openocd/src/flash/nand/lpc3180.c

1362 lines
44 KiB
C

/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
*
* Copyright (C) 2010 richard vegh <vegh.ricsi@gmail.com> *
* Copyright (C) 2010 Oyvind Harboe <oyvind.harboe@zylin.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "lpc3180.h"
#include <target/target.h>
static int lpc3180_reset(struct nand_device *nand);
static int lpc3180_controller_ready(struct nand_device *nand, int timeout);
static int lpc3180_tc_ready(struct nand_device *nand, int timeout);
#define ECC_OFFS 0x120
#define SPARE_OFFS 0x140
#define DATA_OFFS 0x200
/* nand device lpc3180 <target#> <oscillator_frequency>
*/
NAND_DEVICE_COMMAND_HANDLER(lpc3180_nand_device_command)
{
if (CMD_ARGC < 3)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t osc_freq;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], osc_freq);
struct lpc3180_nand_controller *lpc3180_info;
lpc3180_info = malloc(sizeof(struct lpc3180_nand_controller));
nand->controller_priv = lpc3180_info;
lpc3180_info->osc_freq = osc_freq;
if ((lpc3180_info->osc_freq < 1000) || (lpc3180_info->osc_freq > 20000))
LOG_WARNING(
"LPC3180 oscillator frequency should be between 1000 and 20000 kHz, was %i",
lpc3180_info->osc_freq);
lpc3180_info->selected_controller = LPC3180_NO_CONTROLLER;
lpc3180_info->sw_write_protection = 0;
lpc3180_info->sw_wp_lower_bound = 0x0;
lpc3180_info->sw_wp_upper_bound = 0x0;
return ERROR_OK;
}
static int lpc3180_pll(int fclkin, uint32_t pll_ctrl)
{
int bypass = (pll_ctrl & 0x8000) >> 15;
int direct = (pll_ctrl & 0x4000) >> 14;
int feedback = (pll_ctrl & 0x2000) >> 13;
int p = (1 << ((pll_ctrl & 0x1800) >> 11) * 2);
int n = ((pll_ctrl & 0x0600) >> 9) + 1;
int m = ((pll_ctrl & 0x01fe) >> 1) + 1;
int lock = (pll_ctrl & 0x1);
if (!lock)
LOG_WARNING("PLL is not locked");
if (!bypass && direct) /* direct mode */
return (m * fclkin) / n;
if (bypass && !direct) /* bypass mode */
return fclkin / (2 * p);
if (bypass & direct) /* direct bypass mode */
return fclkin;
if (feedback) /* integer mode */
return m * (fclkin / n);
else /* non-integer mode */
return (m / (2 * p)) * (fclkin / n);
}
static float lpc3180_cycle_time(struct nand_device *nand)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
uint32_t sysclk_ctrl, pwr_ctrl, hclkdiv_ctrl, hclkpll_ctrl;
int sysclk;
int hclk;
int hclk_pll;
float cycle;
/* calculate timings */
/* determine current SYSCLK (13'MHz or main oscillator) */
target_read_u32(target, 0x40004050, &sysclk_ctrl);
if ((sysclk_ctrl & 1) == 0)
sysclk = lpc3180_info->osc_freq;
else
sysclk = 13000;
/* determine selected HCLK source */
target_read_u32(target, 0x40004044, &pwr_ctrl);
if ((pwr_ctrl & (1 << 2)) == 0) /* DIRECT RUN mode */
hclk = sysclk;
else {
target_read_u32(target, 0x40004058, &hclkpll_ctrl);
hclk_pll = lpc3180_pll(sysclk, hclkpll_ctrl);
target_read_u32(target, 0x40004040, &hclkdiv_ctrl);
if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */
hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1);
else /* HCLK uses HCLK_PLL */
hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
}
LOG_DEBUG("LPC3180 HCLK currently clocked at %i kHz", hclk);
cycle = (1.0 / hclk) * 1000000.0;
return cycle;
}
static int lpc3180_init(struct nand_device *nand)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
int bus_width = nand->bus_width ? : 8;
int address_cycles = nand->address_cycles ? : 3;
int page_size = nand->page_size ? : 512;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
/* sanitize arguments */
if ((bus_width != 8) && (bus_width != 16)) {
LOG_ERROR("LPC3180 only supports 8 or 16 bit bus width, not %i", bus_width);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* The LPC3180 only brings out 8 bit NAND data bus, but the controller
* would support 16 bit, too, so we just warn about this for now
*/
if (bus_width == 16)
LOG_WARNING("LPC3180 only supports 8 bit bus width");
/* inform calling code about selected bus width */
nand->bus_width = bus_width;
if ((address_cycles != 3) && (address_cycles != 4)) {
LOG_ERROR("LPC3180 only supports 3 or 4 address cycles, not %i", address_cycles);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if ((page_size != 512) && (page_size != 2048)) {
LOG_ERROR("LPC3180 only supports 512 or 2048 byte pages, not %i", page_size);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* select MLC controller if none is currently selected */
