openocd/src/target/arm_simulator.c
Øyvind Harboe e6d979eefc clang: fix warning about use of unitialized variable
this was a false positive, silence it.

Change-Id: I432e0c466c94cf8fd6bbf0ea153c8501a8a261eb
Signed-off-by: Øyvind Harboe <oyvind.harboe@zylin.com>
Reviewed-on: http://openocd.zylin.com/126
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
2011-10-26 20:36:04 +00:00

861 lines
21 KiB
C

/***************************************************************************
* Copyright (C) 2006 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Hongtao Zheng *
* hontor@126.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm.h"
#include "armv4_5.h"
#include "arm_disassembler.h"
#include "arm_simulator.h"
#include <helper/binarybuffer.h>
#include "register.h"
#include <helper/log.h>
static uint32_t arm_shift(uint8_t shift, uint32_t Rm,
uint32_t shift_amount, uint8_t *carry)
{
uint32_t return_value = 0;
shift_amount &= 0xff;
if (shift == 0x0) /* LSL */
{
if ((shift_amount > 0) && (shift_amount <= 32))
{
return_value = Rm << shift_amount;
*carry = Rm >> (32 - shift_amount);
}
else if (shift_amount > 32)
{
return_value = 0x0;
*carry = 0x0;
}
else /* (shift_amount == 0) */
{
return_value = Rm;
}
}
else if (shift == 0x1) /* LSR */
{
if ((shift_amount > 0) && (shift_amount <= 32))
{
return_value = Rm >> shift_amount;
*carry = (Rm >> (shift_amount - 1)) & 1;
}
else if (shift_amount > 32)
{
return_value = 0x0;
*carry = 0x0;
}
else /* (shift_amount == 0) */
{
return_value = Rm;
}
}
else if (shift == 0x2) /* ASR */
{
if ((shift_amount > 0) && (shift_amount <= 32))
{
/* C right shifts of unsigned values are guaranteed to
* be logical (shift in zeroes); simulate an arithmetic
* shift (shift in signed-bit) by adding the sign bit
* manually
*/
return_value = Rm >> shift_amount;
if (Rm & 0x80000000)
return_value |= 0xffffffff << (32 - shift_amount);
}
else if (shift_amount > 32)
{
if (Rm & 0x80000000)
{
return_value = 0xffffffff;
*carry = 0x1;
}
else
{
return_value = 0x0;
*carry = 0x0;
}
}
else /* (shift_amount == 0) */
{
return_value = Rm;
}
}
else if (shift == 0x3) /* ROR */
{
if (shift_amount == 0)
{
return_value = Rm;
}
else
{
shift_amount = shift_amount % 32;
return_value = (Rm >> shift_amount) | (Rm << (32 - shift_amount));
*carry = (return_value >> 31) & 0x1;
}
}
else if (shift == 0x4) /* RRX */
{
return_value = Rm >> 1;
if (*carry)
Rm |= 0x80000000;
*carry = Rm & 0x1;
}
return return_value;
}
static uint32_t arm_shifter_operand(struct arm_sim_interface *sim,
int variant, union arm_shifter_operand shifter_operand,
uint8_t *shifter_carry_out)
{
uint32_t return_value;
int instruction_size;
if (sim->get_state(sim) == ARM_STATE_ARM)
instruction_size = 4;
else
instruction_size = 2;
*shifter_carry_out = sim->get_cpsr(sim, 29, 1);
if (variant == 0) /* 32-bit immediate */
{
return_value = shifter_operand.immediate.immediate;
}
else if (variant == 1) /* immediate shift */
{
uint32_t Rm = sim->get_reg_mode(sim, shifter_operand.immediate_shift.Rm);
/* adjust RM in case the PC is being read */
if (shifter_operand.immediate_shift.Rm == 15)
Rm += 2 * instruction_size;
return_value = arm_shift(shifter_operand.immediate_shift.shift,
Rm, shifter_operand.immediate_shift.shift_imm,
shifter_carry_out);
}
else if (variant == 2) /* register shift */
{
uint32_t Rm = sim->get_reg_mode(sim, shifter_operand.register_shift.Rm);
uint32_t Rs = sim->get_reg_mode(sim, shifter_operand.register_shift.Rs);
/* adjust RM in case the PC is being read */
if (shifter_operand.register_shift.Rm == 15)
Rm += 2 * instruction_size;
return_value = arm_shift(shifter_operand.immediate_shift.shift,
Rm, Rs, shifter_carry_out);
}
else
