the circular buffer structure
* @param buffer_size size of the circular buffer structure
* @param entry_point address on the target to execute to start the algorithm
* @param exit_point address at which to set a breakpoint to catch the
* end of the algorithm; can be 0 if target triggers a breakpoint itself
* @param arch_info
*/
int target_run_flash_async_algorithm(struct target *target,
const uint8_t *buffer, uint32_t count, int block_size,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t buffer_start, uint32_t buffer_size,
uint32_t entry_point, uint32_t exit_point, void *arch_info)
{
int retval;
int timeout = 0;
const uint8_t *buffer_orig = buffer;
/* Set up working area. First word is write pointer, second word is read pointer,
* rest is fifo data area. */
uint32_t wp_addr = buffer_start;
uint32_t rp_addr = buffer_start + 4;
uint32_t fifo_start_addr = buffer_start + 8;
uint32_t fifo_end_addr = buffer_start + buffer_size;
uint32_t wp = fifo_start_addr;
uint32_t rp = fifo_start_addr;
/* validate block_size is 2^n */
assert(IS_PWR_OF_2(block_size));
retval = target_write_u32(target, wp_addr, wp);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, rp_addr, rp);
if (retval != ERROR_OK)
return retval;
/* Start up algorithm on target and let it idle while writing the first chunk */
retval = target_start_algorithm(target, num_mem_params, mem_params,
num_reg_params, reg_params,
entry_point,
exit_point,
arch_info);
if (retval != ERROR_OK) {
LOG_ERROR("error starting target flash write algorithm");
return retval;
}
while (count > 0) {
retval = target_read_u32(target, rp_addr, &rp);
if (retval != ERROR_OK) {
LOG_ERROR("failed to get read pointer");
break;
}
LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
(size_t) (buffer - buffer_orig), count, wp, rp);
if (rp == 0) {
LOG_ERROR("flash write algorithm aborted by target");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (!IS_ALIGNED(rp - fifo_start_addr, block_size) || rp < fifo_start_addr || rp >= fifo_end_addr) {
LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
break;
}
/* Count the number of bytes available in the fifo without
* crossing the wrap around. Make sure to not fill it completely,
* because that would make wp == rp and that's the empty condition. */
uint32_t thisrun_bytes;
if (rp > wp)
thisrun_bytes = rp - wp - block_size;
else if (rp > fifo_start_addr)
thisrun_bytes = fifo_end_addr - wp;
else
thisrun_bytes = fifo_end_addr - wp - block_size;
if (thisrun_bytes == 0) {
/* Throttle polling a bit if transfer is (much) faster than flash
* programming. The exact delay shouldn't matter as long as it's
* less than buffer size / flash speed. This is very unlikely to
* run when using high latency connections such as USB. */
alive_sleep(2);
/* to stop an infinite loop on some targets check and increment a timeout
* this issue was observed on a stellaris using the new ICDI interface */
if (timeout++ >= 2500) {
LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
return ERROR_FLASH_OPERATION_FAILED;
}
continue;
}
/* reset our timeout */
timeout = 0;
/* Limit to the amount of data we actually want to write */
if (thisrun_bytes > count * block_size)
thisrun_bytes = count * block_size;
/* Force end of large blocks to be word aligned */
if (thisrun_bytes >= 16)
thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
/* Write data to fifo */
retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
if (retval != ERROR_OK)
break;
/* Update counters and wrap write pointer */
buffer += thisrun_bytes;
count -= thisrun_bytes / block_size;
wp += thisrun_bytes;
if (wp >= fifo_end_addr)
wp = fifo_start_addr;
/* Store updated write pointer to target */
retval = target_write_u32(target, wp_addr, wp);
if (retval != ERROR_OK)
break;
/* Avoid GDB timeouts */
keep_alive();
}
if (retval != ERROR_OK) {
/* abort flash write algorithm on target */
target_write_u32(target, wp_addr, 0);
}
int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
num_reg_params, reg_params,
exit_point,
10000,
arch_info);
if (retval2 != ERROR_OK) {
LOG_ERROR("error waiting for target flash write algorithm");
retval = retval2;
}
if (retval == ERROR_OK) {
/* check if algorithm set rp = 0 after fifo writer loop finished */
retval = target_read_u32(target, rp_addr, &rp);
if (retval == ERROR_OK && rp == 0) {
LOG_ERROR("flash write algorithm aborted by target");
retval = ERROR_FLASH_OPERATION_FAILED;
}
}
return retval;
}
int target_run_read_async_algorithm(struct target *target,
uint8_t *buffer, uint32_t count, int block_size,
int num_mem_params, struct mem_param *mem_params,
int num_reg_params, struct reg_param *reg_params,
uint32_t buffer_start, uint32_t buffer_size,
uint32_t entry_point, uint32_t exit_point, void *arch_info)
{
int retval;
int timeout = 0;
const uint8_t *buffer_orig = buffer;
/* Set up working area. First word is write pointer, second word is read pointer,
* rest is fifo data area. */
uint32_t wp_addr = buffer_start;
uint32_t rp_addr = buffer_start + 4;
uint32_t fifo_start_addr = buffer_start + 8;
uint32_t fifo_end_addr = buffer_start + buffer_size;
uint32_t wp = fifo_start_addr;
uint32_t rp = fifo_start_addr;
/* validate block_size is 2^n */
assert(IS_PWR_OF_2(block_size));
retval = target_write_u32(target, wp_addr, wp);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, rp_addr, rp);
if (retval != ERROR_OK)
return retval;
/* Start up algorithm on target */
retval = target_start_algorithm(target, num_mem_params, mem_params,
num_reg_params, reg_params,
entry_point,
exit_point,
arch_info);
if (retval != ERROR_OK) {
LOG_ERROR("error starting target flash read algorithm");
return retval;
}
while (count > 0) {
retval = target_read_u32(target, wp_addr, &wp);
if (retval != ERROR_OK) {
LOG_ERROR("failed to get write pointer");
break;
}
LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
(size_t)(buffer - buffer_orig), count, wp, rp);
if (wp == 0) {
LOG_ERROR("flash read algorithm aborted by target");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (!IS_ALIGNED(wp - fifo_start_addr, block_size) || wp < fifo_start_addr || wp >= fifo_end_addr) {
LOG_ERROR("corrupted fifo write pointer 0x%" PRIx32, wp);
break;
}
/* Count the number of bytes available in the fifo without
* crossing the wrap around. */
uint32_t thisrun_bytes;
if (wp >= rp)
thisrun_bytes = wp - rp;
else
thisrun_bytes = fifo_end_addr - rp;
if (thisrun_bytes == 0) {
/* Throttle polling a bit if transfer is (much) faster than flash
* reading. The exact delay shouldn't matter as long as it's
* less than buffer size / flash speed. This is very unlikely to
* run when using high latency connections such as USB. */
alive_sleep(2);
/* to stop an infinite loop on some targets check and increment a timeout
* this issue was observed on a stellaris using the new ICDI interface */
if (timeout++ >= 2500) {
LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
return ERROR_FLASH_OPERATION_FAILED;
}
continue;
}
/* Reset our timeout */
timeout = 0;
/* Limit to the amount of data we actually want to read */
if (thisrun_bytes > count * block_size)
thisrun_bytes = count * block_size;
/* Force end of large blocks to be word aligned */
if (thisrun_bytes >= 16)
thisrun_bytes -= (rp + thisrun_bytes) & 0x03;
/* Read data from fifo */
retval = target_read_buffer(target, rp, thisrun_bytes, buffer);
if (retval != ERROR_OK)
break;
/* Update counters and wrap write pointer */
buffer += thisrun_bytes;
count -= thisrun_bytes / block_size;
rp += thisrun_bytes;
if (rp >= fifo_end_addr)
rp = fifo_start_addr;
/* Store updated write pointer to target */
retval = target_write_u32(target, rp_addr, rp);
if (retval != ERROR_OK)
break;
/* Avoid GDB timeouts */
keep_alive();
}
if (retval != ERROR_OK) {
/* abort flash write algorithm on target */
target_write_u32(target, rp_addr, 0);
}
int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
num_reg_params, reg_params,
exit_point,
10000,
arch_info);
if (retval2 != ERROR_OK) {
LOG_ERROR("error waiting for target flash write algorithm");
retval = retval2;
}
if (retval == ERROR_OK) {
/* check if algorithm set wp = 0 after fifo writer loop finished */
retval = target_read_u32(target, wp_addr, &wp);
if (retval == ERROR_OK && wp == 0) {
LOG_ERROR("flash read algorithm aborted by target");
retval = ERROR_FLASH_OPERATION_FAILED;
}
}
return retval;
}
int target_read_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (!target->type->read_memory) {
LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
return ERROR_FAIL;
}
return target->type->read_memory(target, address, size, count, buffer);
}
int target_read_phys_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (!target->type->read_phys_memory) {
LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
return ERROR_FAIL;
}
return target->type->read_phys_memory(target, address, size, count, buffer);
}
int target_write_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (!target->type->write_memory) {
LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
return ERROR_FAIL;
}
return target->type->write_memory(target, address, size, count, buffer);
}
int target_write_phys_memory(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (!target->type->write_phys_memory) {
LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
return ERROR_FAIL;
}
return target->type->write_phys_memory(target, address, size, count, buffer);
}
int target_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
return ERROR_TARGET_NOT_HALTED;
}
return target->type->add_breakpoint(target, breakpoint);
}
int target_add_context_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
return ERROR_TARGET_NOT_HALTED;
}
return target->type->add_context_breakpoint(target, breakpoint);
}
int target_add_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
return ERROR_TARGET_NOT_HALTED;
}
return target->type->add_hybrid_breakpoint(target, breakpoint);
}
int target_remove_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
return target->type->remove_breakpoint(target, breakpoint);
}
int target_add_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
return ERROR_TARGET_NOT_HALTED;
}
return target->type->add_watchpoint(target, watchpoint);
}
int target_remove_watchpoint(struct target *target,
struct watchpoint *watchpoint)
{
return target->type->remove_watchpoint(target, watchpoint);
}
int target_hit_watchpoint(struct target *target,
struct watchpoint **hit_watchpoint)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
return ERROR_TARGET_NOT_HALTED;
}
if (!target->type->hit_watchpoint) {
/* For backward compatible, if hit_watchpoint is not implemented,
* return ERROR_FAIL such that gdb_server will not take the nonsense
* information. */
return ERROR_FAIL;
}
return target->type->hit_watchpoint(target, hit_watchpoint);
}
const char *target_get_gdb_arch(struct target *target)
{
if (!target->type->get_gdb_arch)
return NULL;
return target->type->get_gdb_arch(target);
}
int target_get_gdb_reg_list(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
int result = ERROR_FAIL;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
goto done;
}
result = target->type->get_gdb_reg_list(target, reg_list,
reg_list_size, reg_class);
done:
if (result != ERROR_OK) {
*reg_list = NULL;
*reg_list_size = 0;
}
return result;
}
int target_get_gdb_reg_list_noread(struct target *target,
struct reg **reg_list[], int *reg_list_size,
enum target_register_class reg_class)
{
if (target->type->get_gdb_reg_list_noread &&
target->type->get_gdb_reg_list_noread(target, reg_list,
reg_list_size, reg_class) == ERROR_OK)
return ERROR_OK;
return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
}
bool target_supports_gdb_connection(struct target *target)
{
/*
* exclude all the targets that don't provide get_gdb_reg_list
* or that have explicit gdb_max_connection == 0
*/
return !!target->type->get_gdb_reg_list && !!target->gdb_max_connections;
}
int target_step(struct target *target,
int current, target_addr_t address, int handle_breakpoints)
{
int retval;
target_call_event_callbacks(target, TARGET_EVENT_STEP_START);
retval = target->type->step(target, current, address, handle_breakpoints);
if (retval != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_STEP_END);
return retval;
}
int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
return ERROR_TARGET_NOT_HALTED;
}
return target->type->get_gdb_fileio_info(target, fileio_info);
}
int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
{
if (target->state != TARGET_HALTED) {
LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
return ERROR_TARGET_NOT_HALTED;
}
return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
}
target_addr_t target_address_max(struct target *target)
{
unsigned bits = target_address_bits(target);
if (sizeof(target_addr_t) * 8 == bits)
return (target_addr_t) -1;
else
return (((target_addr_t) 1) << bits) - 1;
}
unsigned target_address_bits(struct target *target)
{
if (target->type->address_bits)
return target->type->address_bits(target);
return 32;
}
unsigned int target_data_bits(struct target *target)
{
if (target->type->data_bits)
return target->type->data_bits(target);
return 32;
}
static int target_profiling(struct target *target, uint32_t *samples,
uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
{
return target->type->profiling(target, samples, max_num_samples,
num_samples, seconds);
}
static int handle_target(void *priv);
static int target_init_one(struct command_context *cmd_ctx,
struct target *target)
{
target_reset_examined(target);
struct target_type *type = target->type;
if (!type->examine)
type->examine = default_examine;
if (!type->check_reset)
type->check_reset = default_check_reset;
assert(type->init_target);
int retval = type->init_target(cmd_ctx, target);
if (retval != ERROR_OK) {
LOG_ERROR("target '%s' init failed", target_name(target));
return retval;
}
/* Sanity-check MMU support ... stub in what we must, to help
* implement it in stages, but warn if we need to do so.
*/
if (type->mmu) {
if (!type->virt2phys) {
LOG_ERROR("type '%s' is missing virt2phys", type->name);
type->virt2phys = identity_virt2phys;
}
} else {
/* Make sure no-MMU targets all behave the same: make no
* distinction between physical and virtual addresses, and
* ensure that virt2phys() is always an identity mapping.