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_DEBUG("no LPC3180 NAND flash controller selected, using default 'mlc'");
lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER;
}
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
uint32_t mlc_icr_value = 0x0;
float cycle;
int twp, twh, trp, treh, trhz, trbwb, tcea;
/* FLASHCLK_CTRL = 0x22 (enable clock for MLC flash controller) */
target_write_u32(target, 0x400040c8, 0x22);
/* MLC_CEH = 0x0 (Force nCE assert) */
target_write_u32(target, 0x200b804c, 0x0);
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
/* MLC_ICR = configuration */
if (lpc3180_info->sw_write_protection)
mlc_icr_value |= 0x8;
if (page_size == 2048)
mlc_icr_value |= 0x4;
if (address_cycles == 4)
mlc_icr_value |= 0x2;
if (bus_width == 16)
mlc_icr_value |= 0x1;
target_write_u32(target, 0x200b8030, mlc_icr_value);
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(nand);
twp = ((40 / cycle) + 1);
twh = ((20 / cycle) + 1);
trp = ((30 / cycle) + 1);
treh = ((15 / cycle) + 1);
trhz = ((30 / cycle) + 1);
trbwb = ((100 / cycle) + 1);
tcea = ((45 / cycle) + 1);
/* MLC_LOCK = 0xa25e (unlock protected registers) */
target_write_u32(target, 0x200b8044, 0xa25e);
/* MLC_TIME_REG */
target_write_u32(target, 0x200b8034, (twp & 0xf) | ((twh & 0xf) << 4) |
((trp & 0xf) << 8) | ((treh & 0xf) << 12) | ((trhz & 0x7) << 16) |
((trbwb & 0x1f) << 19) | ((tcea & 0x3) << 24));
lpc3180_reset(nand);
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
float cycle;
int r_setup, r_hold, r_width, r_rdy;
int w_setup, w_hold, w_width, w_rdy;
/* FLASHCLK_CTRL = 0x05 (enable clock for SLC flash controller) */
target_write_u32(target, 0x400040c8, 0x05);
/* after reset set other registers of SLC so reset calling is here at the begining*/
lpc3180_reset(nand);
/* SLC_CFG = 0x (Force nCE assert, DMA ECC enabled, ECC enabled, DMA burst enabled,
*DMA read from SLC, WIDTH = bus_width) */
target_write_u32(target, 0x20020014, 0x3e | (bus_width == 16) ? 1 : 0);
/* SLC_IEN = 3 (INT_RDY_EN = 1) ,(INT_TC_STAT = 1) */
target_write_u32(target, 0x20020020, 0x03);
/* DMA configuration
* DMACLK_CTRL = 0x01 (enable clock for DMA controller) */
target_write_u32(target, 0x400040e8, 0x01);
/* DMACConfig = DMA enabled*/
target_write_u32(target, 0x31000030, 0x01);
/* calculate NAND controller timings */
cycle = lpc3180_cycle_time(nand);
r_setup = w_setup = 0;
r_hold = w_hold = 10 / cycle;
r_width = 30 / cycle;
w_width = 40 / cycle;
r_rdy = w_rdy = 100 / cycle;
/* SLC_TAC: SLC timing arcs register */
target_write_u32(target, 0x2002002c, (r_setup & 0xf) | ((r_hold & 0xf) << 4) |
((r_width & 0xf) << 8) | ((r_rdy & 0xf) << 12) | ((w_setup & 0xf) << 16) |
((w_hold & 0xf) << 20) | ((w_width & 0xf) << 24) | ((w_rdy & 0xf) << 28));
}
return ERROR_OK;
}
static int lpc3180_reset(struct nand_device *nand)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
/* MLC_CMD = 0xff (reset controller and NAND device) */
target_write_u32(target, 0x200b8000, 0xff);
if (!lpc3180_controller_ready(nand, 100)) {
LOG_ERROR("LPC3180 NAND controller timed out after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
/* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */
target_write_u32(target, 0x20020010, 0x6);
if (!lpc3180_controller_ready(nand, 100)) {
LOG_ERROR("LPC3180 NAND controller timed out after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
}
return ERROR_OK;
}
static int lpc3180_command(struct nand_device *nand, uint8_t command)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
/* MLC_CMD = command */
target_write_u32(target, 0x200b8000, command);
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
/* SLC_CMD = command */
target_write_u32(target, 0x20020008, command);
}
return ERROR_OK;
}
static int lpc3180_address(struct nand_device *nand, uint8_t address)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
/* MLC_ADDR = address */
target_write_u32(target, 0x200b8004, address);
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
/* SLC_ADDR = address */
target_write_u32(target, 0x20020004, address);
}
return ERROR_OK;
}
static int lpc3180_write_data(struct nand_device *nand, uint16_t data)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
/* MLC_DATA = data */
target_write_u32(target, 0x200b0000, data);
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
/* SLC_DATA = data */
target_write_u32(target, 0x20020000, data);
}
return ERROR_OK;
}
static int lpc3180_read_data(struct nand_device *nand, void *data)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
