openocd/src/flash/nand/core.c

879 lines
26 KiB
C

/***************************************************************************
* Copyright (C) 2007 by Dominic Rath <Dominic.Rath@gmx.de> *
* Copyright (C) 2002 Thomas Gleixner <tglx@linutronix.de> *
* Copyright (C) 2009 Zachary T Welch <zw@superlucidity.net> *
* *
* Partially based on drivers/mtd/nand_ids.c from Linux. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
/* configured NAND devices and NAND Flash command handler */
struct nand_device *nand_devices;
void nand_device_add(struct nand_device *c)
{
if (nand_devices) {
struct nand_device *p = nand_devices;
while (p && p->next)
p = p->next;
p->next = c;
} else
nand_devices = c;
}
/* Chip ID list
*
* Manufacturer, ID code, pagesize, chipsize in MegaByte, eraseblock size,
* options, name
*
* Pagesize; 0, 256, 512
* 0 get this information from the extended chip ID
* 256 256 Byte page size
* 512 512 Byte page size
*/
static struct nand_info nand_flash_ids[] = {
/* Vendor Specific Entries */
{ NAND_MFR_SAMSUNG, 0xD5, 8192, 2048, 0x100000, LP_OPTIONS,
"K9GAG08 2GB NAND 3.3V x8 MLC 2b/cell"},
{ NAND_MFR_SAMSUNG, 0xD7, 8192, 4096, 0x100000, LP_OPTIONS,
"K9LBG08 4GB NAND 3.3V x8 MLC 2b/cell"},
/* start "museum" IDs */
{ 0x0, 0x6e, 256, 1, 0x1000, 0, "NAND 1MiB 5V 8-bit"},
{ 0x0, 0x64, 256, 2, 0x1000, 0, "NAND 2MiB 5V 8-bit"},
{ 0x0, 0x6b, 512, 4, 0x2000, 0, "NAND 4MiB 5V 8-bit"},
{ 0x0, 0xe8, 256, 1, 0x1000, 0, "NAND 1MiB 3.3V 8-bit"},
{ 0x0, 0xec, 256, 1, 0x1000, 0, "NAND 1MiB 3.3V 8-bit"},
{ 0x0, 0xea, 256, 2, 0x1000, 0, "NAND 2MiB 3.3V 8-bit"},
{ 0x0, 0xd5, 512, 4, 0x2000, 0, "NAND 4MiB 3.3V 8-bit"},
{ 0x0, 0xe3, 512, 4, 0x2000, 0, "NAND 4MiB 3.3V 8-bit"},
{ 0x0, 0xe5, 512, 4, 0x2000, 0, "NAND 4MiB 3.3V 8-bit"},
{ 0x0, 0xd6, 512, 8, 0x2000, 0, "NAND 8MiB 3.3V 8-bit"},
{ 0x0, 0x39, 512, 8, 0x2000, 0, "NAND 8MiB 1.8V 8-bit"},
{ 0x0, 0xe6, 512, 8, 0x2000, 0, "NAND 8MiB 3.3V 8-bit"},
{ 0x0, 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16, "NAND 8MiB 1.8V 16-bit"},
{ 0x0, 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16, "NAND 8MiB 3.3V 16-bit"},
/* end "museum" IDs */
{ 0x0, 0x33, 512, 16, 0x4000, 0, "NAND 16MiB 1.8V 8-bit"},
{ 0x0, 0x73, 512, 16, 0x4000, 0, "NAND 16MiB 3.3V 8-bit"},
{ 0x0, 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16, "NAND 16MiB 1.8V 16-bit"},
{ 0x0, 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16, "NAND 16MiB 3.3V 16-bit"},
{ 0x0, 0x35, 512, 32, 0x4000, 0, "NAND 32MiB 1.8V 8-bit"},
{ 0x0, 0x75, 512, 32, 0x4000, 0, "NAND 32MiB 3.3V 8-bit"},
{ 0x0, 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16, "NAND 32MiB 1.8V 16-bit"},
{ 0x0, 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16, "NAND 32MiB 3.3V 16-bit"},
{ 0x0, 0x36, 512, 64, 0x4000, 0, "NAND 64MiB 1.8V 8-bit"},
{ 0x0, 0x76, 512, 64, 0x4000, 0, "NAND 64MiB 3.3V 8-bit"},
{ 0x0, 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16, "NAND 64MiB 1.8V 16-bit"},
{ 0x0, 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16, "NAND 64MiB 3.3V 16-bit"},