*/
if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
LOG_WARNING("type '%s' has bad MMU hooks", type->name);
type->mmu = no_mmu;
type->write_phys_memory = type->write_memory;
type->read_phys_memory = type->read_memory;
type->virt2phys = identity_virt2phys;
}
if (!target->type->read_buffer)
target->type->read_buffer = target_read_buffer_default;
if (!target->type->write_buffer)
target->type->write_buffer = target_write_buffer_default;
if (!target->type->get_gdb_fileio_info)
target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
if (!target->type->gdb_fileio_end)
target->type->gdb_fileio_end = target_gdb_fileio_end_default;
if (!target->type->profiling)
target->type->profiling = target_profiling_default;
return ERROR_OK;
}
static int target_init(struct command_context *cmd_ctx)
{
struct target *target;
int retval;
for (target = all_targets; target; target = target->next) {
retval = target_init_one(cmd_ctx, target);
if (retval != ERROR_OK)
return retval;
}
if (!all_targets)
return ERROR_OK;
retval = target_register_user_commands(cmd_ctx);
if (retval != ERROR_OK)
return retval;
retval = target_register_timer_callback(&handle_target,
polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
COMMAND_HANDLER(handle_target_init_command)
{
int retval;
if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
static bool target_initialized;
if (target_initialized) {
LOG_INFO("'target init' has already been called");
return ERROR_OK;
}
target_initialized = true;
retval = command_run_line(CMD_CTX, "init_targets");
if (retval != ERROR_OK)
return retval;
retval = command_run_line(CMD_CTX, "init_target_events");
if (retval != ERROR_OK)
return retval;
retval = command_run_line(CMD_CTX, "init_board");
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Initializing targets...");
return target_init(CMD_CTX);
}
int target_register_event_callback(int (*callback)(struct target *target,
enum target_event event, void *priv), void *priv)
{
struct target_event_callback **callbacks_p = &target_event_callbacks;
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
if (*callbacks_p) {
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
(*callbacks_p) = malloc(sizeof(struct target_event_callback));
(*callbacks_p)->callback = callback;
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
return ERROR_OK;
}
int target_register_reset_callback(int (*callback)(struct target *target,
enum target_reset_mode reset_mode, void *priv), void *priv)
{
struct target_reset_callback *entry;
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
entry = malloc(sizeof(struct target_reset_callback));
if (!entry) {
LOG_ERROR("error allocating buffer for reset callback entry");
return ERROR_COMMAND_SYNTAX_ERROR;
}
entry->callback = callback;
entry->priv = priv;
list_add(&entry->list, &target_reset_callback_list);
return ERROR_OK;
}
int target_register_trace_callback(int (*callback)(struct target *target,
size_t len, uint8_t *data, void *priv), void *priv)
{
struct target_trace_callback *entry;
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
entry = malloc(sizeof(struct target_trace_callback));
if (!entry) {
LOG_ERROR("error allocating buffer for trace callback entry");
return ERROR_COMMAND_SYNTAX_ERROR;
}
entry->callback = callback;
entry->priv = priv;
list_add(&entry->list, &target_trace_callback_list);
return ERROR_OK;
}
int target_register_timer_callback(int (*callback)(void *priv),
unsigned int time_ms, enum target_timer_type type, void *priv)
{
struct target_timer_callback **callbacks_p = &target_timer_callbacks;
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
if (*callbacks_p) {
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
(*callbacks_p) = malloc(sizeof(struct target_timer_callback));
(*callbacks_p)->callback = callback;
(*callbacks_p)->type = type;
(*callbacks_p)->time_ms = time_ms;
(*callbacks_p)->removed = false;
(*callbacks_p)->when = timeval_ms() + time_ms;
target_timer_next_event_value = MIN(target_timer_next_event_value, (*callbacks_p)->when);
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
return ERROR_OK;
}
int target_unregister_event_callback(int (*callback)(struct target *target,
enum target_event event, void *priv), void *priv)
{
struct target_event_callback **p = &target_event_callbacks;
struct target_event_callback *c = target_event_callbacks;
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
while (c) {
struct target_event_callback *next = c->next;
if ((c->callback == callback) && (c->priv == priv)) {
*p = next;
free(c);
return ERROR_OK;
} else
p = &(c->next);
c = next;
}
return ERROR_OK;
}
int target_unregister_reset_callback(int (*callback)(struct target *target,
enum target_reset_mode reset_mode, void *priv), void *priv)
{
struct target_reset_callback *entry;
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
list_for_each_entry(entry, &target_reset_callback_list, list) {
if (entry->callback == callback && entry->priv == priv) {
list_del(&entry->list);
free(entry);
break;
}
}
return ERROR_OK;
}
int target_unregister_trace_callback(int (*callback)(struct target *target,
size_t len, uint8_t *data, void *priv), void *priv)
{
struct target_trace_callback *entry;
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
list_for_each_entry(entry, &target_trace_callback_list, list) {
if (entry->callback == callback && entry->priv == priv) {
list_del(&entry->list);
free(entry);
break;
}
}
return ERROR_OK;
}
int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
{
if (!callback)
return ERROR_COMMAND_SYNTAX_ERROR;
for (struct target_timer_callback *c = target_timer_callbacks;
c; c = c->next) {
if ((c->callback == callback) && (c->priv == priv)) {
c->removed = true;
return ERROR_OK;
}
}
return ERROR_FAIL;
}
int target_call_event_callbacks(struct target *target, enum target_event event)
{
struct target_event_callback *callback = target_event_callbacks;
struct target_event_callback *next_callback;
if (event == TARGET_EVENT_HALTED) {
/* execute early halted first */
target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
}
LOG_DEBUG("target event %i (%s) for core %s", event,
target_event_name(event),
target_name(target));
target_handle_event(target, event);
while (callback) {
next_callback = callback->next;
callback->callback(target, event, callback->priv);
callback = next_callback;
}
return ERROR_OK;
}
int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
{
struct target_reset_callback *callback;
LOG_DEBUG("target reset %i (%s)", reset_mode,
jim_nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
list_for_each_entry(callback, &target_reset_callback_list, list)
callback->callback(target, reset_mode, callback->priv);
return ERROR_OK;
}
int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
{
struct target_trace_callback *callback;
list_for_each_entry(callback, &target_trace_callback_list, list)
callback->callback(target, len, data, callback->priv);
return ERROR_OK;
}
static int target_timer_callback_periodic_restart(
struct target_timer_callback *cb, int64_t *now)
{
cb->when = *now + cb->time_ms;
return ERROR_OK;
}
static int target_call_timer_callback(struct target_timer_callback *cb,
int64_t *now)
{
cb->callback(cb->priv);
if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
return target_timer_callback_periodic_restart(cb, now);
return target_unregister_timer_callback(cb->callback, cb->priv);
}
static int target_call_timer_callbacks_check_time(int checktime)
{
static bool callback_processing;
/* Do not allow nesting */
if (callback_processing)
return ERROR_OK;
callback_processing = true;
keep_alive();
int64_t now = timeval_ms();
/* Initialize to a default value that's a ways into the future.
* The loop below will make it closer to now if there are
* callbacks that want to be called sooner. */
target_timer_next_event_value = now + 1000;
/* Store an address of the place containing a pointer to the
* next item; initially, that's a standalone "root of the
* list" variable. */
struct target_timer_callback **callback = &target_timer_callbacks;
while (callback && *callback) {
if ((*callback)->removed) {
struct target_timer_callback *p = *callback;
*callback = (*callback)->next;
free(p);
continue;
}
bool call_it = (*callback)->callback &&
((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
now >= (*callback)->when);
if (call_it)
target_call_timer_callback(*callback, &now);
if (!(*callback)->removed && (*callback)->when < target_timer_next_event_value)
target_timer_next_event_value = (*callback)->when;
callback = &(*callback)->next;
}
callback_processing = false;
return ERROR_OK;
}
int target_call_timer_callbacks()
{
return target_call_timer_callbacks_check_time(1);
}
/* invoke periodic callbacks immediately */
int target_call_timer_callbacks_now()
{
return target_call_timer_callbacks_check_time(0);
}
int64_t target_timer_next_event(void)
{
return target_timer_next_event_value;
}
/* Prints the working area layout for debug purposes */
static void print_wa_layout(struct target *target)
{
struct working_area *c = target->working_areas;
while (c) {
LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
c->backup ? 'b' : ' ', c->free ? ' ' : '*',
c->address, c->address + c->size - 1, c->size);
c = c->next;
}
}
/* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
static void target_split_working_area(struct working_area *area, uint32_t size)
{
assert(area->free); /* Shouldn't split an allocated area */
assert(size <= area->size); /* Caller should guarantee this */
/* Split only if not already the right size */
if (size < area->size) {
struct working_area *new_wa = malloc(sizeof(*new_wa));
if (!new_wa)
return;
new_wa->next = area->next;
new_wa->size = area->size - size;
new_wa->address = area->address + size;
new_wa->backup = NULL;
new_wa->user = NULL;
new_wa->free = true;
area->next = new_wa;
area->size = size;
/* If backup memory was allocated to this area, it has the wrong size
* now so free it and it will be reallocated if/when needed */
free(area->backup);
area->backup = NULL;
}
}
/* Merge all adjacent free areas into one */
static void target_merge_working_areas(struct target *target)
{
struct working_area *c = target->working_areas;
while (c && c->next) {
assert(c->next->address == c->address + c->size); /* This is an invariant */
/* Find two adjacent free areas */
if (c->free && c->next->free) {
/* Merge the last into the first */
c->size += c->next->size;
/* Remove the last */
struct working_area *to_be_freed = c->next;
c->next = c->next->next;
free(to_be_freed->backup);
free(to_be_freed);
/* If backup memory was allocated to the remaining area, it's has
* the wrong size now */
free(c->backup);
c->backup = NULL;
} else {
c = c->next;
}
}
}
int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
{
/* Reevaluate working area address based on MMU state*/
if (!target->working_areas) {
int retval;
int enabled;
retval = target->type->mmu(target, &enabled);
if (retval != ERROR_OK)
return retval;
if (!enabled) {
if (target->working_area_phys_spec) {
LOG_DEBUG("MMU disabled, using physical "
"address for working memory " TARGET_ADDR_FMT,
target->working_area_phys);
target->working_area = target->working_area_phys;
} else {
LOG_ERROR("No working memory available. "
"Specify -work-area-phys to target.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
} else {
if (target->working_area_virt_spec) {
LOG_DEBUG("MMU enabled, using virtual "
"address for working memory " TARGET_ADDR_FMT,
target->working_area_virt);
target->working_area = target->working_area_virt;
} else {
LOG_ERROR("No working memory available. "
"Specify -work-area-virt to target.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
/* Set up initial working area on first call */
struct working_area *new_wa = malloc(sizeof(*new_wa));
if (new_wa) {
new_wa->next = NULL;
new_wa->size = ALIGN_DOWN(target->working_area_size, 4); /* 4-byte align */
new_wa->address = target->working_area;
new_wa->backup = NULL;
new_wa->user = NULL;
new_wa->free = true;
}
target->working_areas = new_wa;
}
/* only allocate multiples of 4 byte */
size = ALIGN_UP(size, 4);
struct working_area *c = target->working_areas;
/* Find the first large enough working area */
while (c) {
if (c->free && c->size >= size)
break;
c = c->next;
}
if (!c)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
/* Split the working area into the requested size */
target_split_working_area(c, size);
LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
size, c->address);
if (target->backup_working_area) {
if (!c->backup) {
c->backup = malloc(c->size);
if (!c->backup)
return ERROR_FAIL;
}
int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
if (retval != ERROR_OK)
return retval;
}
/* mark as used, and return the new (reused) area */
c->free = false;
*area = c;
/* user pointer */
c->user = area;
print_wa_layout(target);
return ERROR_OK;
}
int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
{
int retval;
retval = target_alloc_working_area_try(target, size, area);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
return retval;
}
static int target_restore_working_area(struct target *target, struct working_area *area)
{
int retval = ERROR_OK;
if (target->backup_working_area && area->backup) {
retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
if (retval != ERROR_OK)
LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
area->size, area->address);
}
return retval;
}
/* Restore the area's backup memory, if any, and return the area to the allocation pool */
static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
{
if (!area || area->free)
return ERROR_OK;
int retval = ERROR_OK;
if (restore) {
retval = target_restore_working_area(target, area);
/* REVISIT: Perhaps the area should be freed even if restoring fails. */
if (retval != ERROR_OK)
return retval;
}
area->free = true;
LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
area->size, area->address);
/* mark user pointer invalid */
/* TODO: Is this really safe? It points to some previous caller's memory.
* How could we know that the area pointer is still in that place and not
* some other vital data? What's the purpose of this, anyway? */
*area->user = NULL;
area->user = NULL;
target_merge_working_areas(target);
print_wa_layout(target);
return retval;
}
int target_free_working_area(struct target *target, struct working_area *area)
{
return target_free_working_area_restore(target, area, 1);
}
/* free resources and restore memory, if restoring memory fails,
* free up resources anyway
*/
static void target_free_all_working_areas_restore(struct target *target, int restore)
{
struct working_area *c = target->working_areas;
LOG_DEBUG("freeing all working areas");
/* Loop through all areas, restoring the allocated ones and marking them as free */
while (c) {
if (!c->free) {
if (restore)
target_restore_working_area(target, c);
c->free = true;
*c->user = NULL; /* Same as above */
c->user = NULL;
}
c = c->next;
}
/* Run a merge pass to combine all areas into one */
target_merge_working_areas(target);
print_wa_layout(target);
}
void target_free_all_working_areas(struct target *target)
{
target_free_all_working_areas_restore(target, 1);
/* Now we have none or only one working area marked as free */
if (target->working_areas) {
/* Free the last one to allow on-the-fly moving and resizing */
free(target->working_areas->backup);
free(target->working_areas);
target->working_areas = NULL;
}
}
/* Find the largest number of bytes that can be allocated */
uint32_t target_get_working_area_avail(struct target *target)
{
struct working_area *c = target->working_areas;
uint32_t max_size = 0;
if (!c)
return ALIGN_DOWN(target->working_area_size, 4);
while (c) {
if (c->free && max_size < c->size)
max_size = c->size;
c = c->next;
}
return max_size;
}
static void target_destroy(struct target *target)
{
if (target->type->deinit_target)
target->type->deinit_target(target);
if (target->semihosting)
free(target->semihosting->basedir);
free(target->semihosting);
jtag_unregister_event_callback(jtag_enable_callback, target);
struct target_event_action *teap = target->event_action;
while (teap) {
struct target_event_action *next = teap->next;
Jim_DecrRefCount(teap->interp, teap->body);
free(teap);
teap = next;
}
target_free_all_working_areas(target);
/* release the targets SMP list */
if (target->smp) {
struct target_list *head, *tmp;
list_for_each_entry_safe(head, tmp, target->smp_targets, lh) {
list_del(&head->lh);
head->target->smp = 0;
free(head);
}
if (target->smp_targets != &empty_smp_targets)
free(target->smp_targets);
target->smp = 0;
}
rtos_destroy(target);
free(target->gdb_port_override);
free(target->type);
free(target->trace_info);
free(target->fileio_info);
free(target->cmd_name);
free(target);
}
void target_quit(void)
{
struct target_event_callback *pe = target_event_callbacks;
while (pe) {
struct target_event_callback *t = pe->next;
free(pe);
pe = t;
}
target_event_callbacks = NULL;
struct target_timer_callback *pt = target_timer_callbacks;
while (pt) {
struct target_timer_callback *t = pt->next;
free(pt);
pt = t;
}
target_timer_callbacks = NULL;
for (struct target *target = all_targets; target;) {
struct target *tmp;
tmp = target->next;
target_destroy(target);
target = tmp;
}
all_targets = NULL;
}
int target_arch_state(struct target *target)
{
int retval;
if (!target) {
LOG_WARNING("No target has been configured");
return ERROR_OK;
}
if (target->state != TARGET_HALTED)
return ERROR_OK;
retval = target->type->arch_state(target);
return retval;
}
static int target_get_gdb_fileio_info_default(struct target *target,
struct gdb_fileio_info *fileio_info)
{
/* If target does not support semi-hosting function, target
has no need to provide .get_gdb_fileio_info callback.