/* data = MLC_DATA, use sized access */
if (nand->bus_width == 8) {
uint8_t *data8 = data;
target_read_u8(target, 0x200b0000, data8);
} else if (nand->bus_width == 16) {
uint16_t *data16 = data;
target_read_u16(target, 0x200b0000, data16);
} else {
LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
uint32_t data32;
/* data = SLC_DATA, must use 32-bit access */
target_read_u32(target, 0x20020000, &data32);
if (nand->bus_width == 8) {
uint8_t *data8 = data;
*data8 = data32 & 0xff;
} else if (nand->bus_width == 16) {
uint16_t *data16 = data;
*data16 = data32 & 0xffff;
} else {
LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
static int lpc3180_write_page(struct nand_device *nand,
uint32_t page,
uint8_t *data,
uint32_t data_size,
uint8_t *oob,
uint32_t oob_size)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
uint8_t status;
uint8_t *page_buffer;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
uint8_t *oob_buffer;
int quarter, num_quarters;
if (!data && oob) {
LOG_ERROR("LPC3180 MLC controller can't write OOB data only");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (oob && (oob_size > 24)) {
LOG_ERROR("LPC3180 MLC controller can't write more "
"than 6 bytes for each quarter's OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (data_size > (uint32_t)nand->page_size) {
LOG_ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* MLC_CMD = sequential input */
target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN);
page_buffer = malloc(512);
oob_buffer = malloc(6);
if (nand->page_size == 512) {
/* MLC_ADDR = 0x0 (one column cycle) */
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
if (nand->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
} else {
/* MLC_ADDR = 0x0 (two column cycles) */
target_write_u32(target, 0x200b8004, 0x0);
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
}
/* when using the MLC controller, we have to treat a large page device
* as being made out of four quarters, each the size of a small page device
*/
num_quarters = (nand->page_size == 2048) ? 4 : 1;
for (quarter = 0; quarter < num_quarters; quarter++) {
int thisrun_data_size = (data_size > 512) ? 512 : data_size;
int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size;
memset(page_buffer, 0xff, 512);
if (data) {
memcpy(page_buffer, data, thisrun_data_size);
data_size -= thisrun_data_size;
data += thisrun_data_size;
}
memset(oob_buffer, 0xff, 6);
if (oob) {
memcpy(oob_buffer, oob, thisrun_oob_size);
oob_size -= thisrun_oob_size;
oob += thisrun_oob_size;
}
/* write MLC_ECC_ENC_REG to start encode cycle */
target_write_u32(target, 0x200b8008, 0x0);
target_write_memory(target, 0x200a8000,
4, 128, page_buffer);
target_write_memory(target, 0x200a8000,
1, 6, oob_buffer);
/* write MLC_ECC_AUTO_ENC_REG to start auto encode */
target_write_u32(target, 0x200b8010, 0x0);
if (!lpc3180_controller_ready(nand, 1000)) {
LOG_ERROR("timeout while waiting for completion of auto encode cycle");
free(page_buffer);
free(oob_buffer);
return ERROR_NAND_OPERATION_FAILED;
}
}
/* MLC_CMD = auto program command */
target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG);
retval = nand_read_status(nand, &status);
if (retval != ERROR_OK) {
LOG_ERROR("couldn't read status");
free(page_buffer);
free(oob_buffer);
return ERROR_NAND_OPERATION_FAILED;
}
if (status & NAND_STATUS_FAIL) {
LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status);
free(page_buffer);
free(oob_buffer);
return ERROR_NAND_OPERATION_FAILED;
}
free(page_buffer);
free(oob_buffer);
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
/**********************************************************************
* Write both SLC NAND flash page main area and spare area.
* Small page -
* ------------------------------------------
* | 512 bytes main | 16 bytes spare |
* ------------------------------------------
* Large page -
* ------------------------------------------
* | 2048 bytes main | 64 bytes spare |
* ------------------------------------------
* If DMA & ECC enabled, then the ECC generated for the 1st 256-byte
* data is written to the 3rd word of the spare area. The ECC
* generated for the 2nd 256-byte data is written to the 4th word
* of the spare area. The ECC generated for the 3rd 256-byte data is
* written to the 7th word of the spare area. The ECC generated
* for the 4th 256-byte data is written to the 8th word of the
* spare area and so on.