{ 0x0, 0x78, 512, 128, 0x4000, 0, "NAND 128MiB 1.8V 8-bit"},
{ 0x0, 0x39, 512, 128, 0x4000, 0, "NAND 128MiB 1.8V 8-bit"},
{ 0x0, 0x79, 512, 128, 0x4000, 0, "NAND 128MiB 3.3V 8-bit"},
{ 0x0, 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16, "NAND 128MiB 1.8V 16-bit"},
{ 0x0, 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16, "NAND 128MiB 1.8V 16-bit"},
{ 0x0, 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16, "NAND 128MiB 3.3V 16-bit"},
{ 0x0, 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16, "NAND 128MiB 3.3V 16-bit"},
{ 0x0, 0x71, 512, 256, 0x4000, 0, "NAND 256MiB 3.3V 8-bit"},
{ 0x0, 0xA2, 0, 64, 0, LP_OPTIONS, "NAND 64MiB 1.8V 8-bit"},
{ 0x0, 0xF2, 0, 64, 0, LP_OPTIONS, "NAND 64MiB 3.3V 8-bit"},
{ 0x0, 0xB2, 0, 64, 0, LP_OPTIONS16, "NAND 64MiB 1.8V 16-bit"},
{ 0x0, 0xC2, 0, 64, 0, LP_OPTIONS16, "NAND 64MiB 3.3V 16-bit"},
{ 0x0, 0xA1, 0, 128, 0, LP_OPTIONS, "NAND 128MiB 1.8V 8-bit"},
{ 0x0, 0xF1, 0, 128, 0, LP_OPTIONS, "NAND 128MiB 3.3V 8-bit"},
{ 0x0, 0xB1, 0, 128, 0, LP_OPTIONS16, "NAND 128MiB 1.8V 16-bit"},
{ 0x0, 0xC1, 0, 128, 0, LP_OPTIONS16, "NAND 128MiB 3.3V 16-bit"},
{ 0x0, 0xAA, 0, 256, 0, LP_OPTIONS, "NAND 256MiB 1.8V 8-bit"},
{ 0x0, 0xDA, 0, 256, 0, LP_OPTIONS, "NAND 256MiB 3.3V 8-bit"},
{ 0x0, 0xBA, 0, 256, 0, LP_OPTIONS16, "NAND 256MiB 1.8V 16-bit"},
{ 0x0, 0xCA, 0, 256, 0, LP_OPTIONS16, "NAND 256MiB 3.3V 16-bit"},
{ 0x0, 0xAC, 0, 512, 0, LP_OPTIONS, "NAND 512MiB 1.8V 8-bit"},
{ 0x0, 0xDC, 0, 512, 0, LP_OPTIONS, "NAND 512MiB 3.3V 8-bit"},
{ 0x0, 0xBC, 0, 512, 0, LP_OPTIONS16, "NAND 512MiB 1.8V 16-bit"},
{ 0x0, 0xCC, 0, 512, 0, LP_OPTIONS16, "NAND 512MiB 3.3V 16-bit"},
{ 0x0, 0xA3, 0, 1024, 0, LP_OPTIONS, "NAND 1GiB 1.8V 8-bit"},
{ 0x0, 0xD3, 0, 1024, 0, LP_OPTIONS, "NAND 1GiB 3.3V 8-bit"},
{ 0x0, 0xB3, 0, 1024, 0, LP_OPTIONS16, "NAND 1GiB 1.8V 16-bit"},
{ 0x0, 0xC3, 0, 1024, 0, LP_OPTIONS16, "NAND 1GiB 3.3V 16-bit"},
{ 0x0, 0xA5, 0, 2048, 0, LP_OPTIONS, "NAND 2GiB 1.8V 8-bit"},
{ 0x0, 0xD5, 0, 8192, 0, LP_OPTIONS, "NAND 2GiB 3.3V 8-bit"},
{ 0x0, 0xB5, 0, 2048, 0, LP_OPTIONS16, "NAND 2GiB 1.8V 16-bit"},
{ 0x0, 0xC5, 0, 2048, 0, LP_OPTIONS16, "NAND 2GiB 3.3V 16-bit"},
{ 0x0, 0x48, 0, 2048, 0, LP_OPTIONS, "NAND 2GiB 3.3V 8-bit"},
{0, 0, 0, 0, 0, 0, NULL}
};
/* Manufacturer ID list
*/
static struct nand_manufacturer nand_manuf_ids[] = {
{0x0, "unknown"},
{NAND_MFR_TOSHIBA, "Toshiba"},
{NAND_MFR_SAMSUNG, "Samsung"},
{NAND_MFR_FUJITSU, "Fujitsu"},
{NAND_MFR_NATIONAL, "National"},
{NAND_MFR_RENESAS, "Renesas"},
{NAND_MFR_STMICRO, "ST Micro"},
{NAND_MFR_HYNIX, "Hynix"},
{NAND_MFR_MICRON, "Micron"},
{0x0, NULL},
};
/*
* Define default oob placement schemes for large and small page devices
*/
#if 0
static struct nand_ecclayout nand_oob_8 = {
.eccbytes = 3,
.eccpos = {0, 1, 2},
.oobfree = {
{.offset = 3,
.length = 2},
{.offset = 6,
.length = 2}
}
};
#endif
/**
* Returns the flash bank specified by @a name, which matches the
* driver name and a suffix (option) specify the driver-specific
