openocd/src/flash/nand/lpc32xx.c

1824 lines
53 KiB
C

/***************************************************************************
* Copyright (C) 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2011 Bjarne Steinsbo <bsteinsbo@gmail.com> *
* Copyright (C) 2010 richard vegh <vegh.ricsi@gmail.com> *
* Copyright (C) 2010 Oyvind Harboe <oyvind.harboe@zylin.com> *
* *
* Based on a combination of the lpc3180 driver and code from *
* uboot-2009.03-lpc32xx by Kevin Wells. *
* Any bugs are mine. --BSt *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "lpc32xx.h"
#include <target/target.h>
static int lpc32xx_reset(struct nand_device *nand);
static int lpc32xx_controller_ready(struct nand_device *nand, int timeout);
static int lpc32xx_tc_ready(struct nand_device *nand, int timeout);
extern int nand_correct_data(struct nand_device *nand, u_char *dat,
u_char *read_ecc, u_char *calc_ecc);
/* These are offset with the working area in IRAM when using DMA to
* read/write data to the SLC controller.
* - DMA descriptors will be put at start of working area,
* - Hardware generated ECC will be stored at ECC_OFFS
* - OOB wil be read/written from/to SPARE_OFFS
* - Actual page data will be read from/to DATA_OFFS
* There are unused holes between the used areas.
*/
#define ECC_OFFS 0x120
#define SPARE_OFFS 0x140
#define DATA_OFFS 0x200
static int sp_ooblayout[] = {
10, 11, 12, 13, 14, 15
};
static int lp_ooblayout[] = {
40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63
};
typedef struct {
volatile uint32_t dma_src;
volatile uint32_t dma_dest;
volatile uint32_t next_lli;
volatile uint32_t next_ctrl;
} dmac_ll_t;
static dmac_ll_t dmalist[(2048/256) * 2 + 1];
/* nand device lpc32xx <target#> <oscillator_frequency>
*/
NAND_DEVICE_COMMAND_HANDLER(lpc32xx_nand_device_command)
{
if (CMD_ARGC < 3)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t osc_freq;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], osc_freq);
struct lpc32xx_nand_controller *lpc32xx_info;
lpc32xx_info = malloc(sizeof(struct lpc32xx_nand_controller));
nand->controller_priv = lpc32xx_info;
lpc32xx_info->osc_freq = osc_freq;
if ((lpc32xx_info->osc_freq < 1000) || (lpc32xx_info->osc_freq > 20000))
LOG_WARNING("LPC32xx oscillator frequency should be between "
"1000 and 20000 kHz, was %i",
lpc32xx_info->osc_freq);
lpc32xx_info->selected_controller = LPC32xx_NO_CONTROLLER;
lpc32xx_info->sw_write_protection = 0;
lpc32xx_info->sw_wp_lower_bound = 0x0;
lpc32xx_info->sw_wp_upper_bound = 0x0;
return ERROR_OK;
}
static int lpc32xx_pll(int fclkin, uint32_t pll_ctrl)
{
int bypass = (pll_ctrl & 0x8000) >> 15;
int direct = (pll_ctrl & 0x4000) >> 14;
int feedback = (pll_ctrl & 0x2000) >> 13;
int p = (1 << ((pll_ctrl & 0x1800) >> 11) * 2);
int n = ((pll_ctrl & 0x0600) >> 9) + 1;
int m = ((pll_ctrl & 0x01fe) >> 1) + 1;
int lock = (pll_ctrl & 0x1);
if (!lock)
LOG_WARNING("PLL is not locked");
if (!bypass && direct) /* direct mode */
return (m * fclkin) / n;
if (bypass && !direct) /* bypass mode */
return fclkin / (2 * p);
if (bypass & direct) /* direct bypass mode */
return fclkin;
if (feedback) /* integer mode */
return m * (fclkin / n);
else /* non-integer mode */
return (m / (2 * p)) * (fclkin / n);
}
static float lpc32xx_cycle_time(struct nand_device *nand)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
uint32_t sysclk_ctrl, pwr_ctrl, hclkdiv_ctrl, hclkpll_ctrl;
int sysclk;
int hclk;
int hclk_pll;
float cycle;
int retval;
/* calculate timings */
/* determine current SYSCLK (13'MHz or main oscillator) */
retval = target_read_u32(target, 0x40004050, &sysclk_ctrl);
if (ERROR_OK != retval) {
LOG_ERROR("could not read SYSCLK_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
if ((sysclk_ctrl & 1) == 0)
sysclk = lpc32xx_info->osc_freq;
else
sysclk = 13000;
/* determine selected HCLK source */
retval = target_read_u32(target, 0x40004044, &pwr_ctrl);
if (ERROR_OK != retval) {
LOG_ERROR("could not read HCLK_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
if ((pwr_ctrl & (1 << 2)) == 0) /* DIRECT RUN mode */
hclk = sysclk;
else {
retval = target_read_u32(target, 0x40004058, &hclkpll_ctrl);
if (ERROR_OK != retval) {
LOG_ERROR("could not read HCLKPLL_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
hclk_pll = lpc32xx_pll(sysclk, hclkpll_ctrl);
retval = target_read_u32(target, 0x40004040, &hclkdiv_ctrl);
if (ERROR_OK != retval) {
LOG_ERROR("could not read CLKDIV_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
if (pwr_ctrl & (1 << 10)) /* ARM_CLK and HCLK use PERIPH_CLK */
hclk = hclk_pll / (((hclkdiv_ctrl & 0x7c) >> 2) + 1);
else /* HCLK uses HCLK_PLL */
hclk = hclk_pll / (1 << (hclkdiv_ctrl & 0x3));
}
LOG_DEBUG("LPC32xx HCLK currently clocked at %i kHz", hclk);