*
**********************************************************************/
int i = 0, target_mem_base;
uint8_t *ecc_flash_buffer;
struct working_area *pworking_area;
if (lpc3180_info->is_bulk) {
if (!data && oob) {
/*if oob only mode is active original method is used as SLC
*controller hangs during DMA interworking. Anyway the code supports
*the oob only mode below. */
return nand_write_page_raw(nand,
page,
data,
data_size,
oob,
oob_size);
}
retval = nand_page_command(nand, page, NAND_CMD_SEQIN, !data);
if (ERROR_OK != retval)
return retval;
/* allocate a working area */
if (target->working_area_size < (uint32_t) nand->page_size + 0x200) {
LOG_ERROR("Reserve at least 0x%x physical target working area",
nand->page_size + 0x200);
return ERROR_FLASH_OPERATION_FAILED;
}
if (target->working_area_phys%4) {
LOG_ERROR(
"Reserve the physical target working area at word boundary");
return ERROR_FLASH_OPERATION_FAILED;
}
if (target_alloc_working_area(target, target->working_area_size,
&pworking_area) != ERROR_OK) {
LOG_ERROR("no working area specified, can't read LPC internal flash");
return ERROR_FLASH_OPERATION_FAILED;
}
target_mem_base = target->working_area_phys;
if (nand->page_size == 2048)
page_buffer = malloc(2048);
else
page_buffer = malloc(512);
ecc_flash_buffer = malloc(64);
/* SLC_CFG = 0x (Force nCE assert, DMA ECC enabled, ECC enabled, DMA burst
*enabled, DMA write to SLC, WIDTH = bus_width) */
target_write_u32(target, 0x20020014, 0x3c);
if (data && !oob) {
/* set DMA LLI-s in target memory and in DMA*/
for (i = 0; i < nand->page_size/0x100; i++) {
int tmp;
/* -------LLI for 256 byte block---------
* DMACC0SrcAddr = SRAM */
target_write_u32(target,
target_mem_base+0+i*32,
target_mem_base+DATA_OFFS+i*256);
if (i == 0)
target_write_u32(target,
0x31000100,
target_mem_base+DATA_OFFS);
/* DMACCxDestAddr = SLC_DMA_DATA */
target_write_u32(target, target_mem_base+4+i*32, 0x20020038);
if (i == 0)
target_write_u32(target, 0x31000104, 0x20020038);
/* DMACCxLLI = next element */
tmp = (target_mem_base+(1+i*2)*16)&0xfffffffc;
target_write_u32(target, target_mem_base+8+i*32, tmp);
if (i == 0)
target_write_u32(target, 0x31000108, tmp);
/* DMACCxControl = TransferSize =64, Source burst size =16,
* Destination burst size = 16, Source transfer width = 32 bit,
* Destination transfer width = 32 bit, Source AHB master select = M0,
* Destination AHB master select = M0, Source increment = 1,
* Destination increment = 0, Terminal count interrupt enable bit = 0*/
target_write_u32(target,
target_mem_base+12+i*32,
0x40 | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 | 1<<26 |
0<<27 | 0<<31);
if (i == 0)
target_write_u32(target,
0x3100010c,
0x40 | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 | 1<<26 |
0<<27 | 0<<31);
/* -------LLI for 3 byte ECC---------
* DMACC0SrcAddr = SLC_ECC*/
target_write_u32(target, target_mem_base+16+i*32, 0x20020034);
/* DMACCxDestAddr = SRAM */
target_write_u32(target,
target_mem_base+20+i*32,
target_mem_base+SPARE_OFFS+8+16*(i>>1)+(i%2)*4);
/* DMACCxLLI = next element */
tmp = (target_mem_base+(2+i*2)*16)&0xfffffffc;
target_write_u32(target, target_mem_base+24+i*32, tmp);
/* DMACCxControl = TransferSize =1, Source burst size =4,
* Destination burst size = 4, Source transfer width = 32 bit,
* Destination transfer width = 32 bit, Source AHB master select = M0,
* Destination AHB master select = M0, Source increment = 0,
* Destination increment = 1, Terminal count interrupt enable bit = 0*/
target_write_u32(target,
target_mem_base+28+i*32,
0x01 | 1<<12 | 1<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 | 0<<26 | 1<<27 | 0<<
31);
}
} else if (data && oob) {
/* -------LLI for 512 or 2048 bytes page---------
* DMACC0SrcAddr = SRAM */
target_write_u32(target, target_mem_base, target_mem_base+DATA_OFFS);
target_write_u32(target, 0x31000100, target_mem_base+DATA_OFFS);
/* DMACCxDestAddr = SLC_DMA_DATA */
target_write_u32(target, target_mem_base+4, 0x20020038);
target_write_u32(target, 0x31000104, 0x20020038);
/* DMACCxLLI = next element */
target_write_u32(target,
target_mem_base+8,
(target_mem_base+32)&0xfffffffc);
target_write_u32(target, 0x31000108,
(target_mem_base+32)&0xfffffffc);
/* DMACCxControl = TransferSize =512 or 128, Source burst size =16,
* Destination burst size = 16, Source transfer width = 32 bit,
* Destination transfer width = 32 bit, Source AHB master select = M0,
* Destination AHB master select = M0, Source increment = 1,
* Destination increment = 0, Terminal count interrupt enable bit = 0*/
target_write_u32(target,
target_mem_base+12,
(nand->page_size ==
2048 ? 512 : 128) | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 |
1<<26 | 0<<27 | 0<<31);
target_write_u32(target,
0x3100010c,
(nand->page_size ==
2048 ? 512 : 128) | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 |
1<<26 | 0<<27 | 0<<31);
i = 1;
} else if (!data && oob)
i = 0;
/* -------LLI for spare area---------
* DMACC0SrcAddr = SRAM*/
target_write_u32(target, target_mem_base+0+i*32, target_mem_base+SPARE_OFFS);
if (i == 0)
target_write_u32(target, 0x31000100, target_mem_base+SPARE_OFFS);
/* DMACCxDestAddr = SLC_DMA_DATA */
target_write_u32(target, target_mem_base+4+i*32, 0x20020038);
if (i == 0)
target_write_u32(target, 0x31000104, 0x20020038);
/* DMACCxLLI = next element = NULL */
target_write_u32(target, target_mem_base+8+i*32, 0);
if (i == 0)
target_write_u32(target, 0x31000108, 0);
/* DMACCxControl = TransferSize =16 for large page or 4 for small page,
* Source burst size =16, Destination burst size = 16, Source transfer width = 32 bit,
* Destination transfer width = 32 bit, Source AHB master select = M0,
* Destination AHB master select = M0, Source increment = 1,
* Destination increment = 0, Terminal count interrupt enable bit = 0*/
target_write_u32(target,
target_mem_base+12+i*32,
(nand->page_size ==
2048 ? 0x10 : 0x04) | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 | 1<<26 |
0<<27 | 0<<31);
if (i == 0)
target_write_u32(target, 0x3100010c,
(nand->page_size == 2048 ?