* bank number. The suffix consists of the '.' and the driver-specific
* bank number: when two davinci banks are defined, then 'davinci.1' refers
* to the second (e.g. DM355EVM).
*/
static struct nand_device *get_nand_device_by_name(const char *name)
{
unsigned requested = get_flash_name_index(name);
unsigned found = 0;
struct nand_device *nand;
for (nand = nand_devices; NULL != nand; nand = nand->next) {
if (strcmp(nand->name, name) == 0)
return nand;
if (!flash_driver_name_matches(nand->controller->name, name))
continue;
if (++found < requested)
continue;
return nand;
}
return NULL;
}
struct nand_device *get_nand_device_by_num(int num)
{
struct nand_device *p;
int i = 0;
for (p = nand_devices; p; p = p->next) {
if (i++ == num)
return p;
}
return NULL;
}
COMMAND_HELPER(nand_command_get_device, unsigned name_index,
struct nand_device **nand)
{
const char *str = CMD_ARGV[name_index];
*nand = get_nand_device_by_name(str);
if (*nand)
return ERROR_OK;
unsigned num;
COMMAND_PARSE_NUMBER(uint, str, num);
*nand = get_nand_device_by_num(num);
if (!*nand) {
command_print(CMD_CTX, "NAND flash device '%s' not found", str);
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
int nand_build_bbt(struct nand_device *nand, int first, int last)
{
uint32_t page;
int i;
int pages_per_block = (nand->erase_size / nand->page_size);
uint8_t oob[6];
int ret;
if ((first < 0) || (first >= nand->num_blocks))
first = 0;
if ((last >= nand->num_blocks) || (last == -1))
last = nand->num_blocks - 1;
page = first * pages_per_block;
for (i = first; i <= last; i++) {
ret = nand_read_page(nand, page, NULL, 0, oob, 6);
if (ret != ERROR_OK)
return ret;
if (((nand->device->options & NAND_BUSWIDTH_16) && ((oob[0] & oob[1]) != 0xff))
|| (((nand->page_size == 512) && (oob[5] != 0xff)) ||
((nand->page_size == 2048) && (oob[0] != 0xff)))) {
LOG_WARNING("bad block: %i", i);
nand->blocks[i].is_bad = 1;
} else
nand->blocks[i].is_bad = 0;
page += pages_per_block;
}
return ERROR_OK;
}
int nand_read_status(struct nand_device *nand, uint8_t *status)
{
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
/* Send read status command */
nand->controller->command(nand, NAND_CMD_STATUS);
alive_sleep(1);
/* read status */
if (nand->device->options & NAND_BUSWIDTH_16) {
uint16_t data;
nand->controller->read_data(nand, &data);
*status = data & 0xff;
} else
nand->controller->read_data(nand, status);
return ERROR_OK;
}
static int nand_poll_ready(struct nand_device *nand, int timeout)
{
uint8_t status;
nand->controller->command(nand, NAND_CMD_STATUS);
do {
if (nand->device->options & NAND_BUSWIDTH_16) {
uint16_t data;
nand->controller->read_data(nand, &data);
status = data & 0xff;
} else
nand->controller->read_data(nand, &status);
if (status & NAND_STATUS_READY)
break;
alive_sleep(1);
} while (timeout--);
return (status & NAND_STATUS_READY) != 0;
}
int nand_probe(struct nand_device *nand)
{
uint8_t manufacturer_id, device_id;
uint8_t id_buff[6];
int retval;