It just return ERROR_FAIL and gdb_server will return "Txx"
as target halted every time. */
return ERROR_FAIL;
}
static int target_gdb_fileio_end_default(struct target *target,
int retcode, int fileio_errno, bool ctrl_c)
{
return ERROR_OK;
}
int target_profiling_default(struct target *target, uint32_t *samples,
uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
{
struct timeval timeout, now;
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, seconds, 0);
LOG_INFO("Starting profiling. Halting and resuming the"
" target as often as we can...");
uint32_t sample_count = 0;
/* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
struct reg *reg = register_get_by_name(target->reg_cache, "pc", true);
int retval = ERROR_OK;
for (;;) {
target_poll(target);
if (target->state == TARGET_HALTED) {
uint32_t t = buf_get_u32(reg->value, 0, 32);
samples[sample_count++] = t;
/* current pc, addr = 0, do not handle breakpoints, not debugging */
retval = target_resume(target, 1, 0, 0, 0);
target_poll(target);
alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
} else if (target->state == TARGET_RUNNING) {
/* We want to quickly sample the PC. */
retval = target_halt(target);
} else {
LOG_INFO("Target not halted or running");
retval = ERROR_OK;
break;
}
if (retval != ERROR_OK)
break;
gettimeofday(&now, NULL);
if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
break;
}
}
*num_samples = sample_count;
return retval;
}
/* Single aligned words are guaranteed to use 16 or 32 bit access
* mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
{
LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
size, address);
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (size == 0)
return ERROR_OK;
if ((address + size - 1) < address) {
/* GDB can request this when e.g. PC is 0xfffffffc */
LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
address,
size);
return ERROR_FAIL;
}
return target->type->write_buffer(target, address, size, buffer);
}
static int target_write_buffer_default(struct target *target,
target_addr_t address, uint32_t count, const uint8_t *buffer)
{
uint32_t size;
unsigned int data_bytes = target_data_bits(target) / 8;
/* Align up to maximum bytes. The loop condition makes sure the next pass
* will have something to do with the size we leave to it. */
for (size = 1;
size < data_bytes && count >= size * 2 + (address & size);
size *= 2) {
if (address & size) {
int retval = target_write_memory(target, address, size, 1, buffer);
if (retval != ERROR_OK)
return retval;
address += size;
count -= size;
buffer += size;
}
}
/* Write the data with as large access size as possible. */
for (; size > 0; size /= 2) {
uint32_t aligned = count - count % size;
if (aligned > 0) {
int retval = target_write_memory(target, address, size, aligned / size, buffer);
if (retval != ERROR_OK)
return retval;
address += aligned;
count -= aligned;
buffer += aligned;
}
}
return ERROR_OK;
}
/* Single aligned words are guaranteed to use 16 or 32 bit access
* mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
{
LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
size, address);
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (size == 0)
return ERROR_OK;
if ((address + size - 1) < address) {
/* GDB can request this when e.g. PC is 0xfffffffc */
LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
address,
size);
return ERROR_FAIL;
}
return target->type->read_buffer(target, address, size, buffer);
}
static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
{
uint32_t size;
unsigned int data_bytes = target_data_bits(target) / 8;
/* Align up to maximum bytes. The loop condition makes sure the next pass
* will have something to do with the size we leave to it. */
for (size = 1;
size < data_bytes && count >= size * 2 + (address & size);
size *= 2) {
if (address & size) {
int retval = target_read_memory(target, address, size, 1, buffer);
if (retval != ERROR_OK)
return retval;
address += size;
count -= size;
buffer += size;
}
}
/* Read the data with as large access size as possible. */
for (; size > 0; size /= 2) {
uint32_t aligned = count - count % size;
if (aligned > 0) {
int retval = target_read_memory(target, address, size, aligned / size, buffer);
if (retval != ERROR_OK)
return retval;
address += aligned;
count -= aligned;
buffer += aligned;
}
}
return ERROR_OK;
}
int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
{
uint8_t *buffer;
int retval;
uint32_t i;
uint32_t checksum = 0;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (!target->type->checksum_memory) {
LOG_ERROR("Target %s doesn't support checksum_memory", target_name(target));
return ERROR_FAIL;
}
retval = target->type->checksum_memory(target, address, size, &checksum);
if (retval != ERROR_OK) {
buffer = malloc(size);
if (!buffer) {
LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = target_read_buffer(target, address, size, buffer);
if (retval != ERROR_OK) {
free(buffer);
return retval;
}
/* convert to target endianness */
for (i = 0; i < (size/sizeof(uint32_t)); i++) {
uint32_t target_data;
target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
}
retval = image_calculate_checksum(buffer, size, &checksum);
free(buffer);
}
*crc = checksum;
return retval;
}
int target_blank_check_memory(struct target *target,
struct target_memory_check_block *blocks, int num_blocks,
uint8_t erased_value)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (!target->type->blank_check_memory)
return ERROR_NOT_IMPLEMENTED;
return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
}
int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
{
uint8_t value_buf[8];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target_read_memory(target, address, 8, 1, value_buf);
if (retval == ERROR_OK) {
*value = target_buffer_get_u64(target, value_buf);
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
address,
*value);
} else {
*value = 0x0;
LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
address);
}
return retval;
}
int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
{
uint8_t value_buf[4];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target_read_memory(target, address, 4, 1, value_buf);
if (retval == ERROR_OK) {
*value = target_buffer_get_u32(target, value_buf);
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
address,
*value);
} else {
*value = 0x0;
LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
address);
}
return retval;
}
int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
{
uint8_t value_buf[2];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target_read_memory(target, address, 2, 1, value_buf);
if (retval == ERROR_OK) {
*value = target_buffer_get_u16(target, value_buf);
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
address,
*value);
} else {
*value = 0x0;
LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
address);
}
return retval;
}
int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target_read_memory(target, address, 1, 1, value);
if (retval == ERROR_OK) {
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
address,
*value);
} else {
*value = 0x0;
LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
address);
}
return retval;
}
int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
{
int retval;
uint8_t value_buf[8];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
address,
value);
target_buffer_set_u64(target, value_buf, value);
retval = target_write_memory(target, address, 8, 1, value_buf);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
{
int retval;
uint8_t value_buf[4];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
address,
value);
target_buffer_set_u32(target, value_buf, value);
retval = target_write_memory(target, address, 4, 1, value_buf);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
{
int retval;
uint8_t value_buf[2];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
address,
value);
target_buffer_set_u16(target, value_buf, value);
retval = target_write_memory(target, address, 2, 1, value_buf);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
{
int retval;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
address, value);
retval = target_write_memory(target, address, 1, 1, &value);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
{
int retval;
uint8_t value_buf[8];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
address,
value);
target_buffer_set_u64(target, value_buf, value);
retval = target_write_phys_memory(target, address, 8, 1, value_buf);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
{
int retval;
uint8_t value_buf[4];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
address,
value);
target_buffer_set_u32(target, value_buf, value);
retval = target_write_phys_memory(target, address, 4, 1, value_buf);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
{
int retval;
uint8_t value_buf[2];
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
address,
value);
target_buffer_set_u16(target, value_buf, value);
retval = target_write_phys_memory(target, address, 2, 1, value_buf);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
{
int retval;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
address, value);
retval = target_write_phys_memory(target, address, 1, 1, &value);
if (retval != ERROR_OK)
LOG_DEBUG("failed: %i", retval);
return retval;
}
static int find_target(struct command_invocation *cmd, const char *name)
{
struct target *target = get_target(name);
if (!target) {
command_print(cmd, "Target: %s is unknown, try one of:\n", name);
return ERROR_FAIL;
}
if (!target->tap->enabled) {
command_print(cmd, "Target: TAP %s is disabled, "
"can't be the current target\n",
target->tap->dotted_name);
return ERROR_FAIL;
}
cmd->ctx->current_target = target;
if (cmd->ctx->current_target_override)
cmd->ctx->current_target_override = target;
return ERROR_OK;
}
COMMAND_HANDLER(handle_targets_command)
{
int retval = ERROR_OK;
if (CMD_ARGC == 1) {
retval = find_target(CMD, CMD_ARGV[0]);
if (retval == ERROR_OK) {
/* we're done! */
return retval;
}
}
struct target *target = all_targets;
command_print(CMD, " TargetName Type Endian TapName State ");
command_print(CMD, "-- ------------------ ---------- ------ ------------------ ------------");
while (target) {
const char *state;
char marker = ' ';
if (target->tap->enabled)
state = target_state_name(target);
else
state = "tap-disabled";
if (CMD_CTX->current_target == target)
marker = '*';
/* keep columns lined up to match the headers above */
command_print(CMD,
"%2d%c %-18s %-10s %-6s %-18s %s",
target->target_number,
marker,
target_name(target),
target_type_name(target),
jim_nvp_value2name_simple(nvp_target_endian,
target->endianness)->name,
target->tap->dotted_name,
state);
target = target->next;
}
return retval;
}
/* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
static int power_dropout;
static int srst_asserted;
static int run_power_restore;
static int run_power_dropout;
static int run_srst_asserted;
static int run_srst_deasserted;
static int sense_handler(void)
{
static int prev_srst_asserted;
static int prev_power_dropout;
int retval = jtag_power_dropout(&power_dropout);
if (retval != ERROR_OK)
return retval;
int power_restored;
power_restored = prev_power_dropout && !power_dropout;
if (power_restored)
run_power_restore = 1;
int64_t current = timeval_ms();
static int64_t last_power;
bool wait_more = last_power + 2000 > current;
if (power_dropout && !wait_more) {
run_power_dropout = 1;
last_power = current;
}
retval = jtag_srst_asserted(&srst_asserted);
if (retval != ERROR_OK)
return retval;
int srst_deasserted;
srst_deasserted = prev_srst_asserted && !srst_asserted;
static int64_t last_srst;
wait_more = last_srst + 2000 > current;
if (srst_deasserted && !wait_more) {
run_srst_deasserted = 1;
last_srst = current;
}
if (!prev_srst_asserted && srst_asserted)
run_srst_asserted = 1;
prev_srst_asserted = srst_asserted;
prev_power_dropout = power_dropout;
if (srst_deasserted || power_restored) {
/* Other than logging the event we can't do anything here.
* Issuing a reset is a particularly bad idea as we might
* be inside a reset already.
*/
}
return ERROR_OK;
}
/* process target state changes */
static int handle_target(void *priv)
{
Jim_Interp *interp = (Jim_Interp *)priv;
int retval = ERROR_OK;
if (!is_jtag_poll_safe()) {
/* polling is disabled currently */
return ERROR_OK;
}
/* we do not want to recurse here... */
static int recursive;
if (!recursive) {
recursive = 1;
sense_handler();
/* danger! running these procedures can trigger srst assertions and power dropouts.
* We need to avoid an infinite loop/recursion here and we do that by
* clearing the flags after running these events.
*/
int did_something = 0;
if (run_srst_asserted) {
LOG_INFO("srst asserted detected, running srst_asserted proc.");
Jim_Eval(interp, "srst_asserted");
did_something = 1;
}
if (run_srst_deasserted) {
Jim_Eval(interp, "srst_deasserted");
did_something = 1;
}
if (run_power_dropout) {
LOG_INFO("Power dropout detected, running power_dropout proc.");
Jim_Eval(interp, "power_dropout");
did_something = 1;
}
if (run_power_restore) {
Jim_Eval(interp, "power_restore");
did_something = 1;
}
if (did_something) {
/* clear detect flags */
sense_handler();
}
/* clear action flags */
run_srst_asserted = 0;
run_srst_deasserted = 0;
run_power_restore = 0;
run_power_dropout = 0;
recursive = 0;
}
/* Poll targets for state changes unless that's globally disabled.
* Skip targets that are currently disabled.
*/
for (struct target *target = all_targets;
is_jtag_poll_safe() && target;
target = target->next) {
if (!target_was_examined(target))
continue;
if (!target->tap->enabled)
continue;
if (target->backoff.times > target->backoff.count) {
/* do not poll this time as we failed previously */
target->backoff.count++;
continue;
}
target->backoff.count = 0;
/* only poll target if we've got power and srst isn't asserted */
if (!power_dropout && !srst_asserted) {
/* polling may fail silently until the target has been examined */
retval = target_poll(target);
if (retval != ERROR_OK) {
/* 100ms polling interval. Increase interval between polling up to 5000ms */
if (target->backoff.times * polling_interval < 5000) {
target->backoff.times *= 2;
target->backoff.times++;
}
/* Tell GDB to halt the debugger. This allows the user to
* run monitor commands to handle the situation.
*/
target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
}
if (target->backoff.times > 0) {
LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
target_reset_examined(target);
retval = target_examine_one(target);
/* Target examination could have failed due to unstable connection,
* but we set the examined flag anyway to repoll it later */
if (retval != ERROR_OK) {
target_set_examined(target);
LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
target->backoff.times * polling_interval);
return retval;
}
}
/* Since we succeeded, we reset backoff count */
target->backoff.times = 0;
}
}
return retval;
}
COMMAND_HANDLER(handle_reg_command)
{
LOG_DEBUG("-");
struct target *target = get_current_target(CMD_CTX);
struct reg *reg = NULL;
/* list all available registers for the current target */
if (CMD_ARGC == 0) {
struct reg_cache *cache = target->reg_cache;
unsigned int count = 0;
while (cache) {
unsigned i;
command_print(CMD, "===== %s", cache->name);
for (i = 0, reg = cache->reg_list;
i < cache->num_regs;
i++, reg++, count++) {
if (reg->exist == false || reg->hidden)
continue;
/* only print cached values if they are valid */
if (reg->valid) {
char *value = buf_to_hex_str(reg->value,
reg->size);
command_print(CMD,
"(%i) %s (/%" PRIu32 "): 0x%s%s",
count, reg->name,
reg->size, value,
reg->dirty
? " (dirty)"
: "");
free(value);
} else {
command_print(CMD, "(%i) %s (/%" PRIu32 ")",
count, reg->name,
reg->size);
}
}
cache = cache->next;
}
return ERROR_OK;
}
/* access a single register by its ordinal number */
if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
unsigned num;
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
struct reg_cache *cache = target->reg_cache;
unsigned int count = 0;
while (cache) {
unsigned i;
for (i = 0; i < cache->num_regs; i++) {
if (count++ == num) {
reg = &cache->reg_list[i];
break;
}
}
if (reg)
break;
cache = cache->next;
}
if (!reg) {
command_print(CMD, "%i is out of bounds, the current target "
"has only %i registers (0 - %i)", num, count, count - 1);
return ERROR_OK;
}
} else {
/* access a single register by its name */
reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], true);
if (!reg)
goto not_found;
}
assert(reg); /* give clang a hint that we *know* reg is != NULL here */
if (!reg->exist)
goto not_found;
/* display a register */
if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
&& (CMD_ARGV[1][0] <= '9')))) {
if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
reg->valid = 0;
if (reg->valid == 0) {
int retval = reg->type->get(reg);
if (retval != ERROR_OK) {
LOG_ERROR("Could not read register '%s'", reg->name);
return retval;
}
}
char *value = buf_to_hex_str(reg->value, reg->size);
command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
free(value);
return ERROR_OK;
}
/* set register value */
if (CMD_ARGC == 2) {
uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
if (!buf)
return ERROR_FAIL;
str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
int retval = reg->type->set(reg, buf);
if (retval != ERROR_OK) {
LOG_ERROR("Could not write to register '%s'", reg->name);
} else {
char *value = buf_to_hex_str(reg->value, reg->size);
command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
free(value);
}
free(buf);
return retval;
}
return ERROR_COMMAND_SYNTAX_ERROR;
not_found:
command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
return ERROR_OK;
}
COMMAND_HANDLER(handle_poll_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC == 0) {
command_print(CMD, "background polling: %s",
jtag_poll_get_enabled() ? "on" : "off");
command_print(CMD, "TAP: %s (%s)",
target->tap->dotted_name,
target->tap->enabled ? "enabled" : "disabled");
if (!target->tap->enabled)
return ERROR_OK;
retval = target_poll(target);
if (retval != ERROR_OK)
return retval;
retval = target_arch_state(target);
if (retval != ERROR_OK)
return retval;
} else if (CMD_ARGC == 1) {
bool enable;
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
jtag_poll_set_enabled(enable);
} else
return ERROR_COMMAND_SYNTAX_ERROR;
return retval;
}
COMMAND_HANDLER(handle_wait_halt_command)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
unsigned ms = DEFAULT_HALT_TIMEOUT;
if (1 == CMD_ARGC) {
int retval = parse_uint(CMD_ARGV[0], &ms);
if (retval != ERROR_OK)
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct target *target = get_current_target(CMD_CTX);
return target_wait_state(target, TARGET_HALTED, ms);
}
/* wait for target state to change. The trick here is to have a low
* latency for short waits and not to suck up all the CPU time
* on longer waits.