cycle = (1.0 / hclk) * 1000000.0;
return cycle;
}
static int lpc32xx_init(struct nand_device *nand)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int bus_width = nand->bus_width ? : 8;
int address_cycles = nand->address_cycles ? : 3;
int page_size = nand->page_size ? : 512;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC32xx "
"NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
/* sanitize arguments */
if (bus_width != 8) {
LOG_ERROR("LPC32xx doesn't support %i", bus_width);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* inform calling code about selected bus width */
nand->bus_width = bus_width;
if ((address_cycles < 3) || (address_cycles > 5)) {
LOG_ERROR("LPC32xx driver doesn't support %i address cycles", address_cycles);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if ((page_size != 512) && (page_size != 2048)) {
LOG_ERROR("LPC32xx doesn't support page size %i", page_size);
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
/* select MLC controller if none is currently selected */
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_DEBUG("no LPC32xx NAND flash controller selected, "
"using default 'slc'");
lpc32xx_info->selected_controller = LPC32xx_SLC_CONTROLLER;
}
if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
uint32_t mlc_icr_value = 0x0;
float cycle;
int twp, twh, trp, treh, trhz, trbwb, tcea;
/* FLASHCLK_CTRL = 0x22 (enable clk for MLC) */
retval = target_write_u32(target, 0x400040c8, 0x22);
if (ERROR_OK != retval) {
LOG_ERROR("could not set FLASHCLK_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_CEH = 0x0 (Force nCE assert) */
retval = target_write_u32(target, 0x200b804c, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_CEH");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_LOCK = 0xa25e (unlock protected registers) */
retval = target_write_u32(target, 0x200b8044, 0xa25e);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_LOCK");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_ICR = configuration */
if (lpc32xx_info->sw_write_protection)
mlc_icr_value |= 0x8;
if (page_size == 2048)
mlc_icr_value |= 0x4;
if (address_cycles == 4)
mlc_icr_value |= 0x2;
if (bus_width == 16)
mlc_icr_value |= 0x1;
retval = target_write_u32(target, 0x200b8030, mlc_icr_value);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ICR");
return ERROR_NAND_OPERATION_FAILED;
}
/* calculate NAND controller timings */
cycle = lpc32xx_cycle_time(nand);
twp = ((40 / cycle) + 1);
twh = ((20 / cycle) + 1);
trp = ((30 / cycle) + 1);
treh = ((15 / cycle) + 1);
trhz = ((30 / cycle) + 1);
trbwb = ((100 / cycle) + 1);
tcea = ((45 / cycle) + 1);
/* MLC_LOCK = 0xa25e (unlock protected registers) */
retval = target_write_u32(target, 0x200b8044, 0xa25e);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_LOCK");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_TIME_REG */
retval = target_write_u32(target, 0x200b8034,
(twp & 0xf)
| ((twh & 0xf) << 4)
| ((trp & 0xf) << 8)
| ((treh & 0xf) << 12)
| ((trhz & 0x7) << 16)
| ((trbwb & 0x1f) << 19)
| ((tcea & 0x3) << 24));
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_TIME_REG");
return ERROR_NAND_OPERATION_FAILED;
}
retval = lpc32xx_reset(nand);
if (ERROR_OK != retval)
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
float cycle;
int r_setup, r_hold, r_width, r_rdy;
int w_setup, w_hold, w_width, w_rdy;
/* FLASHCLK_CTRL = 0x05 (enable clk for SLC) */
retval = target_write_u32(target, 0x400040c8, 0x05);
if (ERROR_OK != retval) {
LOG_ERROR("could not set FLASHCLK_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
/* after reset set other registers of SLC,
* so reset calling is here at the begining
*/
retval = lpc32xx_reset(nand);
if (ERROR_OK != retval)
return ERROR_NAND_OPERATION_FAILED;
/* SLC_CFG =
Force nCE assert,
DMA ECC enabled,
ECC enabled,
DMA burst enabled,
DMA read from SLC,
WIDTH = bus_width)
*/
retval = target_write_u32(target, 0x20020014,
0x3e | (bus_width == 16) ? 1 : 0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_CFG");
return ERROR_NAND_OPERATION_FAILED;
}
/* SLC_IEN = 3 (INT_RDY_EN = 1) ,(INT_TC_STAT = 1) */
retval = target_write_u32(target, 0x20020020, 0x03);
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_IEN");
return ERROR_NAND_OPERATION_FAILED;
}
/* DMA configuration */
/* DMACLK_CTRL = 0x01 (enable clock for DMA controller) */
retval = target_write_u32(target, 0x400040e8, 0x01);
if (ERROR_OK != retval) {
LOG_ERROR("could not set DMACLK_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
/* DMACConfig = DMA enabled*/
retval = target_write_u32(target, 0x31000030, 0x01);
if (ERROR_OK != retval) {
LOG_ERROR("could not set DMACConfig");
return ERROR_NAND_OPERATION_FAILED;
}
/* calculate NAND controller timings */