int i;
/* clear device data */
nand->device = NULL;
nand->manufacturer = NULL;
/* clear device parameters */
nand->bus_width = 0;
nand->address_cycles = 0;
nand->page_size = 0;
nand->erase_size = 0;
/* initialize controller (device parameters are zero, use controller default) */
retval = nand->controller->init(nand);
if (retval != ERROR_OK) {
switch (retval) {
case ERROR_NAND_OPERATION_FAILED:
LOG_DEBUG("controller initialization failed");
return ERROR_NAND_OPERATION_FAILED;
case ERROR_NAND_OPERATION_NOT_SUPPORTED:
LOG_ERROR(
"BUG: controller reported that it doesn't support default parameters");
return ERROR_NAND_OPERATION_FAILED;
default:
LOG_ERROR("BUG: unknown controller initialization failure");
return ERROR_NAND_OPERATION_FAILED;
}
}
nand->controller->command(nand, NAND_CMD_RESET);
nand->controller->reset(nand);
nand->controller->command(nand, NAND_CMD_READID);
nand->controller->address(nand, 0x0);
if (nand->bus_width == 8) {
nand->controller->read_data(nand, &manufacturer_id);
nand->controller->read_data(nand, &device_id);
} else {
uint16_t data_buf;
nand->controller->read_data(nand, &data_buf);
manufacturer_id = data_buf & 0xff;
nand->controller->read_data(nand, &data_buf);
device_id = data_buf & 0xff;
}
for (i = 0; nand_flash_ids[i].name; i++) {
if (nand_flash_ids[i].id == device_id &&
(nand_flash_ids[i].mfr_id == manufacturer_id ||
nand_flash_ids[i].mfr_id == 0)) {
nand->device = &nand_flash_ids[i];
break;
}
}
for (i = 0; nand_manuf_ids[i].name; i++) {
if (nand_manuf_ids[i].id == manufacturer_id) {
nand->manufacturer = &nand_manuf_ids[i];
break;
}
}
if (!nand->manufacturer) {
nand->manufacturer = &nand_manuf_ids[0];
nand->manufacturer->id = manufacturer_id;
}
if (!nand->device) {
LOG_ERROR(
"unknown NAND flash device found, manufacturer id: 0x%2.2x device id: 0x%2.2x",
manufacturer_id,
device_id);
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("found %s (%s)", nand->device->name, nand->manufacturer->name);
/* initialize device parameters */
/* bus width */
if (nand->device->options & NAND_BUSWIDTH_16)
nand->bus_width = 16;
else
nand->bus_width = 8;
/* Do we need extended device probe information? */
if (nand->device->page_size == 0 ||
nand->device->erase_size == 0) {
if (nand->bus_width == 8) {
nand->controller->read_data(nand, id_buff + 3);
nand->controller->read_data(nand, id_buff + 4);
nand->controller->read_data(nand, id_buff + 5);
} else {
uint16_t data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[3] = data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[4] = data_buf;
nand->controller->read_data(nand, &data_buf);
id_buff[5] = data_buf >> 8;
}
}
/* page size */
if (nand->device->page_size == 0)
nand->page_size = 1 << (10 + (id_buff[4] & 3));
else if (nand->device->page_size == 256) {
LOG_ERROR("NAND flashes with 256 byte pagesize are not supported");
return ERROR_NAND_OPERATION_FAILED;
} else
nand->page_size = nand->device->page_size;
/* number of address cycles */
if (nand->page_size <= 512) {
