openocd/src/svf/svf.c
Øyvind Harboe fb5422261f svf: fix warnings
Change-Id: Ib7f67612db3a865f9acc5ae349455da7ddcd3348
Signed-off-by: Øyvind Harboe <oyvind.harboe@zylin.com>
Reviewed-on: http://openocd.zylin.com/177
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
2011-11-10 15:43:30 +00:00

1746 lines
43 KiB
C

/*
* Copyright (C) 2009 by Simon Qian
* SimonQian@SimonQian.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* The specification for SVF is available here:
* http://www.asset-intertech.com/support/svf.pdf
* Below, this document is refered to as the "SVF spec".
*
* The specification for XSVF is available here:
* http://www.xilinx.com/support/documentation/application_notes/xapp503.pdf
* Below, this document is refered to as the "XSVF spec".
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <jtag/jtag.h>
#include "svf.h"
#include <helper/time_support.h>
// SVF command
typedef enum
{
ENDDR,
ENDIR,
FREQUENCY,
HDR,
HIR,
PIO,
PIOMAP,
RUNTEST,
SDR,
SIR,
STATE,
TDR,
TIR,
TRST,
}svf_command_t;
static const char *svf_command_name[14] =
{
"ENDDR",
"ENDIR",
"FREQUENCY",
"HDR",
"HIR",
"PIO",
"PIOMAP",
"RUNTEST",
"SDR",
"SIR",
"STATE",
"TDR",
"TIR",
"TRST"
};
typedef enum
{
TRST_ON,
TRST_OFF,
TRST_Z,
TRST_ABSENT
}trst_mode_t;
static const char *svf_trst_mode_name[4] =
{
"ON",
"OFF",
"Z",
"ABSENT"
};
struct svf_statemove
{
tap_state_t from;
tap_state_t to;
uint32_t num_of_moves;
tap_state_t paths[8];
};
/*
* These paths are from the SVF specification for the STATE command, to be
* used when the STATE command only includes the final state. The first
* element of the path is the "from" (current) state, and the last one is
* the "to" (target) state.
*
* All specified paths are the shortest ones in the JTAG spec, and are thus
* not (!!) exact matches for the paths used elsewhere in OpenOCD. Note
* that PAUSE-to-PAUSE transitions all go through UPDATE and then CAPTURE,
* which has specific effects on the various registers; they are not NOPs.
*
* Paths to RESET are disabled here. As elsewhere in OpenOCD, and in XSVF
* and many SVF implementations, we don't want to risk missing that state.
* To get to RESET, always we ignore the current state.
*/
static const struct svf_statemove svf_statemoves[] =
{
// from to num_of_moves, paths[8]
// {TAP_RESET, TAP_RESET, 1, {TAP_RESET}},
{TAP_RESET, TAP_IDLE, 2, {TAP_RESET, TAP_IDLE}},
{TAP_RESET, TAP_DRPAUSE, 6, {TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
{TAP_RESET, TAP_IRPAUSE, 7, {TAP_RESET, TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}},
// {TAP_IDLE, TAP_RESET, 4, {TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}},
{TAP_IDLE, TAP_IDLE, 1, {TAP_IDLE}},
{TAP_IDLE, TAP_DRPAUSE, 5, {TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
{TAP_IDLE, TAP_IRPAUSE, 6, {TAP_IDLE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}},
// {TAP_DRPAUSE, TAP_RESET, 6, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}},
{TAP_DRPAUSE, TAP_IDLE, 4, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE}},
{TAP_DRPAUSE, TAP_DRPAUSE, 7, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
{TAP_DRPAUSE, TAP_IRPAUSE, 8, {TAP_DRPAUSE, TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}},
// {TAP_IRPAUSE, TAP_RESET, 6, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_RESET}},
{TAP_IRPAUSE, TAP_IDLE, 4, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_IDLE}},
{TAP_IRPAUSE, TAP_DRPAUSE, 7, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DREXIT1, TAP_DRPAUSE}},
{TAP_IRPAUSE, TAP_IRPAUSE, 8, {TAP_IRPAUSE, TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IREXIT1, TAP_IRPAUSE}}
};
#define XXR_TDI (1 << 0)
#define XXR_TDO (1 << 1)
#define XXR_MASK (1 << 2)
#define XXR_SMASK (1 << 3)
struct svf_xxr_para
{
int len;
int data_mask;
uint8_t *tdi;
uint8_t *tdo;
uint8_t *mask;
uint8_t *smask;
};
struct svf_para
{
float frequency;
tap_state_t ir_end_state;
tap_state_t dr_end_state;
tap_state_t runtest_run_state;
tap_state_t runtest_end_state;
trst_mode_t trst_mode;
struct svf_xxr_para hir_para;
struct svf_xxr_para hdr_para;
struct svf_xxr_para tir_para;
struct svf_xxr_para tdr_para;
struct svf_xxr_para sir_para;
struct svf_xxr_para sdr_para;
};
static struct svf_para svf_para;
static const struct svf_para svf_para_init =
{
// frequency, ir_end_state, dr_end_state, runtest_run_state, runtest_end_state, trst_mode
0, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TRST_Z,
// hir_para
// {len, data_mask, tdi, tdo, mask, smask},
{0, 0, NULL, NULL, NULL, NULL},
// hdr_para
// {len, data_mask, tdi, tdo, mask, smask},
{0, 0, NULL, NULL, NULL, NULL},
// tir_para
// {len, data_mask, tdi, tdo, mask, smask},
{0, 0, NULL, NULL, NULL, NULL},
// tdr_para
// {len, data_mask, tdi, tdo, mask, smask},
{0, 0, NULL, NULL, NULL, NULL},
// sir_para
// {len, data_mask, tdi, tdo, mask, smask},
{0, 0, NULL, NULL, NULL, NULL},
// sdr_para
// {len, data_mask, tdi, tdo, mask, smask},
{0, 0, NULL, NULL, NULL, NULL},
};
struct svf_check_tdo_para
{
int line_num; // used to record line number of the check operation
// so more information could be printed
int enabled; // check is enabled or not
int buffer_offset; // buffer_offset to buffers
int bit_len; // bit length to check