cycle = lpc32xx_cycle_time(nand);
r_setup = w_setup = 0;
r_hold = w_hold = 10 / cycle;
r_width = 30 / cycle;
w_width = 40 / cycle;
r_rdy = w_rdy = 100 / cycle;
/* SLC_TAC: SLC timing arcs register */
retval = target_write_u32(target, 0x2002002c,
(r_setup & 0xf)
| ((r_hold & 0xf) << 4)
| ((r_width & 0xf) << 8)
| ((r_rdy & 0xf) << 12)
| ((w_setup & 0xf) << 16)
| ((w_hold & 0xf) << 20)
| ((w_width & 0xf) << 24)
| ((w_rdy & 0xf) << 28));
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_TAC");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
static int lpc32xx_reset(struct nand_device *nand)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use "
"LPC32xx NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
/* MLC_CMD = 0xff (reset controller and NAND device) */
retval = target_write_u32(target, 0x200b8000, 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_CMD");
return ERROR_NAND_OPERATION_FAILED;
}
if (!lpc32xx_controller_ready(nand, 100)) {
LOG_ERROR("LPC32xx MLC NAND controller timed out "
"after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
/* SLC_CTRL = 0x6 (ECC_CLEAR, SW_RESET) */
retval = target_write_u32(target, 0x20020010, 0x6);
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_CTRL");
return ERROR_NAND_OPERATION_FAILED;
}
if (!lpc32xx_controller_ready(nand, 100)) {
LOG_ERROR("LPC32xx SLC NAND controller timed out "
"after reset");
return ERROR_NAND_OPERATION_TIMEOUT;
}
}
return ERROR_OK;
}
static int lpc32xx_command(struct nand_device *nand, uint8_t command)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use "
"LPC32xx NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
/* MLC_CMD = command */
retval = target_write_u32(target, 0x200b8000, command);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_CMD");
return ERROR_NAND_OPERATION_FAILED;
}
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
/* SLC_CMD = command */
retval = target_write_u32(target, 0x20020008, command);
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_CMD");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
static int lpc32xx_address(struct nand_device *nand, uint8_t address)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use "
"LPC32xx NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
/* MLC_ADDR = address */
retval = target_write_u32(target, 0x200b8004, address);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
/* SLC_ADDR = address */
retval = target_write_u32(target, 0x20020004, address);
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
static int lpc32xx_write_data(struct nand_device *nand, uint16_t data)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use "
"LPC32xx NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
/* MLC_DATA = data */
retval = target_write_u32(target, 0x200b0000, data);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_DATA");
return ERROR_NAND_OPERATION_FAILED;
}
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
/* SLC_DATA = data */
retval = target_write_u32(target, 0x20020000, data);
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_DATA");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
static int lpc32xx_read_data(struct nand_device *nand, void *data)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC32xx "
"NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
/* data = MLC_DATA, use sized access */
if (nand->bus_width == 8) {
uint8_t *data8 = data;
retval = target_read_u8(target, 0x200b0000, data8);
} else {
LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
if (ERROR_OK != retval) {
LOG_ERROR("could not read MLC_DATA");
return ERROR_NAND_OPERATION_FAILED;
}
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
uint32_t data32;
/* data = SLC_DATA, must use 32-bit access */
retval = target_read_u32(target, 0x20020000, &data32);
if (ERROR_OK != retval) {
LOG_ERROR("could not read SLC_DATA");
return ERROR_NAND_OPERATION_FAILED;
}
if (nand->bus_width == 8) {
uint8_t *data8 = data;
*data8 = data32 & 0xff;
} else {
LOG_ERROR("BUG: bus_width neither 8 nor 16 bit");
return ERROR_NAND_OPERATION_FAILED;
}
}
return ERROR_OK;
}
static int lpc32xx_write_page_mlc(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct target *target = nand->target;
int retval;
uint8_t status;
static uint8_t page_buffer[512];
static uint8_t oob_buffer[6];
int quarter, num_quarters;
/* MLC_CMD = sequential input */
retval = target_write_u32(target, 0x200b8000, NAND_CMD_SEQIN);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_CMD");
return ERROR_NAND_OPERATION_FAILED;
}
if (nand->page_size == 512) {
/* MLC_ADDR = 0x0 (one column cycle) */
retval = target_write_u32(target, 0x200b8004, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_ADDR = row */