/* small page devices */
if (nand->device->chip_size <= 32)
nand->address_cycles = 3;
else if (nand->device->chip_size <= 8*1024)
nand->address_cycles = 4;
else {
LOG_ERROR("BUG: small page NAND device with more than 8 GiB encountered");
nand->address_cycles = 5;
}
} else {
/* large page devices */
if (nand->device->chip_size <= 128)
nand->address_cycles = 4;
else if (nand->device->chip_size <= 32*1024)
nand->address_cycles = 5;
else {
LOG_ERROR("BUG: large page NAND device with more than 32 GiB encountered");
nand->address_cycles = 6;
}
}
/* erase size */
if (nand->device->erase_size == 0) {
switch ((id_buff[4] >> 4) & 3) {
case 0:
nand->erase_size = 64 << 10;
break;
case 1:
nand->erase_size = 128 << 10;
break;
case 2:
nand->erase_size = 256 << 10;
break;
case 3:
nand->erase_size = 512 << 10;
break;
}
} else
nand->erase_size = nand->device->erase_size;
/* initialize controller, but leave parameters at the controllers default */
retval = nand->controller->init(nand);
if (retval != ERROR_OK) {
switch (retval) {
case ERROR_NAND_OPERATION_FAILED:
LOG_DEBUG("controller initialization failed");
return ERROR_NAND_OPERATION_FAILED;
case ERROR_NAND_OPERATION_NOT_SUPPORTED:
LOG_ERROR(
"controller doesn't support requested parameters (buswidth: %i, address cycles: %i, page size: %i)",
nand->bus_width,
nand->address_cycles,
nand->page_size);
return ERROR_NAND_OPERATION_FAILED;
default:
LOG_ERROR("BUG: unknown controller initialization failure");
return ERROR_NAND_OPERATION_FAILED;
}
}
nand->num_blocks = (nand->device->chip_size * 1024) / (nand->erase_size / 1024);
nand->blocks = malloc(sizeof(struct nand_block) * nand->num_blocks);
for (i = 0; i < nand->num_blocks; i++) {
nand->blocks[i].size = nand->erase_size;
nand->blocks[i].offset = i * nand->erase_size;
nand->blocks[i].is_erased = -1;
nand->blocks[i].is_bad = -1;
}
return ERROR_OK;
}
int nand_erase(struct nand_device *nand, int first_block, int last_block)
{
int i;
uint32_t page;
uint8_t status;
int retval;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if ((first_block < 0) || (last_block >= nand->num_blocks))
return ERROR_COMMAND_SYNTAX_ERROR;
/* make sure we know if a block is bad before erasing it */
for (i = first_block; i <= last_block; i++) {
if (nand->blocks[i].is_bad == -1) {
nand_build_bbt(nand, i, last_block);
break;
}
}
for (i = first_block; i <= last_block; i++) {
/* Send erase setup command */
nand->controller->command(nand, NAND_CMD_ERASE1);
page = i * (nand->erase_size / nand->page_size);
/* Send page address */
if (nand->page_size <= 512) {
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 3rd cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 4th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
} else {
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 3rd cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
}
/* Send erase confirm command */
nand->controller->command(nand, NAND_CMD_ERASE2);
retval = nand->controller->nand_ready ?