};
#define SVF_CHECK_TDO_PARA_SIZE 1024
static struct svf_check_tdo_para *svf_check_tdo_para = NULL;
static int svf_check_tdo_para_index = 0;
static int svf_read_command_from_file(FILE * fd);
static int svf_check_tdo(void);
static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len);
static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str);
static FILE * svf_fd = NULL;
static char * svf_read_line = NULL;
static size_t svf_read_line_size = 0;
static char *svf_command_buffer = NULL;
static size_t svf_command_buffer_size = 0;
static int svf_line_number = 1;
static int svf_getline (char **lineptr, size_t *n, FILE *stream);
#define SVF_MAX_BUFFER_SIZE_TO_COMMIT (1024 * 1024)
static uint8_t *svf_tdi_buffer = NULL, *svf_tdo_buffer = NULL, *svf_mask_buffer = NULL;
static int svf_buffer_index = 0, svf_buffer_size = 0;
static int svf_quiet = 0;
static int svf_nil = 0;
// Targetting particular tap
static int svf_tap_is_specified = 0;
static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi);
// Progress Indicator
static int svf_progress_enabled = 0;
static long svf_total_lines = 0;
static int svf_percentage = 0;
static int svf_last_printed_percentage = -1;
static void svf_free_xxd_para(struct svf_xxr_para *para)
{
if (NULL != para)
{
if (para->tdi != NULL)
{
free(para->tdi);
para->tdi = NULL;
}
if (para->tdo != NULL)
{
free(para->tdo);
para->tdo = NULL;
}
if (para->mask != NULL)
{
free(para->mask);
para->mask = NULL;
}
if (para->smask != NULL)
{
free(para->smask);
para->smask = NULL;
}
}
}
static unsigned svf_get_mask_u32(int bitlen)
{
uint32_t bitmask;
if (bitlen < 0)
{
bitmask = 0;
}
else if (bitlen >= 32)
{
bitmask = 0xFFFFFFFF;
}
else
{
bitmask = (1 << bitlen) - 1;
}
return bitmask;
}
int svf_add_statemove(tap_state_t state_to)
{
tap_state_t state_from = cmd_queue_cur_state;
unsigned index_var;
/* when resetting, be paranoid and ignore current state */
if (state_to == TAP_RESET) {
if (svf_nil)
return ERROR_OK;
jtag_add_tlr();
return ERROR_OK;
}
for (index_var = 0; index_var < ARRAY_SIZE(svf_statemoves); index_var++)
{
if ((svf_statemoves[index_var].from == state_from)
&& (svf_statemoves[index_var].to == state_to))
{
if (svf_nil)
{
continue;
}
/* recorded path includes current state ... avoid extra TCKs! */
if (svf_statemoves[index_var].num_of_moves > 1)
jtag_add_pathmove(svf_statemoves[index_var].num_of_moves - 1,
svf_statemoves[index_var].paths + 1);
else
jtag_add_pathmove(svf_statemoves[index_var].num_of_moves,
svf_statemoves[index_var].paths);
return ERROR_OK;
}
}
LOG_ERROR("SVF: can not move to %s", tap_state_name(state_to));
return ERROR_FAIL;
}
COMMAND_HANDLER(handle_svf_command)
{
#define SVF_MIN_NUM_OF_OPTIONS 1
#define SVF_MAX_NUM_OF_OPTIONS 5
int command_num = 0;
int ret = ERROR_OK;
long long time_measure_ms;
int time_measure_s, time_measure_m;
/* use NULL to indicate a "plain" svf file which accounts for
any additional devices in the scan chain, otherwise the device
that should be affected
*/
struct jtag_tap *tap = NULL;
if ((CMD_ARGC < SVF_MIN_NUM_OF_OPTIONS) || (CMD_ARGC > SVF_MAX_NUM_OF_OPTIONS))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
// parse command line
svf_quiet = 0;
svf_nil = 0;
for (unsigned int i = 0; i < CMD_ARGC; i++)
{
if (strcmp(CMD_ARGV[i], "-tap") == 0)
{
tap = jtag_tap_by_string(CMD_ARGV[i+1]);
if (!tap)
{
command_print(CMD_CTX, "Tap: %s unknown", CMD_ARGV[i+1]);
return ERROR_FAIL;
}
i++;
}
else if ((strcmp(CMD_ARGV[i], "quiet") == 0) || (strcmp(CMD_ARGV[i], "-quiet") == 0))
{
svf_quiet = 1;
}
else if ((strcmp(CMD_ARGV[i], "nil") == 0) || (strcmp(CMD_ARGV[i], "-nil") == 0))
{
svf_nil = 1;
}
else if ((strcmp(CMD_ARGV[i], "progress") == 0) || (strcmp(CMD_ARGV[i], "-progress") == 0))
{
svf_progress_enabled = 1;
}
else if ((svf_fd = fopen(CMD_ARGV[i], "r")) == NULL)
{
int err = errno;
command_print(CMD_CTX, "open(\"%s\"): %s", CMD_ARGV[i], strerror(err));
// no need to free anything now
return ERROR_COMMAND_SYNTAX_ERROR;
}
else
{
LOG_USER("svf processing file: \"%s\"", CMD_ARGV[i]);
}
}
if (svf_fd == NULL)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
// get time
time_measure_ms = timeval_ms();
// init
svf_line_number = 1;
svf_command_buffer_size = 0;
svf_check_tdo_para_index = 0;
svf_check_tdo_para = malloc(sizeof(struct svf_check_tdo_para) * SVF_CHECK_TDO_PARA_SIZE);
if (NULL == svf_check_tdo_para)
{
LOG_ERROR("not enough memory");
ret = ERROR_FAIL;
goto free_all;
}
svf_buffer_index = 0;
// double the buffer size
// in case current command cannot be committed, and next command is a bit scan command
// here is 32K bits for this big scan command, it should be enough
// buffer will be reallocated if buffer size is not enough
svf_tdi_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT);
if (NULL == svf_tdi_buffer)
{
LOG_ERROR("not enough memory");
ret = ERROR_FAIL;
goto free_all;
}
svf_tdo_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT);
if (NULL == svf_tdo_buffer)
{
LOG_ERROR("not enough memory");
ret = ERROR_FAIL;
goto free_all;
}
svf_mask_buffer = (uint8_t *)malloc(2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT);
if (NULL == svf_mask_buffer)
{
LOG_ERROR("not enough memory");
ret = ERROR_FAIL;
goto free_all;
}