retval = target_write_u32(target, 0x200b8004, page & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_u32(target, 0x200b8004,
(page >> 8) & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
if (nand->address_cycles == 4) {
retval = target_write_u32(target, 0x200b8004,
(page >> 16) & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
}
} else {
/* MLC_ADDR = 0x0 (two column cycles) */
retval = target_write_u32(target, 0x200b8004, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_u32(target, 0x200b8004, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_ADDR = row */
retval = target_write_u32(target, 0x200b8004, page & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_u32(target, 0x200b8004,
(page >> 8) & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
}
/* when using the MLC controller, we have to treat a large page device
* as being made out of four quarters, each the size of a small page
* device
*/
num_quarters = (nand->page_size == 2048) ? 4 : 1;
for (quarter = 0; quarter < num_quarters; quarter++) {
int thisrun_data_size = (data_size > 512) ? 512 : data_size;
int thisrun_oob_size = (oob_size > 6) ? 6 : oob_size;
memset(page_buffer, 0xff, 512);
if (data) {
memcpy(page_buffer, data, thisrun_data_size);
data_size -= thisrun_data_size;
data += thisrun_data_size;
}
memset(oob_buffer, 0xff, 6);
if (oob) {
memcpy(oob_buffer, oob, thisrun_oob_size);
oob_size -= thisrun_oob_size;
oob += thisrun_oob_size;
}
/* write MLC_ECC_ENC_REG to start encode cycle */
retval = target_write_u32(target, 0x200b8008, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ECC_ENC_REG");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_memory(target, 0x200a8000,
4, 128, page_buffer);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_BUF (data)");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_memory(target, 0x200a8000,
1, 6, oob_buffer);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_BUF (oob)");
return ERROR_NAND_OPERATION_FAILED;
}
/* write MLC_ECC_AUTO_ENC_REG to start auto encode */
retval = target_write_u32(target, 0x200b8010, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ECC_AUTO_ENC_REG");
return ERROR_NAND_OPERATION_FAILED;
}
if (!lpc32xx_controller_ready(nand, 1000)) {
LOG_ERROR("timeout while waiting for "
"completion of auto encode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
}
/* MLC_CMD = auto program command */
retval = target_write_u32(target, 0x200b8000, NAND_CMD_PAGEPROG);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_CMD");
return ERROR_NAND_OPERATION_FAILED;
}
retval = nand_read_status(nand, &status);
if (retval != ERROR_OK) {
LOG_ERROR("couldn't read status");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & NAND_STATUS_FAIL) {
LOG_ERROR("write operation didn't pass, status: 0x%2.2x",
status);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
/* SLC controller in !raw mode will use target cpu to read/write nand from/to
* target internal memory. The transfer to/from flash is done by DMA. This
* function sets up the dma linked list in host memory for later transfer to
* target.
*/
static int lpc32xx_make_dma_list(uint32_t target_mem_base, uint32_t page_size,
int do_read)
{
uint32_t i, dmasrc, ctrl, ecc_ctrl, oob_ctrl, dmadst;
/* DMACCxControl =
TransferSize =64,
Source burst size =16,
Destination burst size = 16,
Source transfer width = 32 bit,
Destination transfer width = 32 bit,
Source AHB master select = M0,
Destination AHB master select = M0,
Source increment = 0, // set later
Destination increment = 0, // set later
Terminal count interrupt enable bit = 0 // set on last
*/ /*
* Write Operation Sequence for Small Block NAND
* ----------------------------------------------------------
* 1. X'fer 256 bytes of data from Memory to Flash.
* 2. Copy generated ECC data from Register to Spare Area
* 3. X'fer next 256 bytes of data from Memory to Flash.
* 4. Copy generated ECC data from Register to Spare Area.
* 5. X'fer 16 byets of Spare area from Memory to Flash.
* Read Operation Sequence for Small Block NAND
* ----------------------------------------------------------
* 1. X'fer 256 bytes of data from Flash to Memory.
* 2. Copy generated ECC data from Register to ECC calc Buffer.
* 3. X'fer next 256 bytes of data from Flash to Memory.
* 4. Copy generated ECC data from Register to ECC calc Buffer.
* 5. X'fer 16 bytes of Spare area from Flash to Memory.
* Write Operation Sequence for Large Block NAND
* ----------------------------------------------------------
* 1. Steps(1-4) of Write Operations repeate for four times
* which generates 16 DMA descriptors to X'fer 2048 bytes of
* data & 32 bytes of ECC data.
* 2. X'fer 64 bytes of Spare area from Memory to Flash.