0x10 : 0x04) | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 |
0<<25 | 1<<26 | 0<<27 | 0<<31);
memset(ecc_flash_buffer, 0xff, 64);
if (oob)
memcpy(ecc_flash_buffer, oob, oob_size);
target_write_memory(target,
target_mem_base+SPARE_OFFS,
4,
16,
ecc_flash_buffer);
if (data) {
memset(page_buffer, 0xff, nand->page_size == 2048 ? 2048 : 512);
memcpy(page_buffer, data, data_size);
target_write_memory(target,
target_mem_base+DATA_OFFS,
4,
nand->page_size == 2048 ? 512 : 128,
page_buffer);
}
free(page_buffer);
free(ecc_flash_buffer);
/* Enable DMA after channel set up !
LLI only works when DMA is the flow controller!
*/
/* DMACCxConfig= E=1, SrcPeripheral = 1 (SLC), DestPeripheral = 1 (SLC),
*FlowCntrl = 2 (Pher -> Mem, DMA), IE = 0, ITC = 0, L= 0, H=0*/
target_write_u32(target,
0x31000110,
1 | 1<<1 | 1<<6 | 2<<11 | 0<<14 | 0<<15 | 0<<16 | 0<<18);
/* SLC_CTRL = 3 (START DMA), ECC_CLEAR */
target_write_u32(target, 0x20020010, 0x3);
/* SLC_ICR = 2, INT_TC_CLR, clear pending TC*/
target_write_u32(target, 0x20020028, 2);
/* SLC_TC */
if (!data && oob)
target_write_u32(target, 0x20020030,
(nand->page_size == 2048 ? 0x10 : 0x04));
else
target_write_u32(target, 0x20020030,
(nand->page_size == 2048 ? 0x840 : 0x210));
nand_write_finish(nand);
if (!lpc3180_tc_ready(nand, 1000)) {
LOG_ERROR("timeout while waiting for completion of DMA");
return ERROR_NAND_OPERATION_FAILED;
}
target_free_working_area(target, pworking_area);
LOG_INFO("Page = 0x%" PRIx32 " was written.", page);
} else
return nand_write_page_raw(nand, page, data, data_size, oob, oob_size);
}
return ERROR_OK;
}
static int lpc3180_read_page(struct nand_device *nand,
uint32_t page,
uint8_t *data,
uint32_t data_size,
uint8_t *oob,
uint32_t oob_size)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
uint8_t *page_buffer;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc3180_info->selected_controller == LPC3180_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC3180 NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
uint8_t *oob_buffer;
uint32_t page_bytes_done = 0;
uint32_t oob_bytes_done = 0;
uint32_t mlc_isr;
#if 0
if (oob && (oob_size > 6)) {
LOG_ERROR("LPC3180 MLC controller can't read more than 6 bytes of OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
#endif
if (data_size > (uint32_t)nand->page_size) {
LOG_ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (nand->page_size == 2048) {
page_buffer = malloc(2048);
oob_buffer = malloc(64);
} else {
page_buffer = malloc(512);
oob_buffer = malloc(16);
}
if (!data && oob) {
/* MLC_CMD = Read OOB
* we can use the READOOB command on both small and large page devices,
* as the controller translates the 0x50 command to a 0x0 with appropriate
* positioning of the serial buffer read pointer
*/
target_write_u32(target, 0x200b8000, NAND_CMD_READOOB);
} else {
/* MLC_CMD = Read0 */
target_write_u32(target, 0x200b8000, NAND_CMD_READ0);
}
if (nand->page_size == 512) {
/* small page device
* MLC_ADDR = 0x0 (one column cycle) */
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
if (nand->address_cycles == 4)
target_write_u32(target, 0x200b8004, (page >> 16) & 0xff);
} else {
/* large page device
* MLC_ADDR = 0x0 (two column cycles) */
target_write_u32(target, 0x200b8004, 0x0);
target_write_u32(target, 0x200b8004, 0x0);
/* MLC_ADDR = row */
target_write_u32(target, 0x200b8004, page & 0xff);
target_write_u32(target, 0x200b8004, (page >> 8) & 0xff);
/* MLC_CMD = Read Start */
target_write_u32(target, 0x200b8000, NAND_CMD_READSTART);
}
while (page_bytes_done < (uint32_t)nand->page_size) {
/* MLC_ECC_AUTO_DEC_REG = dummy */
target_write_u32(target, 0x200b8014, 0xaa55aa55);
if (!lpc3180_controller_ready(nand, 1000)) {
LOG_ERROR("timeout while waiting for completion of auto decode cycle");
free(page_buffer);
free(oob_buffer);
return ERROR_NAND_OPERATION_FAILED;
}
target_read_u32(target, 0x200b8048, &mlc_isr);
if (mlc_isr & 0x8) {
if (mlc_isr & 0x40) {
LOG_ERROR("uncorrectable error detected: 0x%2.2x",
(unsigned)mlc_isr);
free(page_buffer);