{
LOG_ERROR("BUG: shifter_operand.variant not 0, 1 or 2");
return_value = 0xffffffff;
}
return return_value;
}
static int pass_condition(uint32_t cpsr, uint32_t opcode)
{
switch ((opcode & 0xf0000000) >> 28)
{
case 0x0: /* EQ */
if (cpsr & 0x40000000)
return 1;
else
return 0;
case 0x1: /* NE */
if (!(cpsr & 0x40000000))
return 1;
else
return 0;
case 0x2: /* CS */
if (cpsr & 0x20000000)
return 1;
else
return 0;
case 0x3: /* CC */
if (!(cpsr & 0x20000000))
return 1;
else
return 0;
case 0x4: /* MI */
if (cpsr & 0x80000000)
return 1;
else
return 0;
case 0x5: /* PL */
if (!(cpsr & 0x80000000))
return 1;
else
return 0;
case 0x6: /* VS */
if (cpsr & 0x10000000)
return 1;
else
return 0;
case 0x7: /* VC */
if (!(cpsr & 0x10000000))
return 1;
else
return 0;
case 0x8: /* HI */
if ((cpsr & 0x20000000) && !(cpsr & 0x40000000))
return 1;
else
return 0;
case 0x9: /* LS */
if (!(cpsr & 0x20000000) || (cpsr & 0x40000000))
return 1;
else
return 0;
case 0xa: /* GE */
if (((cpsr & 0x80000000) && (cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xb: /* LT */
if (((cpsr & 0x80000000) && !(cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xc: /* GT */
if (!(cpsr & 0x40000000) &&
(((cpsr & 0x80000000) && (cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000))))
return 1;
else
return 0;
case 0xd: /* LE */
if ((cpsr & 0x40000000) ||
((cpsr & 0x80000000) && !(cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xe:
case 0xf:
return 1;
}
LOG_ERROR("BUG: should never get here");
return 0;
}
static int thumb_pass_branch_condition(uint32_t cpsr, uint16_t opcode)
{
return pass_condition(cpsr, (opcode & 0x0f00) << 20);
}
/* simulate a single step (if possible)
* if the dry_run_pc argument is provided, no state is changed,
* but the new pc is stored in the variable pointed at by the argument
*/
static int arm_simulate_step_core(struct target *target,
uint32_t *dry_run_pc, struct arm_sim_interface *sim)
{
uint32_t current_pc = sim->get_reg(sim, 15);
struct arm_instruction instruction;
int instruction_size;
int retval = ERROR_OK;
if (sim->get_state(sim) == ARM_STATE_ARM)
{
uint32_t opcode;
/* get current instruction, and identify it */
if ((retval = target_read_u32(target, current_pc, &opcode)) != ERROR_OK)
{
return retval;
}
if ((retval = arm_evaluate_opcode(opcode, current_pc, &instruction)) != ERROR_OK)
{
return retval;
}
instruction_size = 4;
/* check condition code (for all instructions) */
if (!pass_condition(sim->get_cpsr(sim, 0, 32), opcode))
{
if (dry_run_pc)
{
*dry_run_pc = current_pc + instruction_size;
}
else
{
sim->set_reg(sim, 15, current_pc + instruction_size);
}
return ERROR_OK;
}
}
else
{
uint16_t opcode;
retval = target_read_u16(target, current_pc, &opcode);
if (retval != ERROR_OK)
return retval;
retval = thumb_evaluate_opcode(opcode, current_pc, &instruction);
if (retval != ERROR_OK)
return retval;
instruction_size = 2;
/* check condition code (only for branch (1) instructions) */
if ((opcode & 0xf000) == 0xd000
&& !thumb_pass_branch_condition(
sim->get_cpsr(sim, 0, 32), opcode))
{
if (dry_run_pc)
{
*dry_run_pc = current_pc + instruction_size;
}
else
{
sim->set_reg(sim, 15, current_pc + instruction_size);
}
return ERROR_OK;
}
/* Deal with 32-bit BL/BLX */
if ((opcode & 0xf800) == 0xf000) {
uint32_t high = instruction.info.b_bl_bx_blx.target_address;
retval = target_read_u16(target, current_pc+2, &opcode);
if (retval != ERROR_OK)
return retval;
retval = thumb_evaluate_opcode(opcode, current_pc, &instruction);
if (retval != ERROR_OK)
return retval;
instruction.info.b_bl_bx_blx.target_address += high;
}
}
/* examine instruction type */
/* branch instructions */