* Read Operation Sequence for Large Block NAND
* ----------------------------------------------------------
* 1. Steps(1-4) of Read Operations repeate for four times
* which generates 16 DMA descriptors to X'fer 2048 bytes of
* data & 32 bytes of ECC data.
* 2. X'fer 64 bytes of Spare area from Flash to Memory.
*/
ctrl = (0x40 | 3 << 12 | 3 << 15 | 2 << 18 | 2 << 21 | 0 << 24
| 0 << 25 | 0 << 26 | 0 << 27 | 0 << 31);
/* DMACCxControl =
TransferSize =1,
Source burst size =4,
Destination burst size = 4,
Source transfer width = 32 bit,
Destination transfer width = 32 bit,
Source AHB master select = M0,
Destination AHB master select = M0,
Source increment = 0,
Destination increment = 1,
Terminal count interrupt enable bit = 0
*/
ecc_ctrl = 0x01 | 1 << 12 | 1 << 15 | 2 << 18 | 2 << 21 | 0 << 24
| 0 << 25 | 0 << 26 | 1 << 27 | 0 << 31;
/* DMACCxControl =
TransferSize =16 for lp or 4 for sp,
Source burst size =16,
Destination burst size = 16,
Source transfer width = 32 bit,
Destination transfer width = 32 bit,
Source AHB master select = M0,
Destination AHB master select = M0,
Source increment = 0, // set later
Destination increment = 0, // set later
Terminal count interrupt enable bit = 1 // set on last
*/
oob_ctrl = (page_size == 2048 ? 0x10 : 0x04)
| 3 << 12 | 3 << 15 | 2 << 18 | 2 << 21 | 0 << 24
| 0 << 25 | 0 << 26 | 0 << 27 | 1 << 31;
if (do_read) {
ctrl |= 1 << 27;/* Destination increment = 1 */
oob_ctrl |= 1 << 27; /* Destination increment = 1 */
dmasrc = 0x20020038; /* SLC_DMA_DATA */
dmadst = target_mem_base + DATA_OFFS;
} else {
ctrl |= 1 << 26;/* Source increment = 1 */
oob_ctrl |= 1 << 26; /* Source increment = 1 */
dmasrc = target_mem_base + DATA_OFFS;
dmadst = 0x20020038; /* SLC_DMA_DATA */
}
/*
* Write Operation Sequence for Small Block NAND
* ----------------------------------------------------------
* 1. X'fer 256 bytes of data from Memory to Flash.
* 2. Copy generated ECC data from Register to Spare Area
* 3. X'fer next 256 bytes of data from Memory to Flash.
* 4. Copy generated ECC data from Register to Spare Area.
* 5. X'fer 16 byets of Spare area from Memory to Flash.
* Read Operation Sequence for Small Block NAND
* ----------------------------------------------------------
* 1. X'fer 256 bytes of data from Flash to Memory.
* 2. Copy generated ECC data from Register to ECC calc Buffer.
* 3. X'fer next 256 bytes of data from Flash to Memory.
* 4. Copy generated ECC data from Register to ECC calc Buffer.
* 5. X'fer 16 bytes of Spare area from Flash to Memory.
* Write Operation Sequence for Large Block NAND
* ----------------------------------------------------------
* 1. Steps(1-4) of Write Operations repeate for four times
* which generates 16 DMA descriptors to X'fer 2048 bytes of
* data & 32 bytes of ECC data.
* 2. X'fer 64 bytes of Spare area from Memory to Flash.
* Read Operation Sequence for Large Block NAND
* ----------------------------------------------------------
* 1. Steps(1-4) of Read Operations repeate for four times
* which generates 16 DMA descriptors to X'fer 2048 bytes of
* data & 32 bytes of ECC data.
* 2. X'fer 64 bytes of Spare area from Flash to Memory.