free(oob_buffer);
return ERROR_NAND_OPERATION_FAILED;
}
LOG_WARNING("%i symbol error detected and corrected",
((int)(((mlc_isr & 0x30) >> 4) + 1)));
}
if (data)
target_read_memory(target,
0x200a8000,
4,
128,
page_buffer + page_bytes_done);
if (oob)
target_read_memory(target,
0x200a8000,
4,
4,
oob_buffer + oob_bytes_done);
page_bytes_done += 512;
oob_bytes_done += 16;
}
if (data)
memcpy(data, page_buffer, data_size);
if (oob)
memcpy(oob, oob_buffer, oob_size);
free(page_buffer);
free(oob_buffer);
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
/**********************************************************************
* Read both SLC NAND flash page main area and spare area.
* Small page -
* ------------------------------------------
* | 512 bytes main | 16 bytes spare |
* ------------------------------------------
* Large page -
* ------------------------------------------
* | 2048 bytes main | 64 bytes spare |
* ------------------------------------------
* If DMA & ECC enabled, then the ECC generated for the 1st 256-byte
* data is compared with the 3rd word of the spare area. The ECC
* generated for the 2nd 256-byte data is compared with the 4th word
* of the spare area. The ECC generated for the 3rd 256-byte data is
* compared with the 7th word of the spare area. The ECC generated
* for the 4th 256-byte data is compared with the 8th word of the
* spare area and so on.
*
**********************************************************************/
int retval, i, target_mem_base;
uint8_t *ecc_hw_buffer;
uint8_t *ecc_flash_buffer;
struct working_area *pworking_area;
if (lpc3180_info->is_bulk) {
/* read always the data and also oob areas*/
retval = nand_page_command(nand, page, NAND_CMD_READ0, 0);
if (ERROR_OK != retval)
return retval;
/* allocate a working area */
if (target->working_area_size < (uint32_t) nand->page_size + 0x200) {
LOG_ERROR("Reserve at least 0x%x physical target working area",
nand->page_size + 0x200);
return ERROR_FLASH_OPERATION_FAILED;
}
if (target->working_area_phys%4) {
LOG_ERROR(
"Reserve the physical target working area at word boundary");
return ERROR_FLASH_OPERATION_FAILED;
}
if (target_alloc_working_area(target, target->working_area_size,
&pworking_area) != ERROR_OK) {
LOG_ERROR("no working area specified, can't read LPC internal flash");
return ERROR_FLASH_OPERATION_FAILED;
}
target_mem_base = target->working_area_phys;
if (nand->page_size == 2048)
page_buffer = malloc(2048);
else
page_buffer = malloc(512);
ecc_hw_buffer = malloc(32);
ecc_flash_buffer = malloc(64);
/* SLC_CFG = 0x (Force nCE assert, DMA ECC enabled, ECC enabled, DMA burst
*enabled, DMA read from SLC, WIDTH = bus_width) */
target_write_u32(target, 0x20020014, 0x3e);
/* set DMA LLI-s in target memory and in DMA*/
for (i = 0; i < nand->page_size/0x100; i++) {
int tmp;
/* -------LLI for 256 byte block---------
* DMACC0SrcAddr = SLC_DMA_DATA*/
target_write_u32(target, target_mem_base+0+i*32, 0x20020038);
if (i == 0)
target_write_u32(target, 0x31000100, 0x20020038);
/* DMACCxDestAddr = SRAM */
target_write_u32(target,
target_mem_base+4+i*32,
target_mem_base+DATA_OFFS+i*256);
if (i == 0)
target_write_u32(target,
0x31000104,
target_mem_base+DATA_OFFS);
/* DMACCxLLI = next element */
tmp = (target_mem_base+(1+i*2)*16)&0xfffffffc;
target_write_u32(target, target_mem_base+8+i*32, tmp);
if (i == 0)
target_write_u32(target, 0x31000108, tmp);
/* DMACCxControl = TransferSize =64, Source burst size =16,
* Destination burst size = 16, Source transfer width = 32 bit,
* Destination transfer width = 32 bit, Source AHB master select = M0,
* Destination AHB master select = M0, Source increment = 0,
* Destination increment = 1, Terminal count interrupt enable bit = 0*/
target_write_u32(target,
target_mem_base+12+i*32,
0x40 | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 | 0<<26 | 1<<27 | 0<<
31);
if (i == 0)
target_write_u32(target,
0x3100010c,
0x40 | 3<<12 | 3<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 | 0<<26 | 1<<27 | 0<<
31);
/* -------LLI for 3 byte ECC---------