nand->controller->nand_ready(nand, 1000) :
nand_poll_ready(nand, 1000);
if (!retval) {
LOG_ERROR("timeout waiting for NAND flash block erase to complete");
return ERROR_NAND_OPERATION_TIMEOUT;
}
retval = nand_read_status(nand, &status);
if (retval != ERROR_OK) {
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & 0x1) {
LOG_ERROR("didn't erase %sblock %d; status: 0x%2.2x",
(nand->blocks[i].is_bad == 1)
? "bad " : "",
i, status);
/* continue; other blocks might still be erasable */
}
nand->blocks[i].is_erased = 1;
}
return ERROR_OK;
}
#if 0
static int nand_read_plain(struct nand_device *nand,
uint32_t address,
uint8_t *data,
uint32_t data_size)
{
uint8_t *page;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (address % nand->page_size) {
LOG_ERROR("reads need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
page = malloc(nand->page_size);
while (data_size > 0) {
uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size;
uint32_t page_address;
page_address = address / nand->page_size;
nand_read_page(nand, page_address, page, nand->page_size, NULL, 0);
memcpy(data, page, thisrun_size);
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
free(page);
return ERROR_OK;
}
static int nand_write_plain(struct nand_device *nand,
uint32_t address,
uint8_t *data,
uint32_t data_size)
{
uint8_t *page;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (address % nand->page_size) {
LOG_ERROR("writes need to be page aligned");
return ERROR_NAND_OPERATION_FAILED;
}
page = malloc(nand->page_size);
while (data_size > 0) {
uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size;
uint32_t page_address;
memset(page, 0xff, nand->page_size);
memcpy(page, data, thisrun_size);
page_address = address / nand->page_size;
nand_write_page(nand, page_address, page, nand->page_size, NULL, 0);
address += thisrun_size;
data += thisrun_size;
data_size -= thisrun_size;
}
free(page);
return ERROR_OK;
}
#endif
int nand_write_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
uint32_t block;
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
block = page / (nand->erase_size / nand->page_size);
if (nand->blocks[block].is_erased == 1)
nand->blocks[block].is_erased = 0;
if (nand->use_raw || nand->controller->write_page == NULL)
return nand_write_page_raw(nand, page, data, data_size, oob, oob_size);
else
return nand->controller->write_page(nand, page, data, data_size, oob, oob_size);
}
int nand_read_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (nand->use_raw || nand->controller->read_page == NULL)
return nand_read_page_raw(nand, page, data, data_size, oob, oob_size);
else
return nand->controller->read_page(nand, page, data, data_size, oob, oob_size);
}
int nand_page_command(struct nand_device *nand, uint32_t page,
uint8_t cmd, bool oob_only)
{
if (!nand->device)
return ERROR_NAND_DEVICE_NOT_PROBED;
if (oob_only && NAND_CMD_READ0 == cmd && nand->page_size <= 512)
cmd = NAND_CMD_READOOB;
nand->controller->command(nand, cmd);
if (nand->page_size <= 512) {
/* small page device */
/* column (always 0, we start at the beginning of a page/OOB area) */
nand->controller->address(nand, 0x0);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 4th cycle only on devices with more than 32 MiB */
if (nand->address_cycles >= 4)
nand->controller->address(nand, (page >> 16) & 0xff);
/* 5th cycle only on devices with more than 8 GiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 24) & 0xff);