*/
for (i = 0; i < page_size/0x100; i++) {
dmalist[i*2].dma_src = (do_read ? dmasrc : (dmasrc + i * 256));
dmalist[i*2].dma_dest = (do_read ? (dmadst + i * 256) : dmadst);
dmalist[i*2].next_lli =
target_mem_base + (i*2 + 1) * sizeof(dmac_ll_t);
dmalist[i*2].next_ctrl = ctrl;
dmalist[(i*2) + 1].dma_src = 0x20020034;/* SLC_ECC */
dmalist[(i*2) + 1].dma_dest =
target_mem_base + ECC_OFFS + i * 4;
dmalist[(i*2) + 1].next_lli =
target_mem_base + (i*2 + 2) * sizeof(dmac_ll_t);
dmalist[(i*2) + 1].next_ctrl = ecc_ctrl;
}
if (do_read)
dmadst = target_mem_base + SPARE_OFFS;
else {
dmasrc = target_mem_base + SPARE_OFFS;
dmalist[(i*2) - 1].next_lli = 0;/* last link = null on write */
dmalist[(i*2) - 1].next_ctrl |= (1 << 31); /* Set TC enable */
}
dmalist[i*2].dma_src = dmasrc;
dmalist[i*2].dma_dest = dmadst;
dmalist[i*2].next_lli = 0;
dmalist[i*2].next_ctrl = oob_ctrl;
return i * 2 + 1; /* Number of descriptors */
}
static int lpc32xx_start_slc_dma(struct nand_device *nand, uint32_t count,
int do_wait)
{
struct target *target = nand->target;
int retval;
/* DMACIntTCClear = ch0 */
retval = target_write_u32(target, 0x31000008, 1);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set DMACIntTCClear");
return retval;
}
/* DMACIntErrClear = ch0 */
retval = target_write_u32(target, 0x31000010, 1);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set DMACIntErrClear");
return retval;
}
/* DMACCxConfig=
E=1,
SrcPeripheral = 1 (SLC),
DestPeripheral = 1 (SLC),
FlowCntrl = 2 (Pher -> Mem, DMA),
IE = 0,
ITC = 0,
L= 0,
H=0
*/
retval = target_write_u32(target, 0x31000110,
1 | 1<<1 | 1<<6 | 2<<11 | 0<<14
| 0<<15 | 0<<16 | 0<<18);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set DMACC0Config");
return retval;
}
/* SLC_CTRL = 3 (START DMA), ECC_CLEAR */
retval = target_write_u32(target, 0x20020010, 0x3);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set SLC_CTRL");
return retval;
}
/* SLC_ICR = 2, INT_TC_CLR, clear pending TC*/
retval = target_write_u32(target, 0x20020028, 2);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set SLC_ICR");
return retval;
}
/* SLC_TC */
retval = target_write_u32(target, 0x20020030, count);
if (ERROR_OK != retval) {
LOG_ERROR("lpc32xx_start_slc_dma: Could not set SLC_TC");
return retval;
}
/* Wait finish */
if (do_wait && !lpc32xx_tc_ready(nand, 100)) {
LOG_ERROR("timeout while waiting for completion of DMA");
return ERROR_NAND_OPERATION_FAILED;
}
return retval;
}
static int lpc32xx_dma_ready(struct nand_device *nand, int timeout)
{
struct target *target = nand->target;
LOG_DEBUG("lpc32xx_dma_ready count start=%d", timeout);
do {
uint32_t tc_stat;
uint32_t err_stat;
int retval;
/* Read DMACRawIntTCStat */
retval = target_read_u32(target, 0x31000014, &tc_stat);
if (ERROR_OK != retval) {
LOG_ERROR("Could not read DMACRawIntTCStat");
return 0;
}
/* Read DMACRawIntErrStat */
retval = target_read_u32(target, 0x31000018, &err_stat);
if (ERROR_OK != retval) {
LOG_ERROR("Could not read DMACRawIntErrStat");
return 0;
}
if ((tc_stat | err_stat) & 1) {
LOG_DEBUG("lpc32xx_dma_ready count=%d",
timeout);
if (err_stat & 1) {
LOG_ERROR("lpc32xx_dma_ready "
"DMA error, aborted");
return 0;
} else
return 1;
}
alive_sleep(1);
} while (timeout-- > 0);
return 0;
}
static uint32_t slc_ecc_copy_to_buffer(uint8_t *spare,
const uint32_t *ecc, int count)
{
int i;
for (i = 0; i < (count * 3); i += 3) {
uint32_t ce = ecc[i/3];
ce = ~(ce << 2) & 0xFFFFFF;
spare[i+2] = (uint8_t)(ce & 0xFF); ce >>= 8;
spare[i+1] = (uint8_t)(ce & 0xFF); ce >>= 8;
spare[i] = (uint8_t)(ce & 0xFF);
}
return 0;
}
static void lpc32xx_dump_oob(uint8_t *oob, uint32_t oob_size)
{
int addr = 0;
while (oob_size > 0) {
LOG_DEBUG("%02x: %02x %02x %02x %02x %02x %02x %02x %02x", addr,
oob[0], oob[1], oob[2], oob[3],
oob[4], oob[5], oob[6], oob[7]);
oob += 8;
addr += 8;
oob_size -= 8;
}
}
static int lpc32xx_write_page_slc(struct nand_device *nand,
struct working_area *pworking_area,
uint32_t page, uint8_t *data,
uint32_t data_size, uint8_t *oob,
uint32_t oob_size)
{
struct target *target = nand->target;
int retval;
uint32_t target_mem_base;
LOG_DEBUG("SLC write page %x data=%d, oob=%d, "
"data_size=%d, oob_size=%d",
page, data != 0, oob != 0, data_size, oob_size);
target_mem_base = pworking_area->address;
/*
* Skip writting page which has all 0xFF data as this will
* generate 0x0 value.