svf_buffer_size = 2 * SVF_MAX_BUFFER_SIZE_TO_COMMIT;
memcpy(&svf_para, &svf_para_init, sizeof(svf_para));
if (!svf_nil)
{
// TAP_RESET
jtag_add_tlr();
}
if (tap)
{
/* Tap is specified, set header/trailer paddings */
int header_ir_len = 0, header_dr_len = 0, trailer_ir_len = 0, trailer_dr_len = 0;
struct jtag_tap *check_tap;
svf_tap_is_specified = 1;
for (check_tap = jtag_all_taps(); check_tap; check_tap = check_tap->next_tap) {
if (check_tap->abs_chain_position < tap->abs_chain_position)
{
//Header
header_ir_len += check_tap->ir_length;
header_dr_len ++;
}
else if (check_tap->abs_chain_position > tap->abs_chain_position)
{
//Trailer
trailer_ir_len += check_tap->ir_length;
trailer_dr_len ++;
}
}
// HDR %d TDI (0)
if (ERROR_OK != svf_set_padding(&svf_para.hdr_para, header_dr_len, 0))
{
LOG_ERROR("failed to set data header");
return ERROR_FAIL;
}
// HIR %d TDI (0xFF)
if (ERROR_OK != svf_set_padding(&svf_para.hir_para, header_ir_len, 0xFF))
{
LOG_ERROR("failed to set instruction header");
return ERROR_FAIL;
}
// TDR %d TDI (0)
if (ERROR_OK != svf_set_padding(&svf_para.tdr_para, trailer_dr_len, 0))
{
LOG_ERROR("failed to set data trailer");
return ERROR_FAIL;
}
// TIR %d TDI (0xFF)
if (ERROR_OK != svf_set_padding(&svf_para.tir_para, trailer_ir_len, 0xFF))
{
LOG_ERROR("failed to set instruction trailer");
return ERROR_FAIL;
}
}
if (svf_progress_enabled)
{
// Count total lines in file.
while ( ! feof (svf_fd) )
{
svf_getline (&svf_command_buffer, &svf_command_buffer_size, svf_fd);
svf_total_lines++;
}
rewind(svf_fd);
}
while (ERROR_OK == svf_read_command_from_file(svf_fd))
{
// Log Output
if (svf_quiet)
{
if (svf_progress_enabled)
{
svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5;
if (svf_last_printed_percentage != svf_percentage)
{
LOG_USER_N("\r%d%% ", svf_percentage);
svf_last_printed_percentage = svf_percentage;
}
}
}
else
{
if (svf_progress_enabled)
{
svf_percentage = ((svf_line_number * 20) / svf_total_lines) * 5;
LOG_USER_N("%3d%% %s", svf_percentage, svf_read_line);
}
else
{
LOG_USER_N("%s",svf_read_line);
}
}
// Run Command
if (ERROR_OK != svf_run_command(CMD_CTX, svf_command_buffer))
{
LOG_ERROR("fail to run command at line %d", svf_line_number);
ret = ERROR_FAIL;
break;
}
command_num++;
}
if ((!svf_nil) && (ERROR_OK != jtag_execute_queue()))
{
ret = ERROR_FAIL;
}
else if (ERROR_OK != svf_check_tdo())
{
ret = ERROR_FAIL;
}
// print time
time_measure_ms = timeval_ms() - time_measure_ms;
time_measure_s = time_measure_ms / 1000;
time_measure_ms %= 1000;
time_measure_m = time_measure_s / 60;
time_measure_s %= 60;
if (time_measure_ms < 1000)
{
command_print(CMD_CTX, "\r\nTime used: %dm%ds%lldms ", time_measure_m, time_measure_s, time_measure_ms);
}
free_all:
fclose(svf_fd);
svf_fd = 0;
// free buffers
if (svf_command_buffer)
{
free(svf_command_buffer);
svf_command_buffer = NULL;
svf_command_buffer_size = 0;
}
if (svf_check_tdo_para)
{
free(svf_check_tdo_para);
svf_check_tdo_para = NULL;
svf_check_tdo_para_index = 0;
}
if (svf_tdi_buffer)
{
free(svf_tdi_buffer);
svf_tdi_buffer = NULL;
}
if (svf_tdo_buffer)
{
free(svf_tdo_buffer);
svf_tdo_buffer = NULL;
}
if (svf_mask_buffer)
{
free(svf_mask_buffer);
svf_mask_buffer = NULL;
}
svf_buffer_index = 0;
svf_buffer_size = 0;
svf_free_xxd_para(&svf_para.hdr_para);
svf_free_xxd_para(&svf_para.hir_para);
svf_free_xxd_para(&svf_para.tdr_para);
svf_free_xxd_para(&svf_para.tir_para);
svf_free_xxd_para(&svf_para.sdr_para);
svf_free_xxd_para(&svf_para.sir_para);
if (ERROR_OK == ret)
{
command_print(CMD_CTX, "svf file programmed successfully for %d commands", command_num);
}
else
{
command_print(CMD_CTX, "svf file programmed failed");
}
return ret;
}
static int svf_getline (char **lineptr, size_t *n, FILE *stream)
{
#define MIN_CHUNK 16 //Buffer is increased by this size each time as required
size_t i = 0;
if (*lineptr == NULL)
{
*n = MIN_CHUNK;
*lineptr = (char *)malloc (*n);
if (!*lineptr)
{
return -1;
}
}
(*lineptr)[0] = fgetc(stream);
while ((*lineptr)[i] != '\n')
{
(*lineptr)[++i] = fgetc(stream);
if (feof(stream))
{
(*lineptr)[0] = 0;
return -1;
}
if ((i + 2) > *n)
{
*n += MIN_CHUNK;
*lineptr = realloc(*lineptr, *n);
}
}
(*lineptr)[++i] = 0;
return sizeof(*lineptr);
}
#define SVFP_CMD_INC_CNT 1024
static int svf_read_command_from_file(FILE * fd)
{
unsigned char ch;
int i = 0;
size_t cmd_pos = 0;
int cmd_ok = 0, slash = 0;
if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
{
return ERROR_FAIL;
}
svf_line_number++;
ch = svf_read_line[0];
while (!cmd_ok && (ch != 0))
{
switch (ch)
{
case '!':
slash = 0;
if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
{
return ERROR_FAIL;
}
svf_line_number++;
i = -1;
break;
case '/':
if (++slash == 2)
{
slash = 0;
if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
{
return ERROR_FAIL;
}
svf_line_number++;
i = -1;
}
break;
case ';':
slash = 0;
cmd_ok = 1;
break;
case '\n':
svf_line_number++;
if (svf_getline (&svf_read_line, &svf_read_line_size, svf_fd) <= 0)
{
return ERROR_FAIL;
}
i = -1;
case '\r':
slash = 0;
/* Don't save '\r' and '\n' if no data is parsed */
if (!cmd_pos)
break;
default:
/* The parsing code currently expects a space
* before parentheses -- "TDI (123)". Also a
* space afterwards -- "TDI (123) TDO(456)".