if ((instruction.type >= ARM_B) && (instruction.type <= ARM_BLX))
{
uint32_t target_address;
if (instruction.info.b_bl_bx_blx.reg_operand == -1)
{
target_address = instruction.info.b_bl_bx_blx.target_address;
}
else
{
target_address = sim->get_reg_mode(sim, instruction.info.b_bl_bx_blx.reg_operand);
if (instruction.info.b_bl_bx_blx.reg_operand == 15)
{
target_address += 2 * instruction_size;
}
}
if (dry_run_pc)
{
*dry_run_pc = target_address & ~1;
return ERROR_OK;
}
else
{
if (instruction.type == ARM_B)
{
sim->set_reg(sim, 15, target_address);
}
else if (instruction.type == ARM_BL)
{
uint32_t old_pc = sim->get_reg(sim, 15);
int T = (sim->get_state(sim) == ARM_STATE_THUMB);
sim->set_reg_mode(sim, 14, old_pc + 4 + T);
sim->set_reg(sim, 15, target_address);
}
else if (instruction.type == ARM_BX)
{
if (target_address & 0x1)
{
sim->set_state(sim, ARM_STATE_THUMB);
}
else
{
sim->set_state(sim, ARM_STATE_ARM);
}
sim->set_reg(sim, 15, target_address & 0xfffffffe);
}
else if (instruction.type == ARM_BLX)
{
uint32_t old_pc = sim->get_reg(sim, 15);
int T = (sim->get_state(sim) == ARM_STATE_THUMB);
sim->set_reg_mode(sim, 14, old_pc + 4 + T);
if (target_address & 0x1)
{
sim->set_state(sim, ARM_STATE_THUMB);
}
else
{
sim->set_state(sim, ARM_STATE_ARM);
}
sim->set_reg(sim, 15, target_address & 0xfffffffe);
}
return ERROR_OK;
}
}
/* data processing instructions, except compare instructions (CMP, CMN, TST, TEQ) */
else if (((instruction.type >= ARM_AND) && (instruction.type <= ARM_RSC))
|| ((instruction.type >= ARM_ORR) && (instruction.type <= ARM_MVN)))
{
uint32_t Rd, Rn, shifter_operand;
uint8_t C = sim->get_cpsr(sim, 29, 1);
uint8_t carry_out;
Rd = 0x0;
/* ARM_MOV and ARM_MVN does not use Rn */
if ((instruction.type != ARM_MOV) && (instruction.type != ARM_MVN))
Rn = sim->get_reg_mode(sim, instruction.info.data_proc.Rn);
else
Rn = 0;
shifter_operand = arm_shifter_operand(sim,
instruction.info.data_proc.variant,
instruction.info.data_proc.shifter_operand,
&carry_out);
/* adjust Rn in case the PC is being read */
if (instruction.info.data_proc.Rn == 15)
Rn += 2 * instruction_size;
if (instruction.type == ARM_AND)
Rd = Rn & shifter_operand;
else if (instruction.type == ARM_EOR)
Rd = Rn ^ shifter_operand;
else if (instruction.type == ARM_SUB)
Rd = Rn - shifter_operand;
else if (instruction.type == ARM_RSB)
Rd = shifter_operand - Rn;
else if (instruction.type == ARM_ADD)
Rd = Rn + shifter_operand;
else if (instruction.type == ARM_ADC)
Rd = Rn + shifter_operand + (C & 1);
else if (instruction.type == ARM_SBC)
Rd = Rn - shifter_operand - (C & 1) ? 0 : 1;
else if (instruction.type == ARM_RSC)
Rd = shifter_operand - Rn - (C & 1) ? 0 : 1;
else if (instruction.type == ARM_ORR)
Rd = Rn | shifter_operand;
else if (instruction.type == ARM_BIC)
Rd = Rn & ~(shifter_operand);
else if (instruction.type == ARM_MOV)
Rd = shifter_operand;
else if (instruction.type == ARM_MVN)
Rd = ~shifter_operand;
else
LOG_WARNING("unhandled instruction type");
if (dry_run_pc)
{
if (instruction.info.data_proc.Rd == 15)
*dry_run_pc = Rd & ~1;
else
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
}
else
{
if (instruction.info.data_proc.Rd == 15) {
sim->set_reg_mode(sim, 15, Rd & ~1);
if (Rd & 1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
return ERROR_OK;
}
sim->set_reg_mode(sim, instruction.info.data_proc.Rd, Rd);
LOG_WARNING("no updating of flags yet");
}
}
/* compare instructions (CMP, CMN, TST, TEQ) */
else if ((instruction.type >= ARM_TST) && (instruction.type <= ARM_CMN))
{
if (dry_run_pc)
{
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
}
else
{
LOG_WARNING("no updating of flags yet");
}
}
/* load register instructions */