*
* After 500ms, keep_alive() is invoked
*/
int target_wait_state(struct target *target, enum target_state state, int ms)
{
int retval;
int64_t then = 0, cur;
bool once = true;
for (;;) {
retval = target_poll(target);
if (retval != ERROR_OK)
return retval;
if (target->state == state)
break;
cur = timeval_ms();
if (once) {
once = false;
then = timeval_ms();
LOG_DEBUG("waiting for target %s...",
jim_nvp_value2name_simple(nvp_target_state, state)->name);
}
if (cur-then > 500)
keep_alive();
if ((cur-then) > ms) {
LOG_ERROR("timed out while waiting for target %s",
jim_nvp_value2name_simple(nvp_target_state, state)->name);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_halt_command)
{
LOG_DEBUG("-");
struct target *target = get_current_target(CMD_CTX);
target->verbose_halt_msg = true;
int retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC == 1) {
unsigned wait_local;
retval = parse_uint(CMD_ARGV[0], &wait_local);
if (retval != ERROR_OK)
return ERROR_COMMAND_SYNTAX_ERROR;
if (!wait_local)
return ERROR_OK;
}
return CALL_COMMAND_HANDLER(handle_wait_halt_command);
}
COMMAND_HANDLER(handle_soft_reset_halt_command)
{
struct target *target = get_current_target(CMD_CTX);
LOG_TARGET_INFO(target, "requesting target halt and executing a soft reset");
target_soft_reset_halt(target);
return ERROR_OK;
}
COMMAND_HANDLER(handle_reset_command)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
enum target_reset_mode reset_mode = RESET_RUN;
if (CMD_ARGC == 1) {
const struct jim_nvp *n;
n = jim_nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
if ((!n->name) || (n->value == RESET_UNKNOWN))
return ERROR_COMMAND_SYNTAX_ERROR;
reset_mode = n->value;
}
/* reset *all* targets */
return target_process_reset(CMD, reset_mode);
}
COMMAND_HANDLER(handle_resume_command)
{
int current = 1;
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct target *target = get_current_target(CMD_CTX);
/* with no CMD_ARGV, resume from current pc, addr = 0,
* with one arguments, addr = CMD_ARGV[0],
* handle breakpoints, not debugging */
target_addr_t addr = 0;
if (CMD_ARGC == 1) {
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
current = 0;
}
return target_resume(target, current, addr, 1, 0);
}
COMMAND_HANDLER(handle_step_command)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("-");
/* with no CMD_ARGV, step from current pc, addr = 0,
* with one argument addr = CMD_ARGV[0],
* handle breakpoints, debugging */
target_addr_t addr = 0;
int current_pc = 1;
if (CMD_ARGC == 1) {
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
current_pc = 0;
}
struct target *target = get_current_target(CMD_CTX);
return target_step(target, current_pc, addr, 1);
}
void target_handle_md_output(struct command_invocation *cmd,
struct target *target, target_addr_t address, unsigned size,
unsigned count, const uint8_t *buffer)
{
const unsigned line_bytecnt = 32;
unsigned line_modulo = line_bytecnt / size;
char output[line_bytecnt * 4 + 1];
unsigned output_len = 0;
const char *value_fmt;
switch (size) {
case 8:
value_fmt = "%16.16"PRIx64" ";
break;
case 4:
value_fmt = "%8.8"PRIx64" ";
break;
case 2:
value_fmt = "%4.4"PRIx64" ";
break;
case 1:
value_fmt = "%2.2"PRIx64" ";
break;
default:
/* "can't happen", caller checked */
LOG_ERROR("invalid memory read size: %u", size);
return;
}
for (unsigned i = 0; i < count; i++) {
if (i % line_modulo == 0) {
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
TARGET_ADDR_FMT ": ",
(address + (i * size)));
}
uint64_t value = 0;
const uint8_t *value_ptr = buffer + i * size;
switch (size) {
case 8:
value = target_buffer_get_u64(target, value_ptr);
break;
case 4:
value = target_buffer_get_u32(target, value_ptr);
break;
case 2:
value = target_buffer_get_u16(target, value_ptr);
break;
case 1:
value = *value_ptr;
}
output_len += snprintf(output + output_len,
sizeof(output) - output_len,
value_fmt, value);
if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
command_print(cmd, "%s", output);
output_len = 0;
}
}
}
COMMAND_HANDLER(handle_md_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
unsigned size = 0;
switch (CMD_NAME[2]) {
case 'd':
size = 8;
break;
case 'w':
size = 4;
break;
case 'h':
size = 2;
break;
case 'b':
size = 1;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
int (*fn)(struct target *target,
target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
if (physical) {
CMD_ARGC--;
CMD_ARGV++;
fn = target_read_phys_memory;
} else
fn = target_read_memory;
if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
return ERROR_COMMAND_SYNTAX_ERROR;
target_addr_t address;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
unsigned count = 1;
if (CMD_ARGC == 2)
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
uint8_t *buffer = calloc(count, size);
if (!buffer) {
LOG_ERROR("Failed to allocate md read buffer");
return ERROR_FAIL;
}
struct target *target = get_current_target(CMD_CTX);
int retval = fn(target, address, size, count, buffer);
if (retval == ERROR_OK)
target_handle_md_output(CMD, target, address, size, count, buffer);
free(buffer);
return retval;
}
typedef int (*target_write_fn)(struct target *target,
target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
static int target_fill_mem(struct target *target,
target_addr_t address,
target_write_fn fn,
unsigned data_size,
/* value */
uint64_t b,
/* count */
unsigned c)
{
/* We have to write in reasonably large chunks to be able
* to fill large memory areas with any sane speed */
const unsigned chunk_size = 16384;
uint8_t *target_buf = malloc(chunk_size * data_size);
if (!target_buf) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
for (unsigned i = 0; i < chunk_size; i++) {
switch (data_size) {
case 8:
target_buffer_set_u64(target, target_buf + i * data_size, b);
break;
case 4:
target_buffer_set_u32(target, target_buf + i * data_size, b);
break;
case 2:
target_buffer_set_u16(target, target_buf + i * data_size, b);
break;
case 1:
target_buffer_set_u8(target, target_buf + i * data_size, b);
break;
default:
exit(-1);
}
}
int retval = ERROR_OK;
for (unsigned x = 0; x < c; x += chunk_size) {
unsigned current;
current = c - x;
if (current > chunk_size)
current = chunk_size;
retval = fn(target, address + x * data_size, data_size, current, target_buf);
if (retval != ERROR_OK)
break;
/* avoid GDB timeouts */
keep_alive();
}
free(target_buf);
return retval;
}
COMMAND_HANDLER(handle_mw_command)
{
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
target_write_fn fn;
if (physical) {
CMD_ARGC--;
CMD_ARGV++;
fn = target_write_phys_memory;
} else
fn = target_write_memory;
if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
return ERROR_COMMAND_SYNTAX_ERROR;
target_addr_t address;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
uint64_t value;
COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);
unsigned count = 1;
if (CMD_ARGC == 3)
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
struct target *target = get_current_target(CMD_CTX);
unsigned wordsize;
switch (CMD_NAME[2]) {
case 'd':
wordsize = 8;
break;
case 'w':
wordsize = 4;
break;
case 'h':
wordsize = 2;
break;
case 'b':
wordsize = 1;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return target_fill_mem(target, address, fn, wordsize, value, count);
}
static COMMAND_HELPER(parse_load_image_command, struct image *image,
target_addr_t *min_address, target_addr_t *max_address)
{
if (CMD_ARGC < 1 || CMD_ARGC > 5)
return ERROR_COMMAND_SYNTAX_ERROR;
/* a base address isn't always necessary,
* default to 0x0 (i.e. don't relocate) */
if (CMD_ARGC >= 2) {
target_addr_t addr;
COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
image->base_address = addr;
image->base_address_set = true;
} else
image->base_address_set = false;
image->start_address_set = false;
if (CMD_ARGC >= 4)
COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
if (CMD_ARGC == 5) {
COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
/* use size (given) to find max (required) */
*max_address += *min_address;
}
if (*min_address > *max_address)
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
COMMAND_HANDLER(handle_load_image_command)
{
uint8_t *buffer;
size_t buf_cnt;
uint32_t image_size;
target_addr_t min_address = 0;
target_addr_t max_address = -1;
struct image image;
int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
&image, &min_address, &max_address);
if (retval != ERROR_OK)
return retval;
struct target *target = get_current_target(CMD_CTX);
struct duration bench;
duration_start(&bench);
if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
return ERROR_FAIL;
image_size = 0x0;
retval = ERROR_OK;
for (unsigned int i = 0; i < image.num_sections; i++) {
buffer = malloc(image.sections[i].size);
if (!buffer) {
command_print(CMD,
"error allocating buffer for section (%d bytes)",
(int)(image.sections[i].size));
retval = ERROR_FAIL;
break;
}
retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
if (retval != ERROR_OK) {
free(buffer);
break;
}
uint32_t offset = 0;
uint32_t length = buf_cnt;
/* DANGER!!! beware of unsigned comparison here!!! */
if ((image.sections[i].base_address + buf_cnt >= min_address) &&
(image.sections[i].base_address < max_address)) {
if (image.sections[i].base_address < min_address) {
/* clip addresses below */
offset += min_address-image.sections[i].base_address;
length -= offset;
}
if (image.sections[i].base_address + buf_cnt > max_address)
length -= (image.sections[i].base_address + buf_cnt)-max_address;
retval = target_write_buffer(target,
image.sections[i].base_address + offset, length, buffer + offset);
if (retval != ERROR_OK) {
free(buffer);
break;
}
image_size += length;
command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
(unsigned int)length,
image.sections[i].base_address + offset);
}
free(buffer);
}
if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
command_print(CMD, "downloaded %" PRIu32 " bytes "
"in %fs (%0.3f KiB/s)", image_size,
duration_elapsed(&bench), duration_kbps(&bench, image_size));
}
image_close(&image);
return retval;
}
COMMAND_HANDLER(handle_dump_image_command)
{
struct fileio *fileio;
uint8_t *buffer;
int retval, retvaltemp;
target_addr_t address, size;
struct duration bench;
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC != 3)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);
uint32_t buf_size = (size > 4096) ? 4096 : size;
buffer = malloc(buf_size);
if (!buffer)
return ERROR_FAIL;
retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
if (retval != ERROR_OK) {
free(buffer);
return retval;
}
duration_start(&bench);
while (size > 0) {
size_t size_written;
uint32_t this_run_size = (size > buf_size) ? buf_size : size;
retval = target_read_buffer(target, address, this_run_size, buffer);
if (retval != ERROR_OK)
break;
retval = fileio_write(fileio, this_run_size, buffer, &size_written);
if (retval != ERROR_OK)
break;
size -= this_run_size;
address += this_run_size;
}
free(buffer);
if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
size_t filesize;
retval = fileio_size(fileio, &filesize);
if (retval != ERROR_OK)
return retval;
command_print(CMD,
"dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
duration_elapsed(&bench), duration_kbps(&bench, filesize));
}
retvaltemp = fileio_close(fileio);
if (retvaltemp != ERROR_OK)
return retvaltemp;
return retval;
}
enum verify_mode {
IMAGE_TEST = 0,
IMAGE_VERIFY = 1,
IMAGE_CHECKSUM_ONLY = 2
};
static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
{
uint8_t *buffer;
size_t buf_cnt;
uint32_t image_size;
int retval;
uint32_t checksum = 0;
uint32_t mem_checksum = 0;
struct image image;
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (!target) {
LOG_ERROR("no target selected");
return ERROR_FAIL;
}
struct duration bench;
duration_start(&bench);
if (CMD_ARGC >= 2) {
target_addr_t addr;
COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
image.base_address = addr;
image.base_address_set = true;
} else {
image.base_address_set = false;
image.base_address = 0x0;
}
image.start_address_set = false;
retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
if (retval != ERROR_OK)
return retval;
image_size = 0x0;
int diffs = 0;
retval = ERROR_OK;
for (unsigned int i = 0; i < image.num_sections; i++) {
buffer = malloc(image.sections[i].size);
if (!buffer) {
command_print(CMD,
"error allocating buffer for section (%" PRIu32 " bytes)",
image.sections[i].size);
break;
}
retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
if (retval != ERROR_OK) {
free(buffer);
break;
}
if (verify >= IMAGE_VERIFY) {
/* calculate checksum of image */
retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
if (retval != ERROR_OK) {
free(buffer);
break;
}
retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
if (retval != ERROR_OK) {
free(buffer);
break;
}
if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
LOG_ERROR("checksum mismatch");
free(buffer);
retval = ERROR_FAIL;
goto done;
}
if (checksum != mem_checksum) {
/* failed crc checksum, fall back to a binary compare */
uint8_t *data;
if (diffs == 0)
LOG_ERROR("checksum mismatch - attempting binary compare");
data = malloc(buf_cnt);
retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
if (retval == ERROR_OK) {
uint32_t t;
for (t = 0; t < buf_cnt; t++) {
if (data[t] != buffer[t]) {
command_print(CMD,
"diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
diffs,
(unsigned)(t + image.sections[i].base_address),
data[t],
buffer[t]);
if (diffs++ >= 127) {
command_print(CMD, "More than 128 errors, the rest are not printed.");
free(data);
free(buffer);
goto done;
}
}
keep_alive();
}
}
free(data);
}
} else {
command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
image.sections[i].base_address,
buf_cnt);
}
free(buffer);
image_size += buf_cnt;
}
if (diffs > 0)
command_print(CMD, "No more differences found.");
done:
if (diffs > 0)
retval = ERROR_FAIL;
if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
command_print(CMD, "verified %" PRIu32 " bytes "
"in %fs (%0.3f KiB/s)", image_size,
duration_elapsed(&bench), duration_kbps(&bench, image_size));
}
image_close(&image);
return retval;
}
COMMAND_HANDLER(handle_verify_image_checksum_command)
{
return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
}
COMMAND_HANDLER(handle_verify_image_command)
{
return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
}
COMMAND_HANDLER(handle_test_image_command)
{
return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
}
static int handle_bp_command_list(struct command_invocation *cmd)
{
struct target *target = get_current_target(cmd->ctx);
struct breakpoint *breakpoint = target->breakpoints;
while (breakpoint) {
if (breakpoint->type == BKPT_SOFT) {
char *buf = buf_to_hex_str(breakpoint->orig_instr,
breakpoint->length);
command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, 0x%s",
breakpoint->address,
breakpoint->length,
buf);
free(buf);
} else {
if ((breakpoint->address == 0) && (breakpoint->asid != 0))
command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %u",
breakpoint->asid,
breakpoint->length, breakpoint->number);
else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %u",
breakpoint->address,
breakpoint->length, breakpoint->number);
command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
breakpoint->asid);
} else
command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %u",
breakpoint->address,
breakpoint->length, breakpoint->number);
}
breakpoint = breakpoint->next;
}
return ERROR_OK;
}
static int handle_bp_command_set(struct command_invocation *cmd,
target_addr_t addr, uint32_t asid, uint32_t length, int hw)
{
struct target *target = get_current_target(cmd->ctx);
int retval;
if (asid == 0) {
retval = breakpoint_add(target, addr, length, hw);
/* error is always logged in breakpoint_add(), do not print it again */
if (retval == ERROR_OK)
command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);
} else if (addr == 0) {
if (!target->type->add_context_breakpoint) {
LOG_ERROR("Context breakpoint not available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = context_breakpoint_add(target, asid, length, hw);
/* error is always logged in context_breakpoint_add(), do not print it again */
if (retval == ERROR_OK)
command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
} else {
if (!target->type->add_hybrid_breakpoint) {
LOG_ERROR("Hybrid breakpoint not available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
/* error is always logged in hybrid_breakpoint_add(), do not print it again */
if (retval == ERROR_OK)
command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
}
return retval;
}
COMMAND_HANDLER(handle_bp_command)
{
target_addr_t addr;
uint32_t asid;
uint32_t length;
int hw = BKPT_SOFT;
switch (CMD_ARGC) {
case 0:
return handle_bp_command_list(CMD);
case 2:
asid = 0;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
return handle_bp_command_set(CMD, addr, asid, length, hw);
case 3:
if (strcmp(CMD_ARGV[2], "hw") == 0) {
hw = BKPT_HARD;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
asid = 0;
return handle_bp_command_set(CMD, addr, asid, length, hw);
} else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
hw = BKPT_HARD;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
addr = 0;
return handle_bp_command_set(CMD, addr, asid, length, hw);
}
/* fallthrough */
case 4:
hw = BKPT_HARD;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
return handle_bp_command_set(CMD, addr, asid, length, hw);
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
COMMAND_HANDLER(handle_rbp_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct target *target = get_current_target(CMD_CTX);
if (!strcmp(CMD_ARGV[0], "all")) {
breakpoint_remove_all(target);
} else {
target_addr_t addr;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
breakpoint_remove(target, addr);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_wp_command)
{
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC == 0) {
struct watchpoint *watchpoint = target->watchpoints;
while (watchpoint) {
command_print(CMD, "address: " TARGET_ADDR_FMT
", len: 0x%8.8" PRIx32
", r/w/a: %i, value: 0x%8.8" PRIx32
", mask: 0x%8.8" PRIx32,
watchpoint->address,
watchpoint->length,
(int)watchpoint->rw,
watchpoint->value,
watchpoint->mask);
watchpoint = watchpoint->next;
}
return ERROR_OK;
}
enum watchpoint_rw type = WPT_ACCESS;
target_addr_t addr = 0;
uint32_t length = 0;
uint32_t data_value = 0x0;
uint32_t data_mask = 0xffffffff;
switch (CMD_ARGC) {
case 5:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
/* fall through */
case 4:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
/* fall through */
case 3:
switch (CMD_ARGV[2][0]) {
case 'r':
type = WPT_READ;
break;
case 'w':
type = WPT_WRITE;
break;
case 'a':
type = WPT_ACCESS;
break;
default:
LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* fall through */
case 2:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
int retval = watchpoint_add(target, addr, length, type,
data_value, data_mask);
if (retval != ERROR_OK)
LOG_ERROR("Failure setting watchpoints");
return retval;
}
COMMAND_HANDLER(handle_rwp_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
target_addr_t addr;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
struct target *target = get_current_target(CMD_CTX);
watchpoint_remove(target, addr);
return ERROR_OK;
}
/**
* Translate a virtual address to a physical address.
*
* The low-level target implementation must have logged a detailed error
* which is forwarded to telnet/GDB session.
*/
COMMAND_HANDLER(handle_virt2phys_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
target_addr_t va;
COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
target_addr_t pa;
struct target *target = get_current_target(CMD_CTX);
int retval = target->type->virt2phys(target, va, &pa);
if (retval == ERROR_OK)
command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);
return retval;
}
static void write_data(FILE *f, const void *data, size_t len)
{
size_t written = fwrite(data, 1, len, f);
if (written != len)
LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
}
static void write_long(FILE *f, int l, struct target *target)
{
uint8_t val[4];
target_buffer_set_u32(target, val, l);
write_data(f, val, 4);
}
static void write_string(FILE *f, char *s)
{
write_data(f, s, strlen(s));
}
typedef unsigned char UNIT[2]; /* unit of profiling */
/* Dump a gmon.out histogram file. */
static void write_gmon(uint32_t *samples, uint32_t sample_num, const char *filename, bool with_range,
uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
{
uint32_t i;
FILE *f = fopen(filename, "w");
if (!f)
return;
write_string(f, "gmon");
write_long(f, 0x00000001, target); /* Version */
write_long(f, 0, target); /* padding */
write_long(f, 0, target); /* padding */
write_long(f, 0, target); /* padding */
uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
write_data(f, &zero, 1);
/* figure out bucket size */
uint32_t min;
uint32_t max;
if (with_range) {
min = start_address;
max = end_address;
} else {
min = samples[0];
max = samples[0];
for (i = 0; i < sample_num; i++) {
if (min > samples[i])
min = samples[i];
if (max < samples[i])
max = samples[i];
}
/* max should be (largest sample + 1)
* Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
max++;
}
int address_space = max - min;
assert(address_space >= 2);
/* FIXME: What is the reasonable number of buckets?