* But such spaces are optional... instead of
* parser updates, cope with that by adding the
* spaces as needed.
*
* Ensure there are 3 bytes available, for:
* - current character
* - added space.
* - terminating NUL ('\0')
*/
if ((cmd_pos + 2) >= svf_command_buffer_size)
{
svf_command_buffer = realloc(svf_command_buffer, (cmd_pos + 2));
if (svf_command_buffer == NULL)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
}
/* insert a space before '(' */
if ('(' == ch)
svf_command_buffer[cmd_pos++] = ' ';
svf_command_buffer[cmd_pos++] = (char)toupper(ch);
/* insert a space after ')' */
if (')' == ch)
svf_command_buffer[cmd_pos++] = ' ';
break;
}
ch = svf_read_line[++i];
}
if (cmd_ok)
{
svf_command_buffer[cmd_pos] = '\0';
return ERROR_OK;
}
else
{
return ERROR_FAIL;
}
}
static int svf_parse_cmd_string(char *str, int len, char **argus, int *num_of_argu)
{
int pos = 0, num = 0, space_found = 1, in_bracket = 0;
while (pos < len)
{
switch (str[pos])
{
case '!':
case '/':
LOG_ERROR("fail to parse svf command");
return ERROR_FAIL;
case '(':
in_bracket = 1;
goto parse_char;
case ')':
in_bracket = 0;
goto parse_char;
default:
parse_char:
if (!in_bracket && isspace((int) str[pos]))
{
space_found = 1;
str[pos] = '\0';
}
else if (space_found)
{
argus[num++] = &str[pos];
space_found = 0;
}
break;
}
pos++;
}
*num_of_argu = num;
return ERROR_OK;
}
bool svf_tap_state_is_stable(tap_state_t state)
{
return (TAP_RESET == state) || (TAP_IDLE == state)
|| (TAP_DRPAUSE == state) || (TAP_IRPAUSE == state);
}
static int svf_find_string_in_array(char *str, char **strs, int num_of_element)
{
int i;
for (i = 0; i < num_of_element; i++)
{
if (!strcmp(str, strs[i]))
{
return i;
}
}
return 0xFF;
}
static int svf_adjust_array_length(uint8_t **arr, int orig_bit_len, int new_bit_len)
{
int new_byte_len = (new_bit_len + 7) >> 3;
if ((NULL == *arr) || (((orig_bit_len + 7) >> 3) < ((new_bit_len + 7) >> 3)))
{
if (*arr != NULL)
{
free(*arr);
*arr = NULL;
}
*arr = (uint8_t*)malloc(new_byte_len);
if (NULL == *arr)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
memset(*arr, 0, new_byte_len);
}
return ERROR_OK;
}
static int svf_set_padding(struct svf_xxr_para *para, int len, unsigned char tdi)
{
int error = ERROR_OK;
error |= svf_adjust_array_length(&para->tdi, para->len, len);
memset(para->tdi, tdi, (len + 7) >> 3);
error |= svf_adjust_array_length(&para->tdo, para->len, len);
error |= svf_adjust_array_length(&para->mask, para->len, len);
para->len = len;
para->data_mask = XXR_TDI;
return error;
}
static int svf_copy_hexstring_to_binary(char *str, uint8_t **bin, int orig_bit_len, int bit_len)
{
int i, str_len = strlen(str), str_hbyte_len = (bit_len + 3) >> 2;
uint8_t ch = 0;
if (ERROR_OK != svf_adjust_array_length(bin, orig_bit_len, bit_len))
{
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
/* fill from LSB (end of str) to MSB (beginning of str) */
for (i = 0; i < str_hbyte_len; i++)
{
ch = 0;
while (str_len > 0)
{
ch = str[--str_len];
/* Skip whitespace. The SVF specification (rev E) is
* deficient in terms of basic lexical issues like
* where whitespace is allowed. Long bitstrings may
* require line ends for correctness, since there is
* a hard limit on line length.