* DMACC0SrcAddr = SLC_ECC*/
target_write_u32(target, target_mem_base+16+i*32, 0x20020034);
/* DMACCxDestAddr = SRAM */
target_write_u32(target,
target_mem_base+20+i*32,
target_mem_base+ECC_OFFS+i*4);
/* DMACCxLLI = next element */
tmp = (target_mem_base+(2+i*2)*16)&0xfffffffc;
target_write_u32(target, target_mem_base+24+i*32, tmp);
/* DMACCxControl = TransferSize =1, Source burst size =4,
* Destination burst size = 4, Source transfer width = 32 bit,
* Destination transfer width = 32 bit, Source AHB master select = M0,
* Destination AHB master select = M0, Source increment = 0,
* Destination increment = 1, Terminal count interrupt enable bit = 0*/
target_write_u32(target,
target_mem_base+28+i*32,
0x01 | 1<<12 | 1<<15 | 2<<18 | 2<<21 | 0<<24 | 0<<25 | 0<<26 | 1<<27 | 0<<
31);
}
/* -------LLI for spare area---------
* DMACC0SrcAddr = SLC_DMA_DATA*/
target_write_u32(target, target_mem_base+0+i*32, 0x20020038);
/* DMACCxDestAddr = SRAM */
target_write_u32(target, target_mem_base+4+i*32, target_mem_base+SPARE_OFFS);
/* DMACCxLLI = next element = NULL */
target_write_u32(target, target_mem_base+8+i*32, 0);
/* DMACCxControl = TransferSize =16 for large page or 4 for small page,
* Source burst size =16, Destination burst size = 16, Source transfer width = 32 bit,
* Destination transfer width = 32 bit, Source AHB master select = M0,
* Destination AHB master select = M0, Source increment = 0,
* Destination increment = 1, Terminal count interrupt enable bit = 0*/
target_write_u32(target,
target_mem_base + 12 + i * 32,
(nand->page_size == 2048 ? 0x10 : 0x04) | 3<<12 | 3<<15 | 2<<18 | 2<<21 |
0<<24 | 0<<25 | 0<<26 | 1<<27 | 0<<31);
/* Enable DMA after channel set up !
LLI only works when DMA is the flow controller!
*/
/* DMACCxConfig= E=1, SrcPeripheral = 1 (SLC), DestPeripheral = 1 (SLC),
*FlowCntrl = 2 (Pher-> Mem, DMA), IE = 0, ITC = 0, L= 0, H=0*/
target_write_u32(target,
0x31000110,
1 | 1<<1 | 1<<6 | 2<<11 | 0<<14 | 0<<15 | 0<<16 | 0<<18);
/* SLC_CTRL = 3 (START DMA), ECC_CLEAR */
target_write_u32(target, 0x20020010, 0x3);
/* SLC_ICR = 2, INT_TC_CLR, clear pending TC*/
target_write_u32(target, 0x20020028, 2);
/* SLC_TC */
target_write_u32(target, 0x20020030,
(nand->page_size == 2048 ? 0x840 : 0x210));
if (!lpc3180_tc_ready(nand, 1000)) {
LOG_ERROR("timeout while waiting for completion of DMA");
free(page_buffer);
free(ecc_hw_buffer);
free(ecc_flash_buffer);
target_free_working_area(target, pworking_area);
return ERROR_NAND_OPERATION_FAILED;
}
if (data) {
target_read_memory(target,
target_mem_base+DATA_OFFS,
4,
nand->page_size == 2048 ? 512 : 128,
page_buffer);
memcpy(data, page_buffer, data_size);
LOG_INFO("Page = 0x%" PRIx32 " was read.", page);
/* check hw generated ECC for each 256 bytes block with the saved
*ECC in flash spare area*/
int idx = nand->page_size/0x200;
target_read_memory(target,
target_mem_base+SPARE_OFFS,
4,
16,
ecc_flash_buffer);
target_read_memory(target,
target_mem_base+ECC_OFFS,
4,
8,
ecc_hw_buffer);
for (i = 0; i < idx; i++) {
if ((0x00ffffff & *(uint32_t *)(void *)(ecc_hw_buffer+i*8)) !=
(0x00ffffff & *(uint32_t *)(void *)(ecc_flash_buffer+8+i*16)))
LOG_WARNING(
"ECC mismatch at 256 bytes size block= %d at page= 0x%" PRIx32,
i * 2 + 1, page);
if ((0x00ffffff & *(uint32_t *)(void *)(ecc_hw_buffer+4+i*8)) !=
(0x00ffffff & *(uint32_t *)(void *)(ecc_flash_buffer+12+i*16)))
LOG_WARNING(
"ECC mismatch at 256 bytes size block= %d at page= 0x%" PRIx32,
i * 2 + 2, page);
}
}
if (oob)
memcpy(oob, ecc_flash_buffer, oob_size);
free(page_buffer);
free(ecc_hw_buffer);
free(ecc_flash_buffer);
target_free_working_area(target, pworking_area);
} else
return nand_read_page_raw(nand, page, data, data_size, oob, oob_size);
}
return ERROR_OK;
}
static int lpc3180_controller_ready(struct nand_device *nand, int timeout)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("lpc3180_controller_ready count start=%d", timeout);
do {
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
uint8_t status;
/* Read MLC_ISR, wait for controller to become ready */