* The profiling result will be more accurate if there are enough buckets. */
static const uint32_t max_buckets = 128 * 1024; /* maximum buckets. */
uint32_t num_buckets = address_space / sizeof(UNIT);
if (num_buckets > max_buckets)
num_buckets = max_buckets;
int *buckets = malloc(sizeof(int) * num_buckets);
if (!buckets) {
fclose(f);
return;
}
memset(buckets, 0, sizeof(int) * num_buckets);
for (i = 0; i < sample_num; i++) {
uint32_t address = samples[i];
if ((address < min) || (max <= address))
continue;
long long a = address - min;
long long b = num_buckets;
long long c = address_space;
int index_t = (a * b) / c; /* danger!!!! int32 overflows */
buckets[index_t]++;
}
/* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
write_long(f, min, target); /* low_pc */
write_long(f, max, target); /* high_pc */
write_long(f, num_buckets, target); /* # of buckets */
float sample_rate = sample_num / (duration_ms / 1000.0);
write_long(f, sample_rate, target);
write_string(f, "seconds");
for (i = 0; i < (15-strlen("seconds")); i++)
write_data(f, &zero, 1);
write_string(f, "s");
/*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
char *data = malloc(2 * num_buckets);
if (data) {
for (i = 0; i < num_buckets; i++) {
int val;
val = buckets[i];
if (val > 65535)
val = 65535;
data[i * 2] = val&0xff;
data[i * 2 + 1] = (val >> 8) & 0xff;
}
free(buckets);
write_data(f, data, num_buckets * 2);
free(data);
} else
free(buckets);
fclose(f);
}
/* profiling samples the CPU PC as quickly as OpenOCD is able,
* which will be used as a random sampling of PC */
COMMAND_HANDLER(handle_profile_command)
{
struct target *target = get_current_target(CMD_CTX);
if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
return ERROR_COMMAND_SYNTAX_ERROR;
const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
uint32_t offset;
uint32_t num_of_samples;
int retval = ERROR_OK;
bool halted_before_profiling = target->state == TARGET_HALTED;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);
uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
if (!samples) {
LOG_ERROR("No memory to store samples.");
return ERROR_FAIL;
}
uint64_t timestart_ms = timeval_ms();
/**
* Some cores let us sample the PC without the
* annoying halt/resume step; for example, ARMv7 PCSR.
* Provide a way to use that more efficient mechanism.
*/
retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
&num_of_samples, offset);
if (retval != ERROR_OK) {
free(samples);
return retval;
}
uint32_t duration_ms = timeval_ms() - timestart_ms;
assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);
retval = target_poll(target);
if (retval != ERROR_OK) {
free(samples);
return retval;
}
if (target->state == TARGET_RUNNING && halted_before_profiling) {
/* The target was halted before we started and is running now. Halt it,
* for consistency. */
retval = target_halt(target);
if (retval != ERROR_OK) {
free(samples);
return retval;
}
} else if (target->state == TARGET_HALTED && !halted_before_profiling) {
/* The target was running before we started and is halted now. Resume
* it, for consistency. */
retval = target_resume(target, 1, 0, 0, 0);
if (retval != ERROR_OK) {
free(samples);
return retval;
}
}
retval = target_poll(target);
if (retval != ERROR_OK) {
free(samples);
return retval;
}
uint32_t start_address = 0;
uint32_t end_address = 0;
bool with_range = false;
if (CMD_ARGC == 4) {
with_range = true;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
}
write_gmon(samples, num_of_samples, CMD_ARGV[1],
with_range, start_address, end_address, target, duration_ms);
command_print(CMD, "Wrote %s", CMD_ARGV[1]);
free(samples);
return retval;
}
static int new_u64_array_element(Jim_Interp *interp, const char *varname, int idx, uint64_t val)
{
char *namebuf;
Jim_Obj *obj_name, *obj_val;
int result;
namebuf = alloc_printf("%s(%d)", varname, idx);
if (!namebuf)
return JIM_ERR;
obj_name = Jim_NewStringObj(interp, namebuf, -1);
jim_wide wide_val = val;
obj_val = Jim_NewWideObj(interp, wide_val);
if (!obj_name || !obj_val) {
free(namebuf);
return JIM_ERR;
}
Jim_IncrRefCount(obj_name);
Jim_IncrRefCount(obj_val);
result = Jim_SetVariable(interp, obj_name, obj_val);
Jim_DecrRefCount(interp, obj_name);
Jim_DecrRefCount(interp, obj_val);
free(namebuf);
/* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
return result;
}
static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
{
int e;
LOG_WARNING("DEPRECATED! use 'read_memory' not 'mem2array'");
/* argv[0] = name of array to receive the data
* argv[1] = desired element width in bits
* argv[2] = memory address
* argv[3] = count of times to read
* argv[4] = optional "phys"
*/
if (argc < 4 || argc > 5) {
Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
return JIM_ERR;
}
/* Arg 0: Name of the array variable */
const char *varname = Jim_GetString(argv[0], NULL);
/* Arg 1: Bit width of one element */
long l;
e = Jim_GetLong(interp, argv[1], &l);
if (e != JIM_OK)
return e;
const unsigned int width_bits = l;
if (width_bits != 8 &&
width_bits != 16 &&
width_bits != 32 &&
width_bits != 64) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp),
"Invalid width param. Must be one of: 8, 16, 32 or 64.", NULL);
return JIM_ERR;
}
const unsigned int width = width_bits / 8;
/* Arg 2: Memory address */
jim_wide wide_addr;
e = Jim_GetWide(interp, argv[2], &wide_addr);
if (e != JIM_OK)
return e;
target_addr_t addr = (target_addr_t)wide_addr;
/* Arg 3: Number of elements to read */
e = Jim_GetLong(interp, argv[3], &l);
if (e != JIM_OK)
return e;
size_t len = l;
/* Arg 4: phys */
bool is_phys = false;
if (argc > 4) {
int str_len = 0;
const char *phys = Jim_GetString(argv[4], &str_len);
if (!strncmp(phys, "phys", str_len))
is_phys = true;
else
return JIM_ERR;
}
/* Argument checks */
if (len == 0) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
return JIM_ERR;
}
if ((addr + (len * width)) < addr) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
return JIM_ERR;
}
if (len > 65536) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp),
"mem2array: too large read request, exceeds 64K items", NULL);
return JIM_ERR;
}
if ((width == 1) ||
((width == 2) && ((addr & 1) == 0)) ||
((width == 4) && ((addr & 3) == 0)) ||
((width == 8) && ((addr & 7) == 0))) {
/* alignment correct */
} else {
char buf[100];
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
sprintf(buf, "mem2array address: " TARGET_ADDR_FMT " is not aligned for %" PRIu32 " byte reads",
addr,
width);
Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
return JIM_ERR;
}
/* Transfer loop */
/* index counter */
size_t idx = 0;
const size_t buffersize = 4096;
uint8_t *buffer = malloc(buffersize);
if (!buffer)
return JIM_ERR;
/* assume ok */
e = JIM_OK;
while (len) {
/* Slurp... in buffer size chunks */
const unsigned int max_chunk_len = buffersize / width;
const size_t chunk_len = MIN(len, max_chunk_len); /* in elements.. */
int retval;
if (is_phys)
retval = target_read_phys_memory(target, addr, width, chunk_len, buffer);
else
retval = target_read_memory(target, addr, width, chunk_len, buffer);
if (retval != ERROR_OK) {
/* BOO !*/
LOG_ERROR("mem2array: Read @ " TARGET_ADDR_FMT ", w=%u, cnt=%zu, failed",
addr,
width,
chunk_len);
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
e = JIM_ERR;
break;
} else {
for (size_t i = 0; i < chunk_len ; i++, idx++) {
uint64_t v = 0;
switch (width) {
case 8:
v = target_buffer_get_u64(target, &buffer[i*width]);
break;
case 4:
v = target_buffer_get_u32(target, &buffer[i*width]);
break;
case 2:
v = target_buffer_get_u16(target, &buffer[i*width]);
break;
case 1:
v = buffer[i] & 0x0ff;
break;
}
new_u64_array_element(interp, varname, idx, v);
}
len -= chunk_len;
addr += chunk_len * width;
}
}
free(buffer);
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
return e;
}
static int target_jim_read_memory(Jim_Interp *interp, int argc,
Jim_Obj * const *argv)
{
/*
* argv[1] = memory address
* argv[2] = desired element width in bits
* argv[3] = number of elements to read
* argv[4] = optional "phys"
*/
if (argc < 4 || argc > 5) {
Jim_WrongNumArgs(interp, 1, argv, "address width count ['phys']");
return JIM_ERR;
}
/* Arg 1: Memory address. */
jim_wide wide_addr;
int e;
e = Jim_GetWide(interp, argv[1], &wide_addr);
if (e != JIM_OK)
return e;
target_addr_t addr = (target_addr_t)wide_addr;
/* Arg 2: Bit width of one element. */
long l;
e = Jim_GetLong(interp, argv[2], &l);
if (e != JIM_OK)
return e;
const unsigned int width_bits = l;
/* Arg 3: Number of elements to read. */
e = Jim_GetLong(interp, argv[3], &l);
if (e != JIM_OK)
return e;
size_t count = l;
/* Arg 4: Optional 'phys'. */
bool is_phys = false;
if (argc > 4) {
const char *phys = Jim_GetString(argv[4], NULL);
if (strcmp(phys, "phys")) {
Jim_SetResultFormatted(interp, "invalid argument '%s', must be 'phys'", phys);
return JIM_ERR;
}
is_phys = true;
}
switch (width_bits) {
case 8:
case 16:
case 32:
case 64:
break;
default:
Jim_SetResultString(interp, "invalid width, must be 8, 16, 32 or 64", -1);
return JIM_ERR;
}
const unsigned int width = width_bits / 8;
if ((addr + (count * width)) < addr) {
Jim_SetResultString(interp, "read_memory: addr + count wraps to zero", -1);
return JIM_ERR;
}
if (count > 65536) {
Jim_SetResultString(interp, "read_memory: too large read request, exeeds 64K elements", -1);
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx != NULL);
struct target *target = get_current_target(cmd_ctx);
const size_t buffersize = 4096;
uint8_t *buffer = malloc(buffersize);
if (!buffer) {
LOG_ERROR("Failed to allocate memory");
return JIM_ERR;
}
Jim_Obj *result_list = Jim_NewListObj(interp, NULL, 0);
Jim_IncrRefCount(result_list);
while (count > 0) {
const unsigned int max_chunk_len = buffersize / width;
const size_t chunk_len = MIN(count, max_chunk_len);
int retval;
if (is_phys)
retval = target_read_phys_memory(target, addr, width, chunk_len, buffer);
else
retval = target_read_memory(target, addr, width, chunk_len, buffer);
if (retval != ERROR_OK) {
LOG_ERROR("read_memory: read at " TARGET_ADDR_FMT " with width=%u and count=%zu failed",
addr, width_bits, chunk_len);
Jim_SetResultString(interp, "read_memory: failed to read memory", -1);
e = JIM_ERR;
break;
}
for (size_t i = 0; i < chunk_len ; i++) {
uint64_t v = 0;
switch (width) {
case 8:
v = target_buffer_get_u64(target, &buffer[i * width]);
break;
case 4:
v = target_buffer_get_u32(target, &buffer[i * width]);
break;
case 2:
v = target_buffer_get_u16(target, &buffer[i * width]);
break;
case 1:
v = buffer[i];
break;
}
char value_buf[11];
snprintf(value_buf, sizeof(value_buf), "0x%" PRIx64, v);
Jim_ListAppendElement(interp, result_list,
Jim_NewStringObj(interp, value_buf, -1));
}
count -= chunk_len;
addr += chunk_len * width;
}
free(buffer);
if (e != JIM_OK) {
Jim_DecrRefCount(interp, result_list);
return e;
}
Jim_SetResult(interp, result_list);
Jim_DecrRefCount(interp, result_list);
return JIM_OK;
}
static int get_u64_array_element(Jim_Interp *interp, const char *varname, size_t idx, uint64_t *val)
{
char *namebuf = alloc_printf("%s(%zu)", varname, idx);
if (!namebuf)
return JIM_ERR;
Jim_Obj *obj_name = Jim_NewStringObj(interp, namebuf, -1);
if (!obj_name) {
free(namebuf);
return JIM_ERR;
}
Jim_IncrRefCount(obj_name);
Jim_Obj *obj_val = Jim_GetVariable(interp, obj_name, JIM_ERRMSG);
Jim_DecrRefCount(interp, obj_name);
free(namebuf);
if (!obj_val)
return JIM_ERR;
jim_wide wide_val;
int result = Jim_GetWide(interp, obj_val, &wide_val);
*val = wide_val;
return result;
}
static int target_array2mem(Jim_Interp *interp, struct target *target,
int argc, Jim_Obj *const *argv)
{
int e;
LOG_WARNING("DEPRECATED! use 'write_memory' not 'array2mem'");
/* argv[0] = name of array from which to read the data
* argv[1] = desired element width in bits
* argv[2] = memory address
* argv[3] = number of elements to write
* argv[4] = optional "phys"
*/
if (argc < 4 || argc > 5) {
Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
return JIM_ERR;
}
/* Arg 0: Name of the array variable */
const char *varname = Jim_GetString(argv[0], NULL);
/* Arg 1: Bit width of one element */
long l;
e = Jim_GetLong(interp, argv[1], &l);
if (e != JIM_OK)
return e;
const unsigned int width_bits = l;
if (width_bits != 8 &&
width_bits != 16 &&
width_bits != 32 &&
width_bits != 64) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp),
"Invalid width param. Must be one of: 8, 16, 32 or 64.", NULL);
return JIM_ERR;
}
const unsigned int width = width_bits / 8;
/* Arg 2: Memory address */
jim_wide wide_addr;
e = Jim_GetWide(interp, argv[2], &wide_addr);
if (e != JIM_OK)
return e;
target_addr_t addr = (target_addr_t)wide_addr;
/* Arg 3: Number of elements to write */
e = Jim_GetLong(interp, argv[3], &l);
if (e != JIM_OK)
return e;
size_t len = l;
/* Arg 4: Phys */
bool is_phys = false;
if (argc > 4) {
int str_len = 0;
const char *phys = Jim_GetString(argv[4], &str_len);
if (!strncmp(phys, "phys", str_len))
is_phys = true;
else
return JIM_ERR;
}
/* Argument checks */
if (len == 0) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp),
"array2mem: zero width read?", NULL);
return JIM_ERR;
}
if ((addr + (len * width)) < addr) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp),
"array2mem: addr + len - wraps to zero?", NULL);
return JIM_ERR;
}
if (len > 65536) {
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp),
"array2mem: too large memory write request, exceeds 64K items", NULL);
return JIM_ERR;
}
if ((width == 1) ||
((width == 2) && ((addr & 1) == 0)) ||
((width == 4) && ((addr & 3) == 0)) ||
((width == 8) && ((addr & 7) == 0))) {
/* alignment correct */
} else {
char buf[100];
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
sprintf(buf, "array2mem address: " TARGET_ADDR_FMT " is not aligned for %" PRIu32 " byte reads",
addr,
width);
Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
return JIM_ERR;
}
/* Transfer loop */
/* assume ok */
e = JIM_OK;
const size_t buffersize = 4096;
uint8_t *buffer = malloc(buffersize);
if (!buffer)
return JIM_ERR;
/* index counter */
size_t idx = 0;
while (len) {
/* Slurp... in buffer size chunks */
const unsigned int max_chunk_len = buffersize / width;
const size_t chunk_len = MIN(len, max_chunk_len); /* in elements.. */
/* Fill the buffer */
for (size_t i = 0; i < chunk_len; i++, idx++) {
uint64_t v = 0;
if (get_u64_array_element(interp, varname, idx, &v) != JIM_OK) {
free(buffer);
return JIM_ERR;
}
switch (width) {
case 8:
target_buffer_set_u64(target, &buffer[i * width], v);
break;
case 4:
target_buffer_set_u32(target, &buffer[i * width], v);
break;
case 2:
target_buffer_set_u16(target, &buffer[i * width], v);
break;
case 1:
buffer[i] = v & 0x0ff;
break;
}
}
len -= chunk_len;
/* Write the buffer to memory */
int retval;
if (is_phys)
retval = target_write_phys_memory(target, addr, width, chunk_len, buffer);
else
retval = target_write_memory(target, addr, width, chunk_len, buffer);
if (retval != ERROR_OK) {
/* BOO !*/
LOG_ERROR("array2mem: Write @ " TARGET_ADDR_FMT ", w=%u, cnt=%zu, failed",
addr,
width,
chunk_len);
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
e = JIM_ERR;
break;
}
addr += chunk_len * width;
}
free(buffer);
Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
return e;
}
static int target_jim_write_memory(Jim_Interp *interp, int argc,
Jim_Obj * const *argv)
{
/*
* argv[1] = memory address
* argv[2] = desired element width in bits
* argv[3] = list of data to write
* argv[4] = optional "phys"
*/
if (argc < 4 || argc > 5) {
Jim_WrongNumArgs(interp, 1, argv, "address width data ['phys']");
return JIM_ERR;
}
/* Arg 1: Memory address. */
int e;
jim_wide wide_addr;
e = Jim_GetWide(interp, argv[1], &wide_addr);
if (e != JIM_OK)
return e;
target_addr_t addr = (target_addr_t)wide_addr;
/* Arg 2: Bit width of one element. */
long l;
e = Jim_GetLong(interp, argv[2], &l);
if (e != JIM_OK)
return e;
const unsigned int width_bits = l;
size_t count = Jim_ListLength(interp, argv[3]);
/* Arg 4: Optional 'phys'. */
bool is_phys = false;
if (argc > 4) {
const char *phys = Jim_GetString(argv[4], NULL);
if (strcmp(phys, "phys")) {
Jim_SetResultFormatted(interp, "invalid argument '%s', must be 'phys'", phys);
return JIM_ERR;
}
is_phys = true;
}
switch (width_bits) {
case 8:
case 16:
case 32:
case 64:
break;
default:
Jim_SetResultString(interp, "invalid width, must be 8, 16, 32 or 64", -1);
return JIM_ERR;
}
const unsigned int width = width_bits / 8;
if ((addr + (count * width)) < addr) {
Jim_SetResultString(interp, "write_memory: addr + len wraps to zero", -1);
return JIM_ERR;
}
if (count > 65536) {
Jim_SetResultString(interp, "write_memory: too large memory write request, exceeds 64K elements", -1);
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx != NULL);
struct target *target = get_current_target(cmd_ctx);
const size_t buffersize = 4096;
uint8_t *buffer = malloc(buffersize);
if (!buffer) {
LOG_ERROR("Failed to allocate memory");
return JIM_ERR;
}
size_t j = 0;
while (count > 0) {
const unsigned int max_chunk_len = buffersize / width;
const size_t chunk_len = MIN(count, max_chunk_len);
for (size_t i = 0; i < chunk_len; i++, j++) {
Jim_Obj *tmp = Jim_ListGetIndex(interp, argv[3], j);
jim_wide element_wide;
Jim_GetWide(interp, tmp, &element_wide);
const uint64_t v = element_wide;
switch (width) {
case 8:
target_buffer_set_u64(target, &buffer[i * width], v);
break;
case 4:
target_buffer_set_u32(target, &buffer[i * width], v);
break;
case 2:
target_buffer_set_u16(target, &buffer[i * width], v);
break;
case 1:
buffer[i] = v & 0x0ff;
break;
}
}
count -= chunk_len;
int retval;
if (is_phys)
retval = target_write_phys_memory(target, addr, width, chunk_len, buffer);
else
retval = target_write_memory(target, addr, width, chunk_len, buffer);
if (retval != ERROR_OK) {
LOG_ERROR("write_memory: write at " TARGET_ADDR_FMT " with width=%u and count=%zu failed",
addr, width_bits, chunk_len);
Jim_SetResultString(interp, "write_memory: failed to write memory", -1);
e = JIM_ERR;
break;
}
addr += chunk_len * width;
}
free(buffer);
return e;
}
/* FIX? should we propagate errors here rather than printing them
* and continuing?
