openocd/src/flash/nor/stm32x.c
Freddie Chopin 015bf55944 Add comments and tiny improvements to STM32 flash loader algorithm
Add comments to assembly flash loader for STM32. Add tiny improvement in
size of the algorithm (40 vs 48 bytes) and tiny speed improvement (~1.5%,
as time is wasted on waiting for end of operation anyway).

Signed-off-by: Freddie Chopin <freddie_chopin@op.pl>
2010-11-15 09:17:14 +01:00

1363 lines
34 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "stm32x.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
static int stm32x_mass_erase(struct flash_bank *bank);
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
{
LOG_WARNING("incomplete flash_bank stm32x configuration");
return ERROR_FLASH_BANK_INVALID;
}
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->write_algorithm = NULL;
stm32x_info->probed = 0;
return ERROR_OK;
}
static int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, STM32_FLASH_SR, status);
}
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;)
{
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0)
{
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPRTERR)
{
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
if (status & FLASH_PGERR)
{
LOG_ERROR("stm32x device programming failed");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & (FLASH_WRPRTERR | FLASH_PGERR))
{
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, STM32_FLASH_SR, FLASH_WRPRTERR | FLASH_PGERR);
}
return retval;
}
static int stm32x_read_options(struct flash_bank *bank)
{
uint32_t optiondata;
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current option bytes */
int retval = target_read_u32(target, STM32_FLASH_OBR, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
if (optiondata & (1 << OPT_READOUT))
LOG_INFO("Device Security Bit Set");
/* each bit refers to a 4bank protection */
retval = target_read_u32(target, STM32_FLASH_WRPR, &optiondata);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
return ERROR_OK;
}
static int stm32x_erase_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current options */
stm32x_read_options(bank);
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
if (retval != ERROR_OK)
return retval;
/* erase option bytes */
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* clear readout protection and complementary option bytes
* this will also force a device unlock if set */
stm32x_info->option_bytes.RDP = 0x5AA5;
return ERROR_OK;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
if (retval != ERROR_OK)
return retval;
/* program option bytes */
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG | FLASH_OPTWRE);
if (retval != ERROR_OK)
return retval;
/* write user option byte */
retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 1 */
retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 2 */
retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 3 */
retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write protection byte 4 */
retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
/* write readout protection bit */
retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 10);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint32_t protection;
int i, s;
int num_bits;
int set;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
int retval = target_read_u32(target, STM32_FLASH_WRPR, &protection);
if (retval != ERROR_OK)
return retval;
/* medium density - each protection bit is for 4 * 1K pages
* high density - each protection bit is for 2 * 2K pages */
num_bits = (bank->num_sectors / stm32x_info->ppage_size);
if (stm32x_info->ppage_size == 2)
{
/* high density flash/connectivity line protection */
set = 1;
if (protection & (1 << 31))
set = 0;
/* bit 31 controls sector 62 - 255 protection for high density
* bit 31 controls sector 62 - 127 protection for connectivity line */
for (s = 62; s < bank->num_sectors; s++)
{
bank->sectors[s].is_protected = set;
}
if (bank->num_sectors > 61)
num_bits = 31;
for (i = 0; i < num_bits; i++)
{
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
}
else
{
/* low/medium density flash protection */
for (i = 0; i < num_bits; i++)
{
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
}
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
{
return stm32x_mass_erase(bank);
}
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
for (i = first; i <= last; i++)
{
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_PER);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_AR, bank->base + bank->sectors[i].offset);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_PER | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 100);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
int i, reg, bit;
int status;
uint32_t protection;
stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first && (first % stm32x_info->ppage_size)) || ((last + 1) &&
(last + 1) % stm32x_info->ppage_size))
{
LOG_WARNING("Error: start and end sectors must be on a %d sector boundary",
stm32x_info->ppage_size);
return ERROR_FLASH_SECTOR_INVALID;
}
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
int retval = target_read_u32(target, STM32_FLASH_WRPR, &protection);
if (retval != ERROR_OK)
return retval;
prot_reg[0] = (uint16_t)protection;
prot_reg[1] = (uint16_t)(protection >> 8);
prot_reg[2] = (uint16_t)(protection >> 16);
prot_reg[3] = (uint16_t)(protection >> 24);
if (stm32x_info->ppage_size == 2)
{
/* high density flash */
/* bit 7 controls sector 62 - 255 protection */
if (last > 61)
{
if (set)