else if ((instruction.type >= ARM_LDR) && (instruction.type <= ARM_LDRSH))
{
uint32_t load_address = 0, modified_address = 0, load_value = 0;
uint32_t Rn = sim->get_reg_mode(sim, instruction.info.load_store.Rn);
/* adjust Rn in case the PC is being read */
if (instruction.info.load_store.Rn == 15)
Rn += 2 * instruction_size;
if (instruction.info.load_store.offset_mode == 0)
{
if (instruction.info.load_store.U)
modified_address = Rn + instruction.info.load_store.offset.offset;
else
modified_address = Rn - instruction.info.load_store.offset.offset;
}
else if (instruction.info.load_store.offset_mode == 1)
{
uint32_t offset;
uint32_t Rm = sim->get_reg_mode(sim,
instruction.info.load_store.offset.reg.Rm);
uint8_t shift = instruction.info.load_store.offset.reg.shift;
uint8_t shift_imm = instruction.info.load_store.offset.reg.shift_imm;
uint8_t carry = sim->get_cpsr(sim, 29, 1);
offset = arm_shift(shift, Rm, shift_imm, &carry);
if (instruction.info.load_store.U)
modified_address = Rn + offset;
else
modified_address = Rn - offset;
}
else
{
LOG_ERROR("BUG: offset_mode neither 0 (offset) nor 1 (scaled register)");
}
if (instruction.info.load_store.index_mode == 0)
{
/* offset mode
* we load from the modified address, but don't change
* the base address register
*/
load_address = modified_address;
modified_address = Rn;
}
else if (instruction.info.load_store.index_mode == 1)
{
/* pre-indexed mode
* we load from the modified address, and write it
* back to the base address register
*/
load_address = modified_address;
}
else if (instruction.info.load_store.index_mode == 2)
{
/* post-indexed mode
* we load from the unmodified address, and write the
* modified address back
*/
load_address = Rn;
}
if ((!dry_run_pc) || (instruction.info.load_store.Rd == 15))
{
retval = target_read_u32(target, load_address, &load_value);
if (retval != ERROR_OK)
return retval;
}
if (dry_run_pc)
{
if (instruction.info.load_store.Rd == 15)
*dry_run_pc = load_value & ~1;
else
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
}
else
{
if ((instruction.info.load_store.index_mode == 1) ||
(instruction.info.load_store.index_mode == 2))
{
sim->set_reg_mode(sim, instruction.info.load_store.Rn, modified_address);
}
if (instruction.info.load_store.Rd == 15) {
sim->set_reg_mode(sim, 15, load_value & ~1);
if (load_value & 1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
return ERROR_OK;
}
sim->set_reg_mode(sim, instruction.info.load_store.Rd, load_value);
}
}
/* load multiple instruction */
else if (instruction.type == ARM_LDM)
{
int i;
uint32_t Rn = sim->get_reg_mode(sim, instruction.info.load_store_multiple.Rn);
uint32_t load_values[16];
int bits_set = 0;
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
bits_set++;
}
switch (instruction.info.load_store_multiple.addressing_mode)
{
case 0: /* Increment after */
Rn = Rn;
break;
case 1: /* Increment before */
Rn = Rn + 4;
break;
case 2: /* Decrement after */
Rn = Rn - (bits_set * 4) + 4;
break;
case 3: /* Decrement before */
Rn = Rn - (bits_set * 4);
break;
}
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
{
if ((!dry_run_pc) || (i == 15))
{
target_read_u32(target, Rn, &load_values[i]);
}
Rn += 4;
}
}
if (dry_run_pc)
{
if (instruction.info.load_store_multiple.register_list & 0x8000)
{
*dry_run_pc = load_values[15] & ~1;
return ERROR_OK;
}
}
else
{
int update_cpsr = 0;
if (instruction.info.load_store_multiple.S)
{
if (instruction.info.load_store_multiple.register_list & 0x8000)
update_cpsr = 1;
}
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
{
if (i == 15) {
uint32_t val = load_values[i];
sim->set_reg_mode(sim, i, val & ~1);
if (val & 1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