*/
void target_handle_event(struct target *target, enum target_event e)
{
struct target_event_action *teap;
int retval;
for (teap = target->event_action; teap; teap = teap->next) {
if (teap->event == e) {
LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
target->target_number,
target_name(target),
target_type_name(target),
e,
target_event_name(e),
Jim_GetString(teap->body, NULL));
/* Override current target by the target an event
* is issued from (lot of scripts need it).
* Return back to previous override as soon
* as the handler processing is done */
struct command_context *cmd_ctx = current_command_context(teap->interp);
struct target *saved_target_override = cmd_ctx->current_target_override;
cmd_ctx->current_target_override = target;
retval = Jim_EvalObj(teap->interp, teap->body);
cmd_ctx->current_target_override = saved_target_override;
if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
return;
if (retval == JIM_RETURN)
retval = teap->interp->returnCode;
if (retval != JIM_OK) {
Jim_MakeErrorMessage(teap->interp);
LOG_USER("Error executing event %s on target %s:\n%s",
target_event_name(e),
target_name(target),
Jim_GetString(Jim_GetResult(teap->interp), NULL));
/* clean both error code and stacktrace before return */
Jim_Eval(teap->interp, "error \"\" \"\"");
}
}
}
}
static int target_jim_get_reg(Jim_Interp *interp, int argc,
Jim_Obj * const *argv)
{
bool force = false;
if (argc == 3) {
const char *option = Jim_GetString(argv[1], NULL);
if (!strcmp(option, "-force")) {
argc--;
argv++;
force = true;
} else {
Jim_SetResultFormatted(interp, "invalid option '%s'", option);
return JIM_ERR;
}
}
if (argc != 2) {
Jim_WrongNumArgs(interp, 1, argv, "[-force] list");
return JIM_ERR;
}
const int length = Jim_ListLength(interp, argv[1]);
Jim_Obj *result_dict = Jim_NewDictObj(interp, NULL, 0);
if (!result_dict)
return JIM_ERR;
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx != NULL);
const struct target *target = get_current_target(cmd_ctx);
for (int i = 0; i < length; i++) {
Jim_Obj *elem = Jim_ListGetIndex(interp, argv[1], i);
if (!elem)
return JIM_ERR;
const char *reg_name = Jim_String(elem);
struct reg *reg = register_get_by_name(target->reg_cache, reg_name,
false);
if (!reg || !reg->exist) {
Jim_SetResultFormatted(interp, "unknown register '%s'", reg_name);
return JIM_ERR;
}
if (force) {
int retval = reg->type->get(reg);
if (retval != ERROR_OK) {
Jim_SetResultFormatted(interp, "failed to read register '%s'",
reg_name);
return JIM_ERR;
}
}
char *reg_value = buf_to_hex_str(reg->value, reg->size);
if (!reg_value) {
LOG_ERROR("Failed to allocate memory");
return JIM_ERR;
}
char *tmp = alloc_printf("0x%s", reg_value);
free(reg_value);
if (!tmp) {
LOG_ERROR("Failed to allocate memory");
return JIM_ERR;
}
Jim_DictAddElement(interp, result_dict, elem,
Jim_NewStringObj(interp, tmp, -1));
free(tmp);
}
Jim_SetResult(interp, result_dict);
return JIM_OK;
}
static int target_jim_set_reg(Jim_Interp *interp, int argc,
Jim_Obj * const *argv)
{
if (argc != 2) {
Jim_WrongNumArgs(interp, 1, argv, "dict");
return JIM_ERR;
}
int tmp;
#if JIM_VERSION >= 80
Jim_Obj **dict = Jim_DictPairs(interp, argv[1], &tmp);
if (!dict)
return JIM_ERR;
#else
Jim_Obj **dict;
int ret = Jim_DictPairs(interp, argv[1], &dict, &tmp);
if (ret != JIM_OK)
return ret;
#endif
const unsigned int length = tmp;
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
const struct target *target = get_current_target(cmd_ctx);
for (unsigned int i = 0; i < length; i += 2) {
const char *reg_name = Jim_String(dict[i]);
const char *reg_value = Jim_String(dict[i + 1]);
struct reg *reg = register_get_by_name(target->reg_cache, reg_name,
false);
if (!reg || !reg->exist) {
Jim_SetResultFormatted(interp, "unknown register '%s'", reg_name);
return JIM_ERR;
}
uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
if (!buf) {
LOG_ERROR("Failed to allocate memory");
return JIM_ERR;
}
str_to_buf(reg_value, strlen(reg_value), buf, reg->size, 0);
int retval = reg->type->set(reg, buf);
free(buf);
if (retval != ERROR_OK) {
Jim_SetResultFormatted(interp, "failed to set '%s' to register '%s'",
reg_value, reg_name);
return JIM_ERR;
}
}
return JIM_OK;
}
/**
* Returns true only if the target has a handler for the specified event.
*/
bool target_has_event_action(struct target *target, enum target_event event)
{
struct target_event_action *teap;
for (teap = target->event_action; teap; teap = teap->next) {
if (teap->event == event)
return true;
}
return false;
}
enum target_cfg_param {
TCFG_TYPE,
TCFG_EVENT,
TCFG_WORK_AREA_VIRT,
TCFG_WORK_AREA_PHYS,
TCFG_WORK_AREA_SIZE,
TCFG_WORK_AREA_BACKUP,
TCFG_ENDIAN,
TCFG_COREID,
TCFG_CHAIN_POSITION,
TCFG_DBGBASE,
TCFG_RTOS,
TCFG_DEFER_EXAMINE,
TCFG_GDB_PORT,
TCFG_GDB_MAX_CONNECTIONS,
};
static struct jim_nvp nvp_config_opts[] = {
{ .name = "-type", .value = TCFG_TYPE },
{ .name = "-event", .value = TCFG_EVENT },
{ .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
{ .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
{ .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
{ .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
{ .name = "-endian", .value = TCFG_ENDIAN },
{ .name = "-coreid", .value = TCFG_COREID },
{ .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
{ .name = "-dbgbase", .value = TCFG_DBGBASE },
{ .name = "-rtos", .value = TCFG_RTOS },
{ .name = "-defer-examine", .value = TCFG_DEFER_EXAMINE },
{ .name = "-gdb-port", .value = TCFG_GDB_PORT },
{ .name = "-gdb-max-connections", .value = TCFG_GDB_MAX_CONNECTIONS },
{ .name = NULL, .value = -1 }
};
static int target_configure(struct jim_getopt_info *goi, struct target *target)
{
struct jim_nvp *n;
Jim_Obj *o;
jim_wide w;
int e;
/* parse config or cget options ... */
while (goi->argc > 0) {
Jim_SetEmptyResult(goi->interp);
/* jim_getopt_debug(goi); */
if (target->type->target_jim_configure) {
/* target defines a configure function */
/* target gets first dibs on parameters */
e = (*(target->type->target_jim_configure))(target, goi);
if (e == JIM_OK) {
/* more? */
continue;
}
if (e == JIM_ERR) {
/* An error */
return e;
}
/* otherwise we 'continue' below */
}
e = jim_getopt_nvp(goi, nvp_config_opts, &n);
if (e != JIM_OK) {
jim_getopt_nvp_unknown(goi, nvp_config_opts, 0);
return e;
}
switch (n->value) {
case TCFG_TYPE:
/* not settable */
if (goi->isconfigure) {
Jim_SetResultFormatted(goi->interp,
"not settable: %s", n->name);
return JIM_ERR;
} else {
no_params:
if (goi->argc != 0) {
Jim_WrongNumArgs(goi->interp,
goi->argc, goi->argv,
"NO PARAMS");
return JIM_ERR;
}
}
Jim_SetResultString(goi->interp,
target_type_name(target), -1);
/* loop for more */
break;
case TCFG_EVENT:
if (goi->argc == 0) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
return JIM_ERR;
}
e = jim_getopt_nvp(goi, nvp_target_event, &n);
if (e != JIM_OK) {
jim_getopt_nvp_unknown(goi, nvp_target_event, 1);
return e;
}
if (goi->isconfigure) {
if (goi->argc != 1) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
return JIM_ERR;
}
} else {
if (goi->argc != 0) {
Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
return JIM_ERR;
}
}
{
struct target_event_action *teap;
teap = target->event_action;
/* replace existing? */
while (teap) {
if (teap->event == (enum target_event)n->value)
break;
teap = teap->next;
}
if (goi->isconfigure) {
/* START_DEPRECATED_TPIU */
if (n->value == TARGET_EVENT_TRACE_CONFIG)
LOG_INFO("DEPRECATED target event %s; use TPIU events {pre,post}-{enable,disable}", n->name);
/* END_DEPRECATED_TPIU */
bool replace = true;
if (!teap) {
/* create new */
teap = calloc(1, sizeof(*teap));
replace = false;
}
teap->event = n->value;
teap->interp = goi->interp;
jim_getopt_obj(goi, &o);
if (teap->body)
Jim_DecrRefCount(teap->interp, teap->body);
teap->body = Jim_DuplicateObj(goi->interp, o);
/*
* FIXME:
* Tcl/TK - "tk events" have a nice feature.
* See the "BIND" command.
* We should support that here.
* You can specify %X and %Y in the event code.
* The idea is: %T - target name.
* The idea is: %N - target number
* The idea is: %E - event name.
*/
Jim_IncrRefCount(teap->body);
if (!replace) {
/* add to head of event list */
teap->next = target->event_action;
target->event_action = teap;
}
Jim_SetEmptyResult(goi->interp);
} else {
/* get */
if (!teap)
Jim_SetEmptyResult(goi->interp);
else
Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
}
}
/* loop for more */
break;
case TCFG_WORK_AREA_VIRT:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = jim_getopt_wide(goi, &w);
if (e != JIM_OK)
return e;
target->working_area_virt = w;
target->working_area_virt_spec = true;
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
/* loop for more */
break;
case TCFG_WORK_AREA_PHYS:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = jim_getopt_wide(goi, &w);
if (e != JIM_OK)
return e;
target->working_area_phys = w;
target->working_area_phys_spec = true;
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
/* loop for more */
break;
case TCFG_WORK_AREA_SIZE:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = jim_getopt_wide(goi, &w);
if (e != JIM_OK)
return e;
target->working_area_size = w;
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
/* loop for more */
break;
case TCFG_WORK_AREA_BACKUP:
if (goi->isconfigure) {
target_free_all_working_areas(target);
e = jim_getopt_wide(goi, &w);
if (e != JIM_OK)
return e;
/* make this exactly 1 or 0 */
target->backup_working_area = (!!w);
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
/* loop for more e*/
break;
case TCFG_ENDIAN:
if (goi->isconfigure) {
e = jim_getopt_nvp(goi, nvp_target_endian, &n);
if (e != JIM_OK) {
jim_getopt_nvp_unknown(goi, nvp_target_endian, 1);
return e;
}
target->endianness = n->value;
} else {
if (goi->argc != 0)
goto no_params;
}
n = jim_nvp_value2name_simple(nvp_target_endian, target->endianness);
if (!n->name) {
target->endianness = TARGET_LITTLE_ENDIAN;
n = jim_nvp_value2name_simple(nvp_target_endian, target->endianness);
}
Jim_SetResultString(goi->interp, n->name, -1);
/* loop for more */
break;
case TCFG_COREID:
if (goi->isconfigure) {
e = jim_getopt_wide(goi, &w);
if (e != JIM_OK)
return e;
target->coreid = (int32_t)w;
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
/* loop for more */
break;
case TCFG_CHAIN_POSITION:
if (goi->isconfigure) {
Jim_Obj *o_t;
struct jtag_tap *tap;
if (target->has_dap) {
Jim_SetResultString(goi->interp,
"target requires -dap parameter instead of -chain-position!", -1);
return JIM_ERR;
}
target_free_all_working_areas(target);
e = jim_getopt_obj(goi, &o_t);
if (e != JIM_OK)
return e;
tap = jtag_tap_by_jim_obj(goi->interp, o_t);
if (!tap)
return JIM_ERR;
target->tap = tap;
target->tap_configured = true;
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
/* loop for more e*/
break;
case TCFG_DBGBASE:
if (goi->isconfigure) {
e = jim_getopt_wide(goi, &w);
if (e != JIM_OK)
return e;
target->dbgbase = (uint32_t)w;
target->dbgbase_set = true;
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
/* loop for more */
break;
case TCFG_RTOS:
/* RTOS */
{
int result = rtos_create(goi, target);
if (result != JIM_OK)
return result;
}
/* loop for more */
break;
case TCFG_DEFER_EXAMINE:
/* DEFER_EXAMINE */
target->defer_examine = true;
/* loop for more */
break;
case TCFG_GDB_PORT:
if (goi->isconfigure) {
struct command_context *cmd_ctx = current_command_context(goi->interp);
if (cmd_ctx->mode != COMMAND_CONFIG) {
Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
return JIM_ERR;
}
const char *s;
e = jim_getopt_string(goi, &s, NULL);
if (e != JIM_OK)
return e;
free(target->gdb_port_override);
target->gdb_port_override = strdup(s);
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResultString(goi->interp, target->gdb_port_override ? target->gdb_port_override : "undefined", -1);
/* loop for more */
break;
case TCFG_GDB_MAX_CONNECTIONS:
if (goi->isconfigure) {
struct command_context *cmd_ctx = current_command_context(goi->interp);
if (cmd_ctx->mode != COMMAND_CONFIG) {
Jim_SetResultString(goi->interp, "-gdb-max-connections must be configured before 'init'", -1);
return JIM_ERR;
}
e = jim_getopt_wide(goi, &w);
if (e != JIM_OK)
return e;
target->gdb_max_connections = (w < 0) ? CONNECTION_LIMIT_UNLIMITED : (int)w;
} else {
if (goi->argc != 0)
goto no_params;
}
Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->gdb_max_connections));
break;
}
} /* while (goi->argc) */
/* done - we return */
return JIM_OK;
}
static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
struct command *c = jim_to_command(interp);
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
goi.isconfigure = !strcmp(c->name, "configure");
if (goi.argc < 1) {
Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
"missing: -option ...");
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
return target_configure(&goi, target);
}
static int jim_target_mem2array(Jim_Interp *interp,
int argc, Jim_Obj *const *argv)
{
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
return target_mem2array(interp, target, argc - 1, argv + 1);
}
static int jim_target_array2mem(Jim_Interp *interp,
int argc, Jim_Obj *const *argv)
{
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
return target_array2mem(interp, target, argc - 1, argv + 1);
}
static int jim_target_tap_disabled(Jim_Interp *interp)
{
Jim_SetResultFormatted(interp, "[TAP is disabled]");
return JIM_ERR;
}
static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
bool allow_defer = false;
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
if (goi.argc > 1) {
const char *cmd_name = Jim_GetString(argv[0], NULL);
Jim_SetResultFormatted(goi.interp,
"usage: %s ['allow-defer']", cmd_name);
return JIM_ERR;
}
if (goi.argc > 0 &&
strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
/* consume it */
Jim_Obj *obj;
int e = jim_getopt_obj(&goi, &obj);
if (e != JIM_OK)
return e;
allow_defer = true;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
if (!target->tap->enabled)
return jim_target_tap_disabled(interp);
if (allow_defer && target->defer_examine) {
LOG_INFO("Deferring arp_examine of %s", target_name(target));
LOG_INFO("Use arp_examine command to examine it manually!");
return JIM_OK;
}
int e = target->type->examine(target);
if (e != ERROR_OK) {
target_reset_examined(target);
return JIM_ERR;
}
target_set_examined(target);
return JIM_OK;
}
static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
Jim_SetResultBool(interp, target_was_examined(target));
return JIM_OK;
}
static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
Jim_SetResultBool(interp, target->defer_examine);
return JIM_OK;
}
static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1) {
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
return JIM_ERR;
return JIM_OK;
}
static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1) {
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
if (!target->tap->enabled)
return jim_target_tap_disabled(interp);
int e;
if (!(target_was_examined(target)))
e = ERROR_TARGET_NOT_EXAMINED;
else
e = target->type->poll(target);
if (e != ERROR_OK)
return JIM_ERR;
return JIM_OK;
}
static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
if (goi.argc != 2) {
Jim_WrongNumArgs(interp, 0, argv,
"([tT]|[fF]|assert|deassert) BOOL");
return JIM_ERR;
}
struct jim_nvp *n;
int e = jim_getopt_nvp(&goi, nvp_assert, &n);
if (e != JIM_OK) {
jim_getopt_nvp_unknown(&goi, nvp_assert, 1);
return e;
}
/* the halt or not param */
jim_wide a;
e = jim_getopt_wide(&goi, &a);
if (e != JIM_OK)
return e;
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
if (!target->tap->enabled)
return jim_target_tap_disabled(interp);
if (!target->type->assert_reset || !target->type->deassert_reset) {
Jim_SetResultFormatted(interp,
"No target-specific reset for %s",
target_name(target));
return JIM_ERR;
}
if (target->defer_examine)
target_reset_examined(target);
/* determine if we should halt or not. */
target->reset_halt = (a != 0);
/* When this happens - all workareas are invalid. */
target_free_all_working_areas_restore(target, 0);
/* do the assert */
if (n->value == NVP_ASSERT)
e = target->type->assert_reset(target);
else
e = target->type->deassert_reset(target);
return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
}
static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1) {
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
if (!target->tap->enabled)
return jim_target_tap_disabled(interp);
int e = target->type->halt(target);
return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
}
static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
/* params: <name> statename timeoutmsecs */
if (goi.argc != 2) {
const char *cmd_name = Jim_GetString(argv[0], NULL);
Jim_SetResultFormatted(goi.interp,
"%s <state_name> <timeout_in_msec>", cmd_name);
return JIM_ERR;
}
struct jim_nvp *n;
int e = jim_getopt_nvp(&goi, nvp_target_state, &n);
if (e != JIM_OK) {
jim_getopt_nvp_unknown(&goi, nvp_target_state, 1);
return e;
}
jim_wide a;
e = jim_getopt_wide(&goi, &a);
if (e != JIM_OK)
return e;
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
if (!target->tap->enabled)
return jim_target_tap_disabled(interp);
e = target_wait_state(target, n->value, a);
if (e != ERROR_OK) {
Jim_Obj *obj = Jim_NewIntObj(interp, e);
Jim_SetResultFormatted(goi.interp,
"target: %s wait %s fails (%#s) %s",
target_name(target), n->name,
obj, target_strerror_safe(e));
return JIM_ERR;
}
return JIM_OK;
}
/* List for human, Events defined for this target.