*/
if (data && !oob) {
uint32_t i, all_ff = 1;
for (i = 0; i < data_size; i++)
if (data[i] != 0xFF) {
all_ff = 0;
break;
}
if (all_ff)
return ERROR_OK;
}
/* Make the dma descriptors in local memory */
int nll = lpc32xx_make_dma_list(target_mem_base, nand->page_size, 0);
/* Write them to target.
XXX: Assumes host and target have same byte sex.
*/
retval = target_write_memory(target, target_mem_base, 4,
nll * sizeof(dmac_ll_t) / 4,
(uint8_t *)dmalist);
if (ERROR_OK != retval) {
LOG_ERROR("Could not write DMA descriptors to IRAM");
return retval;
}
retval = nand_page_command(nand, page, NAND_CMD_SEQIN, !data);
if (ERROR_OK != retval) {
LOG_ERROR("NAND_CMD_SEQIN failed");
return retval;
}
/* SLC_CFG =
Force nCE assert,
DMA ECC enabled,
ECC enabled,
DMA burst enabled,
DMA write to SLC,
WIDTH = bus_width
*/
retval = target_write_u32(target, 0x20020014, 0x3c);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set SLC_CFG");
return retval;
}
if (data) {
/* Write data to target */
static uint8_t fdata[2048];
memset(fdata, 0xFF, nand->page_size);
memcpy(fdata, data, data_size);
retval = target_write_memory(target,
target_mem_base + DATA_OFFS,
4, nand->page_size/4, fdata);
if (ERROR_OK != retval) {
LOG_ERROR("Could not write data to IRAM");
return retval;
}
/* Write first decriptor to DMA controller */
retval = target_write_memory(target, 0x31000100, 4,
sizeof(dmac_ll_t) / 4,
(uint8_t *)dmalist);
if (ERROR_OK != retval) {
LOG_ERROR("Could not write DMA descriptor to DMAC");
return retval;
}
/* Start xfer of data from iram to flash using DMA */
int tot_size = nand->page_size;
tot_size += tot_size == 2048 ? 64 : 16;
retval = lpc32xx_start_slc_dma(nand, tot_size, 0);
if (ERROR_OK != retval) {
LOG_ERROR("DMA failed");
return retval;
}
/* Wait for DMA to finish. SLC is not finished at this stage */
if (!lpc32xx_dma_ready(nand, 100)) {
LOG_ERROR("Data DMA failed during write");
return ERROR_FLASH_OPERATION_FAILED;
}
} /* data xfer */
/* Copy OOB to iram */
static uint8_t foob[64];
int foob_size = nand->page_size == 2048 ? 64 : 16;
memset(foob, 0xFF, foob_size);
if (oob) /* Raw mode */
memcpy(foob, oob, oob_size);
else {
/* Get HW generated ECC, made while writing data */
int ecc_count = nand->page_size == 2048 ? 8 : 2;
static uint32_t hw_ecc[8];
retval = target_read_memory(target, target_mem_base + ECC_OFFS,
4, ecc_count, (uint8_t *)hw_ecc);
if (ERROR_OK != retval) {
LOG_ERROR("Reading hw generated ECC from IRAM failed");
return retval;
}
/* Copy to oob, at correct offsets */
static uint8_t ecc[24];
slc_ecc_copy_to_buffer(ecc, hw_ecc, ecc_count);
int *layout = nand->page_size == 2048 ? lp_ooblayout : sp_ooblayout;
int i;
for (i = 0; i < ecc_count * 3; i++)
foob[layout[i]] = ecc[i];
lpc32xx_dump_oob(foob, foob_size);
}
retval = target_write_memory(target, target_mem_base + SPARE_OFFS, 4,
foob_size / 4, foob);
if (ERROR_OK != retval) {
LOG_ERROR("Writing OOB to IRAM failed");
return retval;
}
/* Write OOB decriptor to DMA controller */
retval = target_write_memory(target, 0x31000100, 4,
sizeof(dmac_ll_t) / 4,
(uint8_t *)(&dmalist[nll-1]));
if (ERROR_OK != retval) {
LOG_ERROR("Could not write OOB DMA descriptor to DMAC");
return retval;
}
if (data) {
/* Only restart DMA with last descriptor,
* don't setup SLC again */
/* DMACIntTCClear = ch0 */
retval = target_write_u32(target, 0x31000008, 1);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set DMACIntTCClear");
return retval;
}
/* DMACCxConfig=
* E=1,
* SrcPeripheral = 1 (SLC),
* DestPeripheral = 1 (SLC),
* FlowCntrl = 2 (Pher -> Mem, DMA),
* IE = 0,
* ITC = 0,
* L= 0,
* H=0
*/
retval = target_write_u32(target, 0x31000110,
1 | 1<<1 | 1<<6 | 2<<11 | 0<<14
| 0<<15 | 0<<16 | 0<<18);
if (ERROR_OK != retval) {
LOG_ERROR("Could not set DMACC0Config");
return retval;
}
/* Wait finish */
if (!lpc32xx_tc_ready(nand, 100)) {
LOG_ERROR("timeout while waiting for "
"completion of DMA");
return ERROR_NAND_OPERATION_FAILED;
}
} else {
/* Start xfer of data from iram to flash using DMA */
retval = lpc32xx_start_slc_dma(nand, foob_size, 1);
if (ERROR_OK != retval) {
LOG_ERROR("DMA OOB failed");
return retval;
}
}
/* Let NAND start actual writing */
retval = nand_write_finish(nand);
if (ERROR_OK != retval) {
LOG_ERROR("nand_write_finish failed");
return retval;
}
return ERROR_OK;
}
static int lpc32xx_write_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval = ERROR_OK;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC32xx "
"NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
if (!data && oob) {
LOG_ERROR("LPC32xx MLC controller can't write "
"OOB data only");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (oob && (oob_size > 24)) {
LOG_ERROR("LPC32xx MLC controller can't write more "
"than 6 bytes for each quarter's OOB data");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
if (data_size > (uint32_t)nand->page_size) {
LOG_ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
retval = lpc32xx_write_page_mlc(nand, page, data, data_size,
oob, oob_size);
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
struct working_area *pworking_area;
if (!data && oob) {
/*
* if oob only mode is active original method is used
* as SLC controller hangs during DMA interworking. (?)