} else {
/* large page device */
/* column (0 when we start at the beginning of a page,
* or 2048 for the beginning of OOB area)
*/
nand->controller->address(nand, 0x0);
if (oob_only)
nand->controller->address(nand, 0x8);
else
nand->controller->address(nand, 0x0);
/* row */
nand->controller->address(nand, page & 0xff);
nand->controller->address(nand, (page >> 8) & 0xff);
/* 5th cycle only on devices with more than 128 MiB */
if (nand->address_cycles >= 5)
nand->controller->address(nand, (page >> 16) & 0xff);
/* large page devices need a start command if reading */
if (NAND_CMD_READ0 == cmd)
nand->controller->command(nand, NAND_CMD_READSTART);
}
if (nand->controller->nand_ready) {
if (!nand->controller->nand_ready(nand, 100))
return ERROR_NAND_OPERATION_TIMEOUT;
} else {
/* nand_poll_read() cannot be used during nand read */
alive_sleep(1);
}
return ERROR_OK;
}
int nand_read_data_page(struct nand_device *nand, uint8_t *data, uint32_t size)
{
int retval = ERROR_NAND_NO_BUFFER;
if (nand->controller->read_block_data != NULL)
retval = (nand->controller->read_block_data)(nand, data, size);
if (ERROR_NAND_NO_BUFFER == retval) {
uint32_t i;
int incr = (nand->device->options & NAND_BUSWIDTH_16) ? 2 : 1;
retval = ERROR_OK;
for (i = 0; retval == ERROR_OK && i < size; i += incr) {
retval = nand->controller->read_data(nand, data);
data += incr;
}
}
return retval;
}
int nand_read_page_raw(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
int retval;
retval = nand_page_command(nand, page, NAND_CMD_READ0, !data);
if (ERROR_OK != retval)
return retval;
if (data)
nand_read_data_page(nand, data, data_size);
if (oob)
nand_read_data_page(nand, oob, oob_size);
return ERROR_OK;
}
int nand_write_data_page(struct nand_device *nand, uint8_t *data, uint32_t size)
{
int retval = ERROR_NAND_NO_BUFFER;
if (nand->controller->write_block_data != NULL)
retval = (nand->controller->write_block_data)(nand, data, size);
if (ERROR_NAND_NO_BUFFER == retval) {
bool is16bit = nand->device->options & NAND_BUSWIDTH_16;
uint32_t incr = is16bit ? 2 : 1;
uint16_t write_data;
uint32_t i;
for (i = 0; i < size; i += incr) {
if (is16bit)
write_data = le_to_h_u16(data);
else
write_data = *data;
retval = nand->controller->write_data(nand, write_data);
if (ERROR_OK != retval)
break;
data += incr;
}
}
return retval;
}
int nand_write_finish(struct nand_device *nand)
{
int retval;
uint8_t status;
nand->controller->command(nand, NAND_CMD_PAGEPROG);
retval = nand->controller->nand_ready ?
nand->controller->nand_ready(nand, 100) :
nand_poll_ready(nand, 100);
if (!retval)
return ERROR_NAND_OPERATION_TIMEOUT;
retval = nand_read_status(nand, &status);
if (ERROR_OK != retval) {
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & NAND_STATUS_FAIL) {
LOG_ERROR("write operation didn't pass, status: 0x%2.2x",
status);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
int nand_write_page_raw(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
int retval;
retval = nand_page_command(nand, page, NAND_CMD_SEQIN, !data);
if (ERROR_OK != retval)
return retval;
if (data) {
retval = nand_write_data_page(nand, data, data_size);
if (ERROR_OK != retval) {
LOG_ERROR("Unable to write data to NAND device");
return retval;
}
}
if (oob) {
retval = nand_write_data_page(nand, oob, oob_size);
if (ERROR_OK != retval) {
LOG_ERROR("Unable to write OOB data to NAND device");
return retval;
}
}
return nand_write_finish(nand);
}