* scripts/programs should use 'name cget -event NAME'
*/
COMMAND_HANDLER(handle_target_event_list)
{
struct target *target = get_current_target(CMD_CTX);
struct target_event_action *teap = target->event_action;
command_print(CMD, "Event actions for target (%d) %s\n",
target->target_number,
target_name(target));
command_print(CMD, "%-25s | Body", "Event");
command_print(CMD, "------------------------- | "
"----------------------------------------");
while (teap) {
command_print(CMD, "%-25s | %s",
target_event_name(teap->event),
Jim_GetString(teap->body, NULL));
teap = teap->next;
}
command_print(CMD, "***END***");
return ERROR_OK;
}
static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1) {
Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
Jim_SetResultString(interp, target_state_name(target), -1);
return JIM_OK;
}
static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
if (goi.argc != 1) {
const char *cmd_name = Jim_GetString(argv[0], NULL);
Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
return JIM_ERR;
}
struct jim_nvp *n;
int e = jim_getopt_nvp(&goi, nvp_target_event, &n);
if (e != JIM_OK) {
jim_getopt_nvp_unknown(&goi, nvp_target_event, 1);
return e;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target(cmd_ctx);
target_handle_event(target, n->value);
return JIM_OK;
}
static const struct command_registration target_instance_command_handlers[] = {
{
.name = "configure",
.mode = COMMAND_ANY,
.jim_handler = jim_target_configure,
.help = "configure a new target for use",
.usage = "[target_attribute ...]",
},
{
.name = "cget",
.mode = COMMAND_ANY,
.jim_handler = jim_target_configure,
.help = "returns the specified target attribute",
.usage = "target_attribute",
},
{
.name = "mwd",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "Write 64-bit word(s) to target memory",
.usage = "address data [count]",
},
{
.name = "mww",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "Write 32-bit word(s) to target memory",
.usage = "address data [count]",
},
{
.name = "mwh",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "Write 16-bit half-word(s) to target memory",
.usage = "address data [count]",
},
{
.name = "mwb",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "Write byte(s) to target memory",
.usage = "address data [count]",
},
{
.name = "mdd",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "Display target memory as 64-bit words",
.usage = "address [count]",
},
{
.name = "mdw",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "Display target memory as 32-bit words",
.usage = "address [count]",
},
{
.name = "mdh",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "Display target memory as 16-bit half-words",
.usage = "address [count]",
},
{
.name = "mdb",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "Display target memory as 8-bit bytes",
.usage = "address [count]",
},
{
.name = "array2mem",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_array2mem,
.help = "Writes Tcl array of 8/16/32 bit numbers "
"to target memory",
.usage = "arrayname bitwidth address count",
},
{
.name = "mem2array",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_mem2array,
.help = "Loads Tcl array of 8/16/32 bit numbers "
"from target memory",
.usage = "arrayname bitwidth address count",
},
{
.name = "get_reg",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_get_reg,
.help = "Get register values from the target",
.usage = "list",
},
{
.name = "set_reg",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_set_reg,
.help = "Set target register values",
.usage = "dict",
},
{
.name = "read_memory",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_read_memory,
.help = "Read Tcl list of 8/16/32/64 bit numbers from target memory",
.usage = "address width count ['phys']",
},
{
.name = "write_memory",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_write_memory,
.help = "Write Tcl list of 8/16/32/64 bit numbers to target memory",
.usage = "address width data ['phys']",
},
{
.name = "eventlist",
.handler = handle_target_event_list,
.mode = COMMAND_EXEC,
.help = "displays a table of events defined for this target",
.usage = "",
},
{
.name = "curstate",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_current_state,
.help = "displays the current state of this target",
},
{
.name = "arp_examine",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_examine,
.help = "used internally for reset processing",
.usage = "['allow-defer']",
},
{
.name = "was_examined",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_was_examined,
.help = "used internally for reset processing",
},
{
.name = "examine_deferred",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_examine_deferred,
.help = "used internally for reset processing",
},
{
.name = "arp_halt_gdb",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_halt_gdb,
.help = "used internally for reset processing to halt GDB",
},
{
.name = "arp_poll",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_poll,
.help = "used internally for reset processing",
},
{
.name = "arp_reset",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_reset,
.help = "used internally for reset processing",
},
{
.name = "arp_halt",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_halt,
.help = "used internally for reset processing",
},
{
.name = "arp_waitstate",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_wait_state,
.help = "used internally for reset processing",
},
{
.name = "invoke-event",
.mode = COMMAND_EXEC,
.jim_handler = jim_target_invoke_event,
.help = "invoke handler for specified event",
.usage = "event_name",
},
COMMAND_REGISTRATION_DONE
};
static int target_create(struct jim_getopt_info *goi)
{
Jim_Obj *new_cmd;
Jim_Cmd *cmd;
const char *cp;
int e;
int x;
struct target *target;
struct command_context *cmd_ctx;
cmd_ctx = current_command_context(goi->interp);
assert(cmd_ctx);
if (goi->argc < 3) {
Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
return JIM_ERR;
}
/* COMMAND */
jim_getopt_obj(goi, &new_cmd);
/* does this command exist? */
cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_NONE);
if (cmd) {
cp = Jim_GetString(new_cmd, NULL);
Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
return JIM_ERR;
}
/* TYPE */
e = jim_getopt_string(goi, &cp, NULL);
if (e != JIM_OK)
return e;
struct transport *tr = get_current_transport();
if (tr->override_target) {
e = tr->override_target(&cp);
if (e != ERROR_OK) {
LOG_ERROR("The selected transport doesn't support this target");
return JIM_ERR;
}
LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
}
/* now does target type exist */
for (x = 0 ; target_types[x] ; x++) {
if (strcmp(cp, target_types[x]->name) == 0) {
/* found */
break;
}
}
if (!target_types[x]) {
Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
for (x = 0 ; target_types[x] ; x++) {
if (target_types[x + 1]) {
Jim_AppendStrings(goi->interp,
Jim_GetResult(goi->interp),
target_types[x]->name,
", ", NULL);
} else {
Jim_AppendStrings(goi->interp,
Jim_GetResult(goi->interp),
" or ",
target_types[x]->name, NULL);
}
}
return JIM_ERR;
}
/* Create it */
target = calloc(1, sizeof(struct target));
if (!target) {
LOG_ERROR("Out of memory");
return JIM_ERR;
}
/* set empty smp cluster */
target->smp_targets = &empty_smp_targets;
/* set target number */
target->target_number = new_target_number();
/* allocate memory for each unique target type */
target->type = malloc(sizeof(struct target_type));
if (!target->type) {
LOG_ERROR("Out of memory");
free(target);
return JIM_ERR;
}
memcpy(target->type, target_types[x], sizeof(struct target_type));
/* default to first core, override with -coreid */
target->coreid = 0;
target->working_area = 0x0;
target->working_area_size = 0x0;
target->working_areas = NULL;
target->backup_working_area = 0;
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
target->reg_cache = NULL;
target->breakpoints = NULL;
target->watchpoints = NULL;
target->next = NULL;
target->arch_info = NULL;
target->verbose_halt_msg = true;
target->halt_issued = false;
/* initialize trace information */
target->trace_info = calloc(1, sizeof(struct trace));
if (!target->trace_info) {
LOG_ERROR("Out of memory");
free(target->type);
free(target);
return JIM_ERR;
}
target->dbgmsg = NULL;
target->dbg_msg_enabled = 0;
target->endianness = TARGET_ENDIAN_UNKNOWN;
target->rtos = NULL;
target->rtos_auto_detect = false;
target->gdb_port_override = NULL;
target->gdb_max_connections = 1;
/* Do the rest as "configure" options */
goi->isconfigure = 1;
e = target_configure(goi, target);
if (e == JIM_OK) {
if (target->has_dap) {
if (!target->dap_configured) {
Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
e = JIM_ERR;
}
} else {
if (!target->tap_configured) {
Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
e = JIM_ERR;
}
}
/* tap must be set after target was configured */
if (!target->tap)
e = JIM_ERR;
}
if (e != JIM_OK) {
rtos_destroy(target);
free(target->gdb_port_override);
free(target->trace_info);
free(target->type);
free(target);
return e;
}
if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
/* default endian to little if not specified */
target->endianness = TARGET_LITTLE_ENDIAN;
}
cp = Jim_GetString(new_cmd, NULL);
target->cmd_name = strdup(cp);
if (!target->cmd_name) {
LOG_ERROR("Out of memory");
rtos_destroy(target);
free(target->gdb_port_override);
free(target->trace_info);
free(target->type);
free(target);
return JIM_ERR;
}
if (target->type->target_create) {
e = (*(target->type->target_create))(target, goi->interp);
if (e != ERROR_OK) {
LOG_DEBUG("target_create failed");
free(target->cmd_name);
rtos_destroy(target);
free(target->gdb_port_override);
free(target->trace_info);
free(target->type);
free(target);
return JIM_ERR;
}
}
/* create the target specific commands */
if (target->type->commands) {
e = register_commands(cmd_ctx, NULL, target->type->commands);
if (e != ERROR_OK)
LOG_ERROR("unable to register '%s' commands", cp);
}
/* now - create the new target name command */
const struct command_registration target_subcommands[] = {
{
.chain = target_instance_command_handlers,
},
{
.chain = target->type->commands,
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration target_commands[] = {
{
.name = cp,
.mode = COMMAND_ANY,
.help = "target command group",
.usage = "",
.chain = target_subcommands,
},
COMMAND_REGISTRATION_DONE
};
e = register_commands_override_target(cmd_ctx, NULL, target_commands, target);
if (e != ERROR_OK) {
if (target->type->deinit_target)
target->type->deinit_target(target);
free(target->cmd_name);
rtos_destroy(target);
free(target->gdb_port_override);
free(target->trace_info);
free(target->type);
free(target);
return JIM_ERR;
}
/* append to end of list */
append_to_list_all_targets(target);
cmd_ctx->current_target = target;
return JIM_OK;
}
static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1) {
Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
return JIM_ERR;
}
struct command_context *cmd_ctx = current_command_context(interp);
assert(cmd_ctx);
struct target *target = get_current_target_or_null(cmd_ctx);
if (target)
Jim_SetResultString(interp, target_name(target), -1);
return JIM_OK;
}
static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1) {
Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
return JIM_ERR;
}
Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
for (unsigned x = 0; target_types[x]; x++) {
Jim_ListAppendElement(interp, Jim_GetResult(interp),
Jim_NewStringObj(interp, target_types[x]->name, -1));
}
return JIM_OK;
}
static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1) {
Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
return JIM_ERR;
}
Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
struct target *target = all_targets;
while (target) {
Jim_ListAppendElement(interp, Jim_GetResult(interp),
Jim_NewStringObj(interp, target_name(target), -1));
target = target->next;
}
return JIM_OK;
}
static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
int i;
const char *targetname;
int retval, len;
static int smp_group = 1;
struct target *target = NULL;
struct target_list *head, *new;
retval = 0;
LOG_DEBUG("%d", argc);
/* argv[1] = target to associate in smp
* argv[2] = target to associate in smp
* argv[3] ...