*/
if (!isspace(ch))
{
if ((ch >= '0') && (ch <= '9'))
{
ch = ch - '0';
break;
}
else if ((ch >= 'A') && (ch <= 'F'))
{
ch = ch - 'A' + 10;
break;
}
else
{
LOG_ERROR("invalid hex string");
return ERROR_FAIL;
}
}
ch = 0;
}
// write bin
if (i % 2)
{
// MSB
(*bin)[i / 2] |= ch << 4;
}
else
{
// LSB
(*bin)[i / 2] = 0;
(*bin)[i / 2] |= ch;
}
}
/* consume optional leading '0' MSBs or whitespace */
while (str_len > 0 && ((str[str_len - 1] == '0')
|| isspace((int) str[str_len - 1])))
str_len--;
/* check validity: we must have consumed everything */
if (str_len > 0 || (ch & ~((2 << ((bit_len - 1) % 4)) - 1)) != 0)
{
LOG_ERROR("value execeeds length");
return ERROR_FAIL;
}
return ERROR_OK;
}
static int svf_check_tdo(void)
{
int i, len, index_var;
for (i = 0; i < svf_check_tdo_para_index; i++)
{
index_var = svf_check_tdo_para[i].buffer_offset;
len = svf_check_tdo_para[i].bit_len;
if ((svf_check_tdo_para[i].enabled)
&& buf_cmp_mask(&svf_tdi_buffer[index_var], &svf_tdo_buffer[index_var], &svf_mask_buffer[index_var], len))
{
unsigned bitmask;
unsigned received, expected, tapmask;
bitmask = svf_get_mask_u32(svf_check_tdo_para[i].bit_len);
memcpy(&received, svf_tdi_buffer + index_var, sizeof(unsigned));
memcpy(&expected, svf_tdo_buffer + index_var, sizeof(unsigned));
memcpy(&tapmask, svf_mask_buffer + index_var, sizeof(unsigned));
LOG_ERROR("tdo check error at line %d",
svf_check_tdo_para[i].line_num);
LOG_ERROR("read = 0x%X, want = 0x%X, mask = 0x%X",
received & bitmask,
expected & bitmask,
tapmask & bitmask);
return ERROR_FAIL;
}
}
svf_check_tdo_para_index = 0;
return ERROR_OK;
}
static int svf_add_check_para(uint8_t enabled, int buffer_offset, int bit_len)
{
if (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE)
{
LOG_ERROR("toooooo many operation undone");
return ERROR_FAIL;
}
svf_check_tdo_para[svf_check_tdo_para_index].line_num = svf_line_number;
svf_check_tdo_para[svf_check_tdo_para_index].bit_len = bit_len;
svf_check_tdo_para[svf_check_tdo_para_index].enabled = enabled;
svf_check_tdo_para[svf_check_tdo_para_index].buffer_offset = buffer_offset;
svf_check_tdo_para_index++;
return ERROR_OK;
}
static int svf_execute_tap(void)
{
if ((!svf_nil) && (ERROR_OK != jtag_execute_queue()))
{
return ERROR_FAIL;
}
else if (ERROR_OK != svf_check_tdo())
{
return ERROR_FAIL;
}
svf_buffer_index = 0;
return ERROR_OK;
}
static int svf_run_command(struct command_context *cmd_ctx, char *cmd_str)
{
char *argus[256], command;
int num_of_argu = 0, i;
// tmp variable
int i_tmp;
// for RUNTEST
int run_count;
float min_time;
// for XXR
struct svf_xxr_para *xxr_para_tmp;
uint8_t **pbuffer_tmp;
struct scan_field field;
// for STATE
tap_state_t *path = NULL, state;
// flag padding commands skipped due to -tap command
int padding_command_skipped = 0;
if (ERROR_OK != svf_parse_cmd_string(cmd_str, strlen(cmd_str), argus, &num_of_argu))
{
return ERROR_FAIL;
}
/* NOTE: we're a bit loose here, because we ignore case in
* TAP state names (instead of insisting on uppercase).
*/
command = svf_find_string_in_array(argus[0],
(char **)svf_command_name, ARRAY_SIZE(svf_command_name));
switch (command)
{
case ENDDR:
case ENDIR:
if (num_of_argu != 2)
{
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
i_tmp = tap_state_by_name(argus[1]);
if (svf_tap_state_is_stable(i_tmp))
{
if (command == ENDIR)
{
svf_para.ir_end_state = i_tmp;
LOG_DEBUG("\tIR end_state = %s",
tap_state_name(i_tmp));
}
else
{
svf_para.dr_end_state = i_tmp;
LOG_DEBUG("\tDR end_state = %s",
tap_state_name(i_tmp));
}
}
else
{
LOG_ERROR("%s: %s is not a stable state",
argus[0], argus[1]);
return ERROR_FAIL;
}
break;
case FREQUENCY:
if ((num_of_argu != 1) && (num_of_argu != 3))
{
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
if (1 == num_of_argu)
{
// TODO: set jtag speed to full speed
svf_para.frequency = 0;
}
else
{
if (strcmp(argus[2], "HZ"))
{
LOG_ERROR("HZ not found in FREQUENCY command");
return ERROR_FAIL;
}
if (ERROR_OK != svf_execute_tap())
{
return ERROR_FAIL;
}
svf_para.frequency = atof(argus[1]);
// TODO: set jtag speed to
if (svf_para.frequency > 0)
{
command_run_linef(cmd_ctx, "adapter_khz %d", (int)svf_para.frequency / 1000);
LOG_DEBUG("\tfrequency = %f", svf_para.frequency);
}
}
break;
case HDR:
if (svf_tap_is_specified)
{
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.hdr_para;
goto XXR_common;
case HIR:
if (svf_tap_is_specified)
{
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.hir_para;
goto XXR_common;
case TDR:
if (svf_tap_is_specified)
{
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.tdr_para;
goto XXR_common;
case TIR:
if (svf_tap_is_specified)
{
padding_command_skipped = 1;
break;
}
xxr_para_tmp = &svf_para.tir_para;
goto XXR_common;
case SDR:
xxr_para_tmp = &svf_para.sdr_para;
goto XXR_common;
case SIR:
xxr_para_tmp = &svf_para.sir_para;
goto XXR_common;
XXR_common:
// XXR length [TDI (tdi)] [TDO (tdo)][MASK (mask)] [SMASK (smask)]
if ((num_of_argu > 10) || (num_of_argu % 2))
{