prot_reg[3] &= ~(1 << 7);
else
prot_reg[3] |= (1 << 7);
}
if (first > 61)
first = 62;
if (last > 61)
last = 61;
for (i = first; i <= last; i++)
{
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
else
{
/* medium density flash */
for (i = first; i <= last; i++)
{
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
if ((status = stm32x_erase_options(bank)) != ERROR_OK)
return status;
stm32x_info->option_bytes.protection[0] = prot_reg[0];
stm32x_info->option_bytes.protection[1] = prot_reg[1];
stm32x_info->option_bytes.protection[2] = prot_reg[2];
stm32x_info->option_bytes.protection[3] = prot_reg[3];
return stm32x_write_options(bank);
}
static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[4];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* see contib/loaders/flash/stm32x.s for src */
static const uint8_t stm32x_flash_write_code[] = {
/* #define STM32_FLASH_CR_OFFSET 0x10 */
/* #define STM32_FLASH_SR_OFFSET 0x0C */
/* write: */
0xdf, 0xf8, 0x20, 0x40, /* ldr r4, STM32_FLASH_BASE */
/* write_half_word: */
0x01, 0x23, /* movs r3, #0x01 */
0x23, 0x61, /* str r3, [r4, #STM32_FLASH_CR_OFFSET] */
0x30, 0xf8, 0x02, 0x3b, /* ldrh r3, [r0], #0x02 */
0x21, 0xf8, 0x02, 0x3b, /* strh r3, [r1], #0x02 */
/* busy: */
0xe3, 0x68, /* ldr r3, [r4, #STM32_FLASH_SR_OFFSET] */
0x13, 0xf0, 0x01, 0x0f, /* tst r3, #0x01 */
0xfb, 0xd0, /* beq busy */
0x13, 0xf0, 0x14, 0x0f, /* tst r3, #0x14 */
0x01, 0xd1, /* bne exit */
0x01, 0x3a, /* subs r2, r2, #0x01 */
0xf0, 0xd1, /* bne write_half_word */
/* exit: */
0x00, 0xbe, /* bkpt #0x00 */
0x00, 0x20, 0x02, 0x40, /* STM32_FLASH_BASE: .word 0x40022000 */
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&stm32x_info->write_algorithm) != ERROR_OK)
{
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
sizeof(stm32x_flash_write_code),
(uint8_t*)stm32x_flash_write_code)) != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
if (stm32x_info->write_algorithm)
target_free_working_area(target, stm32x_info->write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN);
while (count > 0)
{
uint32_t thisrun_count = (count > (buffer_size / 2)) ?
(buffer_size / 2) : count;
if ((retval = target_write_buffer(target, source->address,
thisrun_count * 2, buffer)) != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
if ((retval = target_run_algorithm(target, 0, NULL, 4, reg_params,
stm32x_info->write_algorithm->address,
0,
10000, &armv7m_info)) != ERROR_OK)
{
LOG_ERROR("error executing stm32x flash write algorithm");
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) & FLASH_PGERR)
{
LOG_ERROR("flash memory not erased before writing");
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, FLASH_PGERR);
retval = ERROR_FAIL;
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) & FLASH_WRPRTERR)
{
LOG_ERROR("flash memory write protected");
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, FLASH_WRPRTERR);
retval = ERROR_FAIL;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, stm32x_info->write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1)
{
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* unlock flash registers */
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0)
{
/* try using a block write */
if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
}
else
{
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
return retval;
while (words_remaining > 0)
{
uint16_t value;
memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, address, value);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
return retval;
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining)
{
uint16_t value = 0xffff;
memcpy(&value, buffer + bytes_written, bytes_remaining);
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, address, value);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
return retval;
}
return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
int i;
uint16_t num_pages;
uint32_t device_id;
int page_size;
stm32x_info->probed = 0;
/* read stm32 device id register */
int retval = target_read_u32(target, 0xE0042000, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
/* get flash size from target. */
retval = target_read_u16(target, 0x1FFFF7E0, &num_pages);
if (retval != ERROR_OK)
{
LOG_WARNING("failed reading flash size, default to max target family");
/* failed reading flash size, default to max target family */
num_pages = 0xffff;
}
if ((device_id & 0x7ff) == 0x410)
{
/* medium density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revA */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
num_pages = 128;
}
}
else if ((device_id & 0x7ff) == 0x412)
{
/* low density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revA */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
num_pages = 32;
}
}
else if ((device_id & 0x7ff) == 0x414)
{
/* high density - we have 2k pages
* 2 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 2;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revZ */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
num_pages = 512;
}
}
else if ((device_id & 0x7ff) == 0x418)
{
/* connectivity line density - we have 2k pages
* 2 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 2;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revZ */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
num_pages = 256;
}
}
else if ((device_id & 0x7ff) == 0x420)
{
/* value line density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors may be incorrrect on early silicon */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