*/
struct list_head *lh = malloc(sizeof(*lh));
if (!lh) {
LOG_ERROR("Out of memory");
return JIM_ERR;
}
INIT_LIST_HEAD(lh);
for (i = 1; i < argc; i++) {
targetname = Jim_GetString(argv[i], &len);
target = get_target(targetname);
LOG_DEBUG("%s ", targetname);
if (target) {
new = malloc(sizeof(struct target_list));
new->target = target;
list_add_tail(&new->lh, lh);
}
}
/* now parse the list of cpu and put the target in smp mode*/
foreach_smp_target(head, lh) {
target = head->target;
target->smp = smp_group;
target->smp_targets = lh;
}
smp_group++;
if (target && target->rtos)
retval = rtos_smp_init(target);
return retval;
}
static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
struct jim_getopt_info goi;
jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
if (goi.argc < 3) {
Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
"<name> <target_type> [<target_options> ...]");
return JIM_ERR;
}
return target_create(&goi);
}
static const struct command_registration target_subcommand_handlers[] = {
{
.name = "init",
.mode = COMMAND_CONFIG,
.handler = handle_target_init_command,
.help = "initialize targets",
.usage = "",
},
{
.name = "create",
.mode = COMMAND_CONFIG,
.jim_handler = jim_target_create,
.usage = "name type '-chain-position' name [options ...]",
.help = "Creates and selects a new target",
},
{
.name = "current",
.mode = COMMAND_ANY,
.jim_handler = jim_target_current,
.help = "Returns the currently selected target",
},
{
.name = "types",
.mode = COMMAND_ANY,
.jim_handler = jim_target_types,
.help = "Returns the available target types as "
"a list of strings",
},
{
.name = "names",
.mode = COMMAND_ANY,
.jim_handler = jim_target_names,
.help = "Returns the names of all targets as a list of strings",
},
{
.name = "smp",
.mode = COMMAND_ANY,
.jim_handler = jim_target_smp,
.usage = "targetname1 targetname2 ...",
.help = "gather several target in a smp list"
},
COMMAND_REGISTRATION_DONE
};
struct fast_load {
target_addr_t address;
uint8_t *data;
int length;
};
static int fastload_num;
static struct fast_load *fastload;
static void free_fastload(void)
{
if (fastload) {
for (int i = 0; i < fastload_num; i++)
free(fastload[i].data);
free(fastload);
fastload = NULL;
}
}
COMMAND_HANDLER(handle_fast_load_image_command)
{
uint8_t *buffer;
size_t buf_cnt;
uint32_t image_size;
target_addr_t min_address = 0;
target_addr_t max_address = -1;
struct image image;
int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
&image, &min_address, &max_address);
if (retval != ERROR_OK)
return retval;
struct duration bench;
duration_start(&bench);
retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
if (retval != ERROR_OK)
return retval;
image_size = 0x0;
retval = ERROR_OK;
fastload_num = image.num_sections;
fastload = malloc(sizeof(struct fast_load)*image.num_sections);
if (!fastload) {
command_print(CMD, "out of memory");
image_close(&image);
return ERROR_FAIL;
}
memset(fastload, 0, sizeof(struct fast_load)*image.num_sections);
for (unsigned int i = 0; i < image.num_sections; i++) {
buffer = malloc(image.sections[i].size);
if (!buffer) {
command_print(CMD, "error allocating buffer for section (%d bytes)",
(int)(image.sections[i].size));
retval = ERROR_FAIL;
break;
}
retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
if (retval != ERROR_OK) {
free(buffer);
break;
}
uint32_t offset = 0;
uint32_t length = buf_cnt;
/* DANGER!!! beware of unsigned comparison here!!! */
if ((image.sections[i].base_address + buf_cnt >= min_address) &&
(image.sections[i].base_address < max_address)) {
if (image.sections[i].base_address < min_address) {
/* clip addresses below */
offset += min_address-image.sections[i].base_address;
length -= offset;
}
if (image.sections[i].base_address + buf_cnt > max_address)
length -= (image.sections[i].base_address + buf_cnt)-max_address;
fastload[i].address = image.sections[i].base_address + offset;
fastload[i].data = malloc(length);
if (!fastload[i].data) {
free(buffer);
command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
length);
retval = ERROR_FAIL;
break;
}
memcpy(fastload[i].data, buffer + offset, length);
fastload[i].length = length;
image_size += length;
command_print(CMD, "%u bytes written at address 0x%8.8x",
(unsigned int)length,
((unsigned int)(image.sections[i].base_address + offset)));
}
free(buffer);
}
if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
command_print(CMD, "Loaded %" PRIu32 " bytes "
"in %fs (%0.3f KiB/s)", image_size,
duration_elapsed(&bench), duration_kbps(&bench, image_size));
command_print(CMD,
"WARNING: image has not been loaded to target!"
"You can issue a 'fast_load' to finish loading.");
}
image_close(&image);
if (retval != ERROR_OK)
free_fastload();
return retval;
}
COMMAND_HANDLER(handle_fast_load_command)
{
if (CMD_ARGC > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (!fastload) {
LOG_ERROR("No image in memory");
return ERROR_FAIL;
}
int i;
int64_t ms = timeval_ms();
int size = 0;
int retval = ERROR_OK;
for (i = 0; i < fastload_num; i++) {
struct target *target = get_current_target(CMD_CTX);
command_print(CMD, "Write to 0x%08x, length 0x%08x",
(unsigned int)(fastload[i].address),
(unsigned int)(fastload[i].length));
retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
if (retval != ERROR_OK)
break;
size += fastload[i].length;
}
if (retval == ERROR_OK) {
int64_t after = timeval_ms();
command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
}
return retval;
}
static const struct command_registration target_command_handlers[] = {
{
.name = "targets",
.handler = handle_targets_command,
.mode = COMMAND_ANY,
.help = "change current default target (one parameter) "
"or prints table of all targets (no parameters)",
.usage = "[target]",
},
{
.name = "target",
.mode = COMMAND_CONFIG,
.help = "configure target",
.chain = target_subcommand_handlers,
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
int target_register_commands(struct command_context *cmd_ctx)
{
return register_commands(cmd_ctx, NULL, target_command_handlers);
}
static bool target_reset_nag = true;
bool get_target_reset_nag(void)
{
return target_reset_nag;
}
COMMAND_HANDLER(handle_target_reset_nag)
{
return CALL_COMMAND_HANDLER(handle_command_parse_bool,
&target_reset_nag, "Nag after each reset about options to improve "
"performance");
}
COMMAND_HANDLER(handle_ps_command)
{
struct target *target = get_current_target(CMD_CTX);
char *display;
if (target->state != TARGET_HALTED) {
LOG_INFO("target not halted !!");
return ERROR_OK;
}
if ((target->rtos) && (target->rtos->type)
&& (target->rtos->type->ps_command)) {
display = target->rtos->type->ps_command(target);
command_print(CMD, "%s", display);
free(display);
return ERROR_OK;
} else {
LOG_INFO("failed");
return ERROR_TARGET_FAILURE;
}
}
static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
{
if (text)
command_print_sameline(cmd, "%s", text);
for (int i = 0; i < size; i++)
command_print_sameline(cmd, " %02x", buf[i]);
command_print(cmd, " ");
}
COMMAND_HANDLER(handle_test_mem_access_command)
{
struct target *target = get_current_target(CMD_CTX);
uint32_t test_size;
int retval = ERROR_OK;
if (target->state != TARGET_HALTED) {
LOG_INFO("target not halted !!");
return ERROR_FAIL;
}
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);
/* Test reads */
size_t num_bytes = test_size + 4;
struct working_area *wa = NULL;
retval = target_alloc_working_area(target, num_bytes, &wa);
if (retval != ERROR_OK) {
LOG_ERROR("Not enough working area");
return ERROR_FAIL;
}
uint8_t *test_pattern = malloc(num_bytes);
for (size_t i = 0; i < num_bytes; i++)
test_pattern[i] = rand();
retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
if (retval != ERROR_OK) {
LOG_ERROR("Test pattern write failed");
goto out;
}
for (int host_offset = 0; host_offset <= 1; host_offset++) {
for (int size = 1; size <= 4; size *= 2) {
for (int offset = 0; offset < 4; offset++) {
uint32_t count = test_size / size;
size_t host_bufsiz = (count + 2) * size + host_offset;
uint8_t *read_ref = malloc(host_bufsiz);
uint8_t *read_buf = malloc(host_bufsiz);
for (size_t i = 0; i < host_bufsiz; i++) {
read_ref[i] = rand();
read_buf[i] = read_ref[i];
}
command_print_sameline(CMD,
"Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
size, offset, host_offset ? "un" : "");
struct duration bench;
duration_start(&bench);
retval = target_read_memory(target, wa->address + offset, size, count,
read_buf + size + host_offset);
duration_measure(&bench);
if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
command_print(CMD, "Unsupported alignment");
goto next;
} else if (retval != ERROR_OK) {
command_print(CMD, "Memory read failed");
goto next;
}
/* replay on host */
memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);
/* check result */
int result = memcmp(read_ref, read_buf, host_bufsiz);
if (result == 0) {
command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
duration_elapsed(&bench),
duration_kbps(&bench, count * size));
} else {
command_print(CMD, "Compare failed");
binprint(CMD, "ref:", read_ref, host_bufsiz);
binprint(CMD, "buf:", read_buf, host_bufsiz);
}
next:
free(read_ref);
free(read_buf);
}
}
}
out:
free(test_pattern);
target_free_working_area(target, wa);
/* Test writes */
num_bytes = test_size + 4 + 4 + 4;
retval = target_alloc_working_area(target, num_bytes, &wa);
if (retval != ERROR_OK) {
LOG_ERROR("Not enough working area");
return ERROR_FAIL;
}
test_pattern = malloc(num_bytes);
for (size_t i = 0; i < num_bytes; i++)
test_pattern[i] = rand();
for (int host_offset = 0; host_offset <= 1; host_offset++) {
for (int size = 1; size <= 4; size *= 2) {
for (int offset = 0; offset < 4; offset++) {
uint32_t count = test_size / size;
size_t host_bufsiz = count * size + host_offset;
uint8_t *read_ref = malloc(num_bytes);
uint8_t *read_buf = malloc(num_bytes);
uint8_t *write_buf = malloc(host_bufsiz);
for (size_t i = 0; i < host_bufsiz; i++)
write_buf[i] = rand();
command_print_sameline(CMD,
"Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
size, offset, host_offset ? "un" : "");
retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
if (retval != ERROR_OK) {
command_print(CMD, "Test pattern write failed");
goto nextw;
}
/* replay on host */
memcpy(read_ref, test_pattern, num_bytes);
memcpy(read_ref + size + offset, write_buf + host_offset, count * size);
struct duration bench;
duration_start(&bench);
retval = target_write_memory(target, wa->address + size + offset, size, count,
write_buf + host_offset);
duration_measure(&bench);
if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
command_print(CMD, "Unsupported alignment");
goto nextw;
} else if (retval != ERROR_OK) {
command_print(CMD, "Memory write failed");
goto nextw;
}
/* read back */
retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
if (retval != ERROR_OK) {
command_print(CMD, "Test pattern write failed");
goto nextw;
}
/* check result */
int result = memcmp(read_ref, read_buf, num_bytes);
if (result == 0) {
command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
duration_elapsed(&bench),
duration_kbps(&bench, count * size));
} else {
command_print(CMD, "Compare failed");
binprint(CMD, "ref:", read_ref, num_bytes);
binprint(CMD, "buf:", read_buf, num_bytes);
}
nextw:
free(read_ref);
free(read_buf);
}
}
}
free(test_pattern);
target_free_working_area(target, wa);
return retval;
}
static const struct command_registration target_exec_command_handlers[] = {
{
.name = "fast_load_image",
.handler = handle_fast_load_image_command,
.mode = COMMAND_ANY,
.help = "Load image into server memory for later use by "
"fast_load; primarily for profiling",
.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
"[min_address [max_length]]",
},
{
.name = "fast_load",
.handler = handle_fast_load_command,
.mode = COMMAND_EXEC,
.help = "loads active fast load image to current target "
"- mainly for profiling purposes",
.usage = "",
},
{
.name = "profile",
.handler = handle_profile_command,
.mode = COMMAND_EXEC,
.usage = "seconds filename [start end]",
.help = "profiling samples the CPU PC",
},
/** @todo don't register virt2phys() unless target supports it */
{
.name = "virt2phys",
.handler = handle_virt2phys_command,
.mode = COMMAND_ANY,
.help = "translate a virtual address into a physical address",
.usage = "virtual_address",
},
{
.name = "reg",
.handler = handle_reg_command,
.mode = COMMAND_EXEC,
.help = "display (reread from target with \"force\") or set a register; "
"with no arguments, displays all registers and their values",
.usage = "[(register_number|register_name) [(value|'force')]]",
},
{
.name = "poll",
.handler = handle_poll_command,
.mode = COMMAND_EXEC,
.help = "poll target state; or reconfigure background polling",
.usage = "['on'|'off']",
},
{
.name = "wait_halt",
.handler = handle_wait_halt_command,
.mode = COMMAND_EXEC,
.help = "wait up to the specified number of milliseconds "
"(default 5000) for a previously requested halt",
.usage = "[milliseconds]",
},
{
.name = "halt",
.handler = handle_halt_command,
.mode = COMMAND_EXEC,
.help = "request target to halt, then wait up to the specified "
"number of milliseconds (default 5000) for it to complete",
.usage = "[milliseconds]",
},
{
.name = "resume",
.handler = handle_resume_command,
.mode = COMMAND_EXEC,
.help = "resume target execution from current PC or address",
.usage = "[address]",
},
{
.name = "reset",
.handler = handle_reset_command,
.mode = COMMAND_EXEC,
.usage = "[run|halt|init]",
.help = "Reset all targets into the specified mode. "
"Default reset mode is run, if not given.",
},
{
.name = "soft_reset_halt",
.handler = handle_soft_reset_halt_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "halt the target and do a soft reset",
},
{
.name = "step",
.handler = handle_step_command,
.mode = COMMAND_EXEC,
.help = "step one instruction from current PC or address",
.usage = "[address]",
},
{
.name = "mdd",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "display memory double-words",
.usage = "['phys'] address [count]",
},
{
.name = "mdw",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "display memory words",
.usage = "['phys'] address [count]",
},
{
.name = "mdh",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "display memory half-words",
.usage = "['phys'] address [count]",
},
{
.name = "mdb",
.handler = handle_md_command,
.mode = COMMAND_EXEC,
.help = "display memory bytes",
.usage = "['phys'] address [count]",
},
{
.name = "mwd",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "write memory double-word",
.usage = "['phys'] address value [count]",
},
{
.name = "mww",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "write memory word",
.usage = "['phys'] address value [count]",
},
{
.name = "mwh",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "write memory half-word",
.usage = "['phys'] address value [count]",
},
{
.name = "mwb",
.handler = handle_mw_command,
.mode = COMMAND_EXEC,
.help = "write memory byte",
.usage = "['phys'] address value [count]",
},
{
.name = "bp",
.handler = handle_bp_command,
.mode = COMMAND_EXEC,
.help = "list or set hardware or software breakpoint",
.usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
},
{
.name = "rbp",
.handler = handle_rbp_command,
.mode = COMMAND_EXEC,
.help = "remove breakpoint",
.usage = "'all' | address",
},
{
.name = "wp",
.handler = handle_wp_command,
.mode = COMMAND_EXEC,
.help = "list (no params) or create watchpoints",
.usage = "[address length [('r'|'w'|'a') value [mask]]]",
},
{
.name = "rwp",
.handler = handle_rwp_command,
.mode = COMMAND_EXEC,
.help = "remove watchpoint",
.usage = "address",
},
{
.name = "load_image",
.handler = handle_load_image_command,
.mode = COMMAND_EXEC,
.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
"[min_address] [max_length]",
},
{
.name = "dump_image",
.handler = handle_dump_image_command,
.mode = COMMAND_EXEC,
.usage = "filename address size",
},
{
.name = "verify_image_checksum",
.handler = handle_verify_image_checksum_command,
.mode = COMMAND_EXEC,
.usage = "filename [offset [type]]",
},
{
.name = "verify_image",
.handler = handle_verify_image_command,
.mode = COMMAND_EXEC,
.usage = "filename [offset [type]]",
},
{
.name = "test_image",
.handler = handle_test_image_command,
.mode = COMMAND_EXEC,
.usage = "filename [offset [type]]",
},
{
.name = "get_reg",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_get_reg,
.help = "Get register values from the target",
.usage = "list",
},
{
.name = "set_reg",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_set_reg,
.help = "Set target register values",
.usage = "dict",
},
{
.name = "read_memory",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_read_memory,
.help = "Read Tcl list of 8/16/32/64 bit numbers from target memory",
.usage = "address width count ['phys']",
},
{
.name = "write_memory",
.mode = COMMAND_EXEC,
.jim_handler = target_jim_write_memory,
.help = "Write Tcl list of 8/16/32/64 bit numbers to target memory",
.usage = "address width data ['phys']",
},
{
.name = "reset_nag",
.handler = handle_target_reset_nag,
.mode = COMMAND_ANY,
.help = "Nag after each reset about options that could have been "
"enabled to improve performance.",
.usage = "['enable'|'disable']",
},
{
.name = "ps",
.handler = handle_ps_command,
.mode = COMMAND_EXEC,
.help = "list all tasks",
.usage = "",
},
{
.name = "test_mem_access",
.handler = handle_test_mem_access_command,
.mode = COMMAND_EXEC,
.help = "Test the target's memory access functions",
.usage = "size",
},
COMMAND_REGISTRATION_DONE
};
static int target_register_user_commands(struct command_context *cmd_ctx)
{
int retval = ERROR_OK;
retval = target_request_register_commands(cmd_ctx);
if (retval != ERROR_OK)
return retval;
retval = trace_register_commands(cmd_ctx);
if (retval != ERROR_OK)
return retval;
return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
}