} else {
sim->set_reg_mode(sim, i, load_values[i]);
}
}
}
if (update_cpsr)
{
uint32_t spsr = sim->get_reg_mode(sim, 16);
sim->set_reg(sim, ARMV4_5_CPSR, spsr);
}
/* base register writeback */
if (instruction.info.load_store_multiple.W)
sim->set_reg_mode(sim, instruction.info.load_store_multiple.Rn, Rn);
if (instruction.info.load_store_multiple.register_list & 0x8000)
return ERROR_OK;
}
}
/* store multiple instruction */
else if (instruction.type == ARM_STM)
{
int i;
if (dry_run_pc)
{
/* STM wont affect PC (advance by instruction size */
}
else
{
uint32_t Rn = sim->get_reg_mode(sim,
instruction.info.load_store_multiple.Rn);
int bits_set = 0;
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
bits_set++;
}
switch (instruction.info.load_store_multiple.addressing_mode)
{
case 0: /* Increment after */
Rn = Rn;
break;
case 1: /* Increment before */
Rn = Rn + 4;
break;
case 2: /* Decrement after */
Rn = Rn - (bits_set * 4) + 4;
break;
case 3: /* Decrement before */
Rn = Rn - (bits_set * 4);
break;
}
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
{
target_write_u32(target, Rn, sim->get_reg_mode(sim, i));
Rn += 4;
}
}
/* base register writeback */
if (instruction.info.load_store_multiple.W)
sim->set_reg_mode(sim,
instruction.info.load_store_multiple.Rn, Rn);
}
}
else if (!dry_run_pc)
{
/* the instruction wasn't handled, but we're supposed to simulate it
*/
LOG_ERROR("Unimplemented instruction, could not simulate it.");
return ERROR_FAIL;
}
if (dry_run_pc)
{
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
}
else
{
sim->set_reg(sim, 15, current_pc + instruction_size);
return ERROR_OK;
}
}
static uint32_t armv4_5_get_reg(struct arm_sim_interface *sim, int reg)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
return buf_get_u32(armv4_5->core_cache->reg_list[reg].value, 0, 32);
}
static void armv4_5_set_reg(struct arm_sim_interface *sim, int reg, uint32_t value)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
buf_set_u32(armv4_5->core_cache->reg_list[reg].value, 0, 32, value);
}
static uint32_t armv4_5_get_reg_mode(struct arm_sim_interface *sim, int reg)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
return buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
armv4_5->core_mode, reg).value, 0, 32);
}
static void armv4_5_set_reg_mode(struct arm_sim_interface *sim, int reg, uint32_t value)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache,
armv4_5->core_mode, reg).value, 0, 32, value);
}
static uint32_t armv4_5_get_cpsr(struct arm_sim_interface *sim, int pos, int bits)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
return buf_get_u32(armv4_5->cpsr->value, pos, bits);
}
static enum arm_state armv4_5_get_state(struct arm_sim_interface *sim)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
return armv4_5->core_state;
}
static void armv4_5_set_state(struct arm_sim_interface *sim, enum arm_state mode)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
armv4_5->core_state = mode;
}
static enum arm_mode armv4_5_get_mode(struct arm_sim_interface *sim)
{
struct arm *armv4_5 = (struct arm *)sim->user_data;
return armv4_5->core_mode;
}
int arm_simulate_step(struct target *target, uint32_t *dry_run_pc)
{
struct arm *armv4_5 = target_to_arm(target);
struct arm_sim_interface sim;
sim.user_data = armv4_5;
sim.get_reg = &armv4_5_get_reg;
sim.set_reg = &armv4_5_set_reg;
sim.get_reg_mode = &armv4_5_get_reg_mode;
sim.set_reg_mode = &armv4_5_set_reg_mode;
sim.get_cpsr = &armv4_5_get_cpsr;
sim.get_mode = &armv4_5_get_mode;
sim.get_state = &armv4_5_get_state;
sim.set_state = &armv4_5_set_state;
return arm_simulate_step_core(target, dry_run_pc, &sim);
}