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
i_tmp = xxr_para_tmp->len;
xxr_para_tmp->len = atoi(argus[1]);
LOG_DEBUG("\tlength = %d", xxr_para_tmp->len);
xxr_para_tmp->data_mask = 0;
for (i = 2; i < num_of_argu; i += 2)
{
if ((strlen(argus[i + 1]) < 3) || (argus[i + 1][0] != '(') || (argus[i + 1][strlen(argus[i + 1]) - 1] != ')'))
{
LOG_ERROR("data section error");
return ERROR_FAIL;
}
argus[i + 1][strlen(argus[i + 1]) - 1] = '\0';
// TDI, TDO, MASK, SMASK
if (!strcmp(argus[i], "TDI"))
{
// TDI
pbuffer_tmp = &xxr_para_tmp->tdi;
xxr_para_tmp->data_mask |= XXR_TDI;
}
else if (!strcmp(argus[i], "TDO"))
{
// TDO
pbuffer_tmp = &xxr_para_tmp->tdo;
xxr_para_tmp->data_mask |= XXR_TDO;
}
else if (!strcmp(argus[i], "MASK"))
{
// MASK
pbuffer_tmp = &xxr_para_tmp->mask;
xxr_para_tmp->data_mask |= XXR_MASK;
}
else if (!strcmp(argus[i], "SMASK"))
{
// SMASK
pbuffer_tmp = &xxr_para_tmp->smask;
xxr_para_tmp->data_mask |= XXR_SMASK;
}
else
{
LOG_ERROR("unknow parameter: %s", argus[i]);
return ERROR_FAIL;
}
if (ERROR_OK != svf_copy_hexstring_to_binary(&argus[i + 1][1], pbuffer_tmp, i_tmp, xxr_para_tmp->len))
{
LOG_ERROR("fail to parse hex value");
return ERROR_FAIL;
}
LOG_DEBUG("\t%s = 0x%X", argus[i], (**(int**)pbuffer_tmp) & svf_get_mask_u32(xxr_para_tmp->len));
}
// If a command changes the length of the last scan of the same type and the MASK parameter is absent,
// the mask pattern used is all cares
if (!(xxr_para_tmp->data_mask & XXR_MASK) && (i_tmp != xxr_para_tmp->len))
{
// MASK not defined and length changed
if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len))
{
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
buf_set_ones(xxr_para_tmp->mask, xxr_para_tmp->len);
}
// If TDO is absent, no comparison is needed, set the mask to 0
if (!(xxr_para_tmp->data_mask & XXR_TDO))
{
if (NULL == xxr_para_tmp->tdo)
{
if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->tdo, i_tmp, xxr_para_tmp->len))
{
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
}
if (NULL == xxr_para_tmp->mask)
{
if (ERROR_OK != svf_adjust_array_length(&xxr_para_tmp->mask, i_tmp, xxr_para_tmp->len))
{
LOG_ERROR("fail to adjust length of array");
return ERROR_FAIL;
}
}
memset(xxr_para_tmp->mask, 0, (xxr_para_tmp->len + 7) >> 3);
}
// do scan if necessary
if (SDR == command)
{
// check buffer size first, reallocate if necessary
i = svf_para.hdr_para.len + svf_para.sdr_para.len + svf_para.tdr_para.len;
if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3))
{
#if 1
// simply print error message
LOG_ERROR("buffer is not enough, report to author");
return ERROR_FAIL;
#else
uint8_t *buffer_tmp;
// reallocate buffer
buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
if (NULL == buffer_tmp)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index);
// svf_tdi_buffer isn't NULL here
free(svf_tdi_buffer);
svf_tdi_buffer = buffer_tmp;
buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
if (NULL == buffer_tmp)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index);
// svf_tdo_buffer isn't NULL here
free(svf_tdo_buffer);
svf_tdo_buffer = buffer_tmp;
buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
if (NULL == buffer_tmp)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index);
// svf_mask_buffer isn't NULL here
free(svf_mask_buffer);
svf_mask_buffer = buffer_tmp;
buffer_tmp = NULL;
svf_buffer_size = svf_buffer_index + ((i + 7) >> 3);
#endif
}
// assemble dr data
i = 0;
buf_set_buf(svf_para.hdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hdr_para.len);
i += svf_para.hdr_para.len;
buf_set_buf(svf_para.sdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sdr_para.len);
i += svf_para.sdr_para.len;
buf_set_buf(svf_para.tdr_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tdr_para.len);
i += svf_para.tdr_para.len;
// add check data
if (svf_para.sdr_para.data_mask & XXR_TDO)
{
// assemble dr mask data
i = 0;
buf_set_buf(svf_para.hdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hdr_para.len);
i += svf_para.hdr_para.len;
buf_set_buf(svf_para.sdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sdr_para.len);
i += svf_para.sdr_para.len;
buf_set_buf(svf_para.tdr_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tdr_para.len);
// assemble dr check data
i = 0;
buf_set_buf(svf_para.hdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hdr_para.len);
i += svf_para.hdr_para.len;
buf_set_buf(svf_para.sdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sdr_para.len);
i += svf_para.sdr_para.len;
buf_set_buf(svf_para.tdr_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tdr_para.len);
i += svf_para.tdr_para.len;
svf_add_check_para(1, svf_buffer_index, i);
}
else
{
svf_add_check_para(0, svf_buffer_index, i);
}
field.num_bits = i;
field.out_value = &svf_tdi_buffer[svf_buffer_index];
field.in_value = &svf_tdi_buffer[svf_buffer_index];
if (!svf_nil)
{
/* NOTE: doesn't use SVF-specified state paths */
jtag_add_plain_dr_scan(field.num_bits, field.out_value, field.in_value, svf_para.dr_end_state);