num_pages = 128;
}
}
else
{
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
}
LOG_INFO("flash size = %dkbytes", num_pages);
/* calculate numbers of pages */
num_pages /= (page_size / 1024);
if (bank->sectors)
{
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = 0x08000000;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
for (i = 0; i < num_pages; i++)
{
bank->sectors[i].offset = i * page_size;
bank->sectors[i].size = page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32x_info->probed = 1;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
#if 0
COMMAND_HANDLER(stm32x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct target *target = bank->target;
uint32_t device_id;
int printed;
/* read stm32 device id register */
int retval = target_read_u32(target, 0xE0042000, &device_id);
if (retval != ERROR_OK)
return retval;
if ((device_id & 0x7ff) == 0x410)
{
printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x0000:
snprintf(buf, buf_size, "A");
break;
case 0x2000:
snprintf(buf, buf_size, "B");
break;
case 0x2001:
snprintf(buf, buf_size, "Z");
break;
case 0x2003:
snprintf(buf, buf_size, "Y");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x412)
{
printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x414)
{
printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x418)
{
printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x420)
{
printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else
{
snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x lock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.RDP = 0;
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x locked");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x unlock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to unlock device");
return ERROR_OK;
}
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_read_command)
{
uint32_t optionbyte;
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x options_read <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_read_u32(target, STM32_FLASH_OBR, &optionbyte);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
if (buf_get_u32((uint8_t*)&optionbyte, OPT_ERROR, 1))
command_print(CMD_CTX, "Option Byte Complement Error");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_READOUT, 1))
command_print(CMD_CTX, "Readout Protection On");
else
command_print(CMD_CTX, "Readout Protection Off");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDWDGSW, 1))
command_print(CMD_CTX, "Software Watchdog");
else
command_print(CMD_CTX, "Hardware Watchdog");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTOP, 1))
command_print(CMD_CTX, "Stop: No reset generated");
else
command_print(CMD_CTX, "Stop: Reset generated");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTDBY, 1))
command_print(CMD_CTX, "Standby: No reset generated");
else
command_print(CMD_CTX, "Standby: Reset generated");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_write_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
uint16_t optionbyte = 0xF8;
if (CMD_ARGC < 4)
{
command_print(CMD_CTX, "stm32x options_write <bank> <SWWDG | HWWDG> <RSTSTNDBY | NORSTSTNDBY> <RSTSTOP | NORSTSTOP>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* REVISIT: ignores some options which we will display...
* and doesn't insist on the specified syntax.
*/
/* OPT_RDWDGSW */
if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
{
optionbyte |= (1 << 0);
}
else /* REVISIT must be "HWWDG" then ... */
{
optionbyte &= ~(1 << 0);
}
/* OPT_RDRSTSTDBY */
if (strcmp(CMD_ARGV[2], "NORSTSTNDBY") == 0)
{
optionbyte |= (1 << 1);
}
else /* REVISIT must be "RSTSTNDBY" then ... */
{
optionbyte &= ~(1 << 1);
}
/* OPT_RDRSTSTOP */
if (strcmp(CMD_ARGV[3], "NORSTSTOP") == 0)
{
optionbyte |= (1 << 2);
}
else /* REVISIT must be "RSTSTOP" then ... */
{
optionbyte &= ~(1 << 2);
}
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
stm32x_info->option_bytes.user_options = optionbyte;
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to write options");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x write options complete.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
if (retval != ERROR_OK)
return retval;
/* mass erase flash memory */
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_MER);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_MER | FLASH_STRT);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 100);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
int i;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x mass_erase <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK)
{
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
{
bank->sectors[i].is_erased = 1;
}
command_print(CMD_CTX, "stm32x mass erase complete");
}
else
{
command_print(CMD_CTX, "stm32x mass erase failed");
}
return retval;
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "options_read",
.handler = stm32x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option byte.",
},
{
.name = "options_write",
.handler = stm32x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id ('SWWDG'|'HWWDG') "
"('RSTSTNDBY'|'NORSTSTNDBY') "
"('RSTSTOP'|'NORSTSTOP')",
.help = "Replace bits in device option byte.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32x",
.mode = COMMAND_ANY,
.help = "stm32x flash command group",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32x_flash = {
.name = "stm32x",
.commands = stm32x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_mem_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
};