target_read_u8(target, 0x200b8048, &status);
if (status & 2) {
LOG_DEBUG("lpc3180_controller_ready count=%d",
timeout);
return 1;
}
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
uint32_t status;
/* Read SLC_STAT and check READY bit */
target_read_u32(target, 0x20020018, &status);
if (status & 1) {
LOG_DEBUG("lpc3180_controller_ready count=%d",
timeout);
return 1;
}
}
alive_sleep(1);
} while (timeout-- > 0);
return 0;
}
static int lpc3180_nand_ready(struct nand_device *nand, int timeout)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("lpc3180_nand_ready count start=%d", timeout);
do {
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER) {
uint8_t status = 0x0;
/* Read MLC_ISR, wait for NAND flash device to become ready */
target_read_u8(target, 0x200b8048, &status);
if (status & 1) {
LOG_DEBUG("lpc3180_nand_ready count end=%d",
timeout);
return 1;
}
} else if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
uint32_t status = 0x0;
/* Read SLC_STAT and check READY bit */
target_read_u32(target, 0x20020018, &status);
if (status & 1) {
LOG_DEBUG("lpc3180_nand_ready count end=%d",
timeout);
return 1;
}
}
alive_sleep(1);
} while (timeout-- > 0);
return 0;
}
static int lpc3180_tc_ready(struct nand_device *nand, int timeout)
{
struct lpc3180_nand_controller *lpc3180_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC3180 NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("lpc3180_tc_ready count start=%d",
timeout);
do {
if (lpc3180_info->selected_controller == LPC3180_SLC_CONTROLLER) {
uint32_t status = 0x0;
/* Read SLC_INT_STAT and check INT_TC_STAT bit */
target_read_u32(target, 0x2002001c, &status);
if (status & 2) {
LOG_DEBUG("lpc3180_tc_ready count=%d",
timeout);
return 1;
}
}
alive_sleep(1);
} while (timeout-- > 0);
return 0;
}
COMMAND_HANDLER(handle_lpc3180_select_command)
{
struct lpc3180_nand_controller *lpc3180_info = NULL;
char *selected[] = {
"no", "mlc", "slc"
};
if ((CMD_ARGC < 1) || (CMD_ARGC > 3))
return ERROR_COMMAND_SYNTAX_ERROR;
unsigned num;
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
struct nand_device *nand = get_nand_device_by_num(num);
if (!nand) {
command_print(CMD_CTX, "nand device '#%s' is out of bounds", CMD_ARGV[0]);
return ERROR_OK;
}
lpc3180_info = nand->controller_priv;
if (CMD_ARGC >= 2) {
if (strcmp(CMD_ARGV[1], "mlc") == 0)
lpc3180_info->selected_controller = LPC3180_MLC_CONTROLLER;
else if (strcmp(CMD_ARGV[1], "slc") == 0) {
lpc3180_info->selected_controller = LPC3180_SLC_CONTROLLER;
if (CMD_ARGC == 3 && strcmp(CMD_ARGV[2], "bulk") == 0)
lpc3180_info->is_bulk = 1;
else
lpc3180_info->is_bulk = 0;
} else
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (lpc3180_info->selected_controller == LPC3180_MLC_CONTROLLER)
command_print(CMD_CTX, "%s controller selected",
selected[lpc3180_info->selected_controller]);
else
command_print(CMD_CTX,
lpc3180_info->is_bulk ? "%s controller selected bulk mode is available" :
"%s controller selected bulk mode is not available",
selected[lpc3180_info->selected_controller]);
return ERROR_OK;
}
static const struct command_registration lpc3180_exec_command_handlers[] = {
{
.name = "select",
.handler = handle_lpc3180_select_command,
.mode = COMMAND_EXEC,
.help =
"select MLC or SLC controller (default is MLC), SLC can be set to bulk mode",
.usage = "bank_id ['mlc'|'slc' ['bulk'] ]",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration lpc3180_command_handler[] = {
{
.name = "lpc3180",
.mode = COMMAND_ANY,
.help = "LPC3180 NAND flash controller commands",
.usage = "",
.chain = lpc3180_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct nand_flash_controller lpc3180_nand_controller = {
.name = "lpc3180",
.commands = lpc3180_command_handler,
.nand_device_command = lpc3180_nand_device_command,
.init = lpc3180_init,
.reset = lpc3180_reset,
.command = lpc3180_command,
.address = lpc3180_address,
.write_data = lpc3180_write_data,
.read_data = lpc3180_read_data,
.write_page = lpc3180_write_page,
.read_page = lpc3180_read_page,
.nand_ready = lpc3180_nand_ready,
};