}
svf_buffer_index += (i + 7) >> 3;
}
else if (SIR == command)
{
// check buffer size first, reallocate if necessary
i = svf_para.hir_para.len + svf_para.sir_para.len + svf_para.tir_para.len;
if ((svf_buffer_size - svf_buffer_index) < ((i + 7) >> 3))
{
#if 1
// simply print error message
LOG_ERROR("buffer is not enough, report to author");
return ERROR_FAIL;
#else
uint8_t *buffer_tmp;
// reallocate buffer
buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
if (NULL == buffer_tmp)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
memcpy(buffer_tmp, svf_tdi_buffer, svf_buffer_index);
// svf_tdi_buffer isn't NULL here
free(svf_tdi_buffer);
svf_tdi_buffer = buffer_tmp;
buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
if (NULL == buffer_tmp)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
memcpy(buffer_tmp, svf_tdo_buffer, svf_buffer_index);
// svf_tdo_buffer isn't NULL here
free(svf_tdo_buffer);
svf_tdo_buffer = buffer_tmp;
buffer_tmp = (uint8_t *)malloc(svf_buffer_index + ((i + 7) >> 3));
if (NULL == buffer_tmp)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
memcpy(buffer_tmp, svf_mask_buffer, svf_buffer_index);
// svf_mask_buffer isn't NULL here
free(svf_mask_buffer);
svf_mask_buffer = buffer_tmp;
buffer_tmp = NULL;
svf_buffer_size = svf_buffer_index + ((i + 7) >> 3);
#endif
}
// assemble ir data
i = 0;
buf_set_buf(svf_para.hir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.hir_para.len);
i += svf_para.hir_para.len;
buf_set_buf(svf_para.sir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.sir_para.len);
i += svf_para.sir_para.len;
buf_set_buf(svf_para.tir_para.tdi, 0, &svf_tdi_buffer[svf_buffer_index], i, svf_para.tir_para.len);
i += svf_para.tir_para.len;
// add check data
if (svf_para.sir_para.data_mask & XXR_TDO)
{
// assemble dr mask data
i = 0;
buf_set_buf(svf_para.hir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.hir_para.len);
i += svf_para.hir_para.len;
buf_set_buf(svf_para.sir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.sir_para.len);
i += svf_para.sir_para.len;
buf_set_buf(svf_para.tir_para.mask, 0, &svf_mask_buffer[svf_buffer_index], i, svf_para.tir_para.len);
// assemble dr check data
i = 0;
buf_set_buf(svf_para.hir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.hir_para.len);
i += svf_para.hir_para.len;
buf_set_buf(svf_para.sir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.sir_para.len);
i += svf_para.sir_para.len;
buf_set_buf(svf_para.tir_para.tdo, 0, &svf_tdo_buffer[svf_buffer_index], i, svf_para.tir_para.len);
i += svf_para.tir_para.len;
svf_add_check_para(1, svf_buffer_index, i);
}
else
{
svf_add_check_para(0, svf_buffer_index, i);
}
field.num_bits = i;
field.out_value = &svf_tdi_buffer[svf_buffer_index];
field.in_value = &svf_tdi_buffer[svf_buffer_index];
if (!svf_nil)
{
/* NOTE: doesn't use SVF-specified state paths */
jtag_add_plain_ir_scan(field.num_bits, field.out_value, field.in_value,
svf_para.ir_end_state);
}
svf_buffer_index += (i + 7) >> 3;
}
break;
case PIO:
case PIOMAP:
LOG_ERROR("PIO and PIOMAP are not supported");
return ERROR_FAIL;
break;
case RUNTEST:
// RUNTEST [run_state] run_count run_clk [min_time SEC [MAXIMUM max_time SEC]] [ENDSTATE end_state]
// RUNTEST [run_state] min_time SEC [MAXIMUM max_time SEC] [ENDSTATE end_state]
if ((num_of_argu < 3) && (num_of_argu > 11))
{
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
// init
run_count = 0;
min_time = 0;
i = 1;
// run_state
i_tmp = tap_state_by_name(argus[i]);
if (i_tmp != TAP_INVALID)
{
if (svf_tap_state_is_stable(i_tmp))
{
svf_para.runtest_run_state = i_tmp;
/* When a run_state is specified, the new
* run_state becomes the default end_state.
*/
svf_para.runtest_end_state = i_tmp;
LOG_DEBUG("\trun_state = %s",
tap_state_name(i_tmp));
i++;
}
else
{
LOG_ERROR("%s: %s is not a stable state",
argus[0], tap_state_name(i_tmp));
return ERROR_FAIL;
}
}
// run_count run_clk
if (((i + 2) <= num_of_argu) && strcmp(argus[i + 1], "SEC"))
{
if (!strcmp(argus[i + 1], "TCK"))
{
// clock source is TCK
run_count = atoi(argus[i]);
LOG_DEBUG("\trun_count@TCK = %d", run_count);
}
else
{
LOG_ERROR("%s not supported for clock", argus[i + 1]);
return ERROR_FAIL;
}
i += 2;
}
// min_time SEC
if (((i + 2) <= num_of_argu) && !strcmp(argus[i + 1], "SEC"))
{
min_time = atof(argus[i]);
LOG_DEBUG("\tmin_time = %fs", min_time);
i += 2;
}
// MAXIMUM max_time SEC
if (((i + 3) <= num_of_argu) && !strcmp(argus[i], "MAXIMUM") && !strcmp(argus[i + 2], "SEC"))
{
float max_time = 0;
max_time = atof(argus[i + 1]);
LOG_DEBUG("\tmax_time = %fs", max_time);
i += 3;
}
// ENDSTATE end_state
if (((i + 2) <= num_of_argu) && !strcmp(argus[i], "ENDSTATE"))
{
i_tmp = tap_state_by_name(argus[i + 1]);
if (svf_tap_state_is_stable(i_tmp))
{
svf_para.runtest_end_state = i_tmp;
LOG_DEBUG("\tend_state = %s",
tap_state_name(i_tmp));
}
else
{
LOG_ERROR("%s: %s is not a stable state",
argus[0], tap_state_name(i_tmp));
return ERROR_FAIL;
}