* Anyway the code supports the oob only mode below.
*/
return nand_write_page_raw(nand, page, data,
data_size, oob, oob_size);
}
retval = target_alloc_working_area(target,
nand->page_size + DATA_OFFS,
&pworking_area);
if (retval != ERROR_OK) {
LOG_ERROR("Can't allocate working area in "
"LPC internal RAM");
return ERROR_FLASH_OPERATION_FAILED;
}
retval = lpc32xx_write_page_slc(nand, pworking_area, page,
data, data_size, oob, oob_size);
target_free_working_area(target, pworking_area);
}
return retval;
}
static int lpc32xx_read_page_mlc(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct target *target = nand->target;
static uint8_t page_buffer[2048];
static uint8_t oob_buffer[64];
uint32_t page_bytes_done = 0;
uint32_t oob_bytes_done = 0;
uint32_t mlc_isr;
int retval;
if (!data && oob) {
/* MLC_CMD = Read OOB
* we can use the READOOB command on both small and large page
* devices, as the controller translates the 0x50 command to
* a 0x0 with appropriate positioning of the serial buffer
* read pointer
*/
retval = target_write_u32(target, 0x200b8000, NAND_CMD_READOOB);
} else {
/* MLC_CMD = Read0 */
retval = target_write_u32(target, 0x200b8000, NAND_CMD_READ0);
}
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_CMD");
return ERROR_NAND_OPERATION_FAILED;
}
if (nand->page_size == 512) {
/* small page device
* MLC_ADDR = 0x0 (one column cycle) */
retval = target_write_u32(target, 0x200b8004, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_ADDR = row */
retval = target_write_u32(target, 0x200b8004, page & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_u32(target, 0x200b8004,
(page >> 8) & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
if (nand->address_cycles == 4) {
retval = target_write_u32(target, 0x200b8004,
(page >> 16) & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
}
} else {
/* large page device
* MLC_ADDR = 0x0 (two column cycles) */
retval = target_write_u32(target, 0x200b8004, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_u32(target, 0x200b8004, 0x0);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_ADDR = row */
retval = target_write_u32(target, 0x200b8004, page & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_write_u32(target, 0x200b8004,
(page >> 8) & 0xff);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ADDR");
return ERROR_NAND_OPERATION_FAILED;
}
/* MLC_CMD = Read Start */
retval = target_write_u32(target, 0x200b8000,
NAND_CMD_READSTART);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_CMD");
return ERROR_NAND_OPERATION_FAILED;
}
}
while (page_bytes_done < (uint32_t)nand->page_size) {
/* MLC_ECC_AUTO_DEC_REG = dummy */
retval = target_write_u32(target, 0x200b8014, 0xaa55aa55);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_ECC_AUTO_DEC_REG");
return ERROR_NAND_OPERATION_FAILED;
}
if (!lpc32xx_controller_ready(nand, 1000)) {
LOG_ERROR("timeout while waiting for "
"completion of auto decode cycle");
return ERROR_NAND_OPERATION_FAILED;
}
retval = target_read_u32(target, 0x200b8048, &mlc_isr);
if (ERROR_OK != retval) {
LOG_ERROR("could not read MLC_ISR");
return ERROR_NAND_OPERATION_FAILED;
}
if (mlc_isr & 0x8) {
if (mlc_isr & 0x40) {
LOG_ERROR("uncorrectable error detected: "
"0x%2.2x", (unsigned)mlc_isr);
return ERROR_NAND_OPERATION_FAILED;
}
LOG_WARNING("%i symbol error detected and corrected",
((int)(((mlc_isr & 0x30) >