i += 2;
}
// all parameter should be parsed
if (i == num_of_argu)
{
#if 1
/* FIXME handle statemove failures */
uint32_t min_usec = 1000000 * min_time;
// enter into run_state if necessary
if (cmd_queue_cur_state != svf_para.runtest_run_state)
{
svf_add_statemove(svf_para.runtest_run_state);
}
// add clocks and/or min wait
if (run_count > 0) {
if (!svf_nil)
jtag_add_clocks(run_count);
}
if (min_usec > 0) {
if (!svf_nil)
jtag_add_sleep(min_usec);
}
// move to end_state if necessary
if (svf_para.runtest_end_state != svf_para.runtest_run_state)
{
svf_add_statemove(svf_para.runtest_end_state);
}
#else
if (svf_para.runtest_run_state != TAP_IDLE)
{
LOG_ERROR("cannot runtest in %s state",
tap_state_name(svf_para.runtest_run_state));
return ERROR_FAIL;
}
if (!svf_nil)
jtag_add_runtest(run_count, svf_para.runtest_end_state);
#endif
}
else
{
LOG_ERROR("fail to parse parameter of RUNTEST, %d out of %d is parsed", i, num_of_argu);
return ERROR_FAIL;
}
break;
case STATE:
// STATE [pathstate1 [pathstate2 ...[pathstaten]]] stable_state
if (num_of_argu < 2)
{
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
if (num_of_argu > 2)
{
// STATE pathstate1 ... stable_state
path = (tap_state_t *)malloc((num_of_argu - 1) * sizeof(tap_state_t));
if (NULL == path)
{
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
num_of_argu--; // num of path
i_tmp = 1; /* path is from parameter 1 */
for (i = 0; i < num_of_argu; i++, i_tmp++)
{
path[i] = tap_state_by_name(argus[i_tmp]);
if (path[i] == TAP_INVALID)
{
LOG_ERROR("%s: %s is not a valid state",
argus[0], argus[i_tmp]);
free(path);
return ERROR_FAIL;
}
/* OpenOCD refuses paths containing TAP_RESET */
if (TAP_RESET == path[i])
{
/* FIXME last state MUST be stable! */
if (i > 0)
{
if (!svf_nil)
jtag_add_pathmove(i, path);
}
if (!svf_nil)
jtag_add_tlr();
num_of_argu -= i + 1;
i = -1;
}
}
if (num_of_argu > 0)
{
// execute last path if necessary
if (svf_tap_state_is_stable(path[num_of_argu - 1]))
{
// last state MUST be stable state
if (!svf_nil)
jtag_add_pathmove(num_of_argu, path);
LOG_DEBUG("\tmove to %s by path_move",
tap_state_name(path[num_of_argu - 1]));
}
else
{
LOG_ERROR("%s: %s is not a stable state",
argus[0],
tap_state_name(path[num_of_argu - 1]));
free(path);
return ERROR_FAIL;
}
}
free(path);
path = NULL;
}
else
{
// STATE stable_state
state = tap_state_by_name(argus[1]);
if (svf_tap_state_is_stable(state))
{
LOG_DEBUG("\tmove to %s by svf_add_statemove",
tap_state_name(state));
/* FIXME handle statemove failures */
svf_add_statemove(state);
}
else
{
LOG_ERROR("%s: %s is not a stable state",
argus[0], tap_state_name(state));
return ERROR_FAIL;
}
}
break;
case TRST:
// TRST trst_mode
if (num_of_argu != 2)
{
LOG_ERROR("invalid parameter of %s", argus[0]);
return ERROR_FAIL;
}
if (svf_para.trst_mode != TRST_ABSENT)
{
if (ERROR_OK != svf_execute_tap())
{
return ERROR_FAIL;
}
i_tmp = svf_find_string_in_array(argus[1],
(char **)svf_trst_mode_name,
ARRAY_SIZE(svf_trst_mode_name));
switch (i_tmp)
{
case TRST_ON:
if (!svf_nil)
jtag_add_reset(1, 0);
break;
case TRST_Z:
case TRST_OFF:
if (!svf_nil)
jtag_add_reset(0, 0);
break;
case TRST_ABSENT:
break;
default:
LOG_ERROR("unknown TRST mode: %s", argus[1]);
return ERROR_FAIL;
}
svf_para.trst_mode = i_tmp;
LOG_DEBUG("\ttrst_mode = %s", svf_trst_mode_name[svf_para.trst_mode]);
}
else
{
LOG_ERROR("can not accpet TRST command if trst_mode is ABSENT");
return ERROR_FAIL;
}
break;
default:
LOG_ERROR("invalid svf command: %s", argus[0]);
return ERROR_FAIL;
break;
}
if (!svf_quiet)
{
if (padding_command_skipped)
{
LOG_USER("(Above Padding command skipped, as per -tap argument)");
}
}
if (debug_level >= LOG_LVL_DEBUG)
{
// for convenient debugging, execute tap if possible
if ((svf_buffer_index > 0) && \
(((command != STATE) && (command != RUNTEST)) || \
((command == STATE) && (num_of_argu == 2))))
{
if (ERROR_OK != svf_execute_tap())
{
return ERROR_FAIL;
}
// output debug info
if ((SIR == command) || (SDR == command))
{
int read_value;
memcpy(&read_value, svf_tdi_buffer, sizeof(int));
// in debug mode, data is from index 0
int read_mask = svf_get_mask_u32(svf_check_tdo_para[0].bit_len);
LOG_DEBUG("\tTDO read = 0x%X", read_value & read_mask);
}
}
}
else
{
// for fast executing, execute tap if necessary
// half of the buffer is for the next command
if (((svf_buffer_index >= SVF_MAX_BUFFER_SIZE_TO_COMMIT) || (svf_check_tdo_para_index >= SVF_CHECK_TDO_PARA_SIZE / 2)) && \
(((command != STATE) && (command != RUNTEST)) || \
((command == STATE) && (num_of_argu == 2))))
{
return svf_execute_tap();
}
}
return ERROR_OK;
}
static const struct command_registration svf_command_handlers[] = {
{
.name = "svf",
.handler = handle_svf_command,
.mode = COMMAND_EXEC,
.help = "Runs a SVF file.",
.usage = "svf [-tap device.tap] <file> [quiet] [nil] [progress]",
},
COMMAND_REGISTRATION_DONE
};
int svf_register_commands(struct command_context *cmd_ctx)
{
return register_commands(cmd_ctx, NULL, svf_command_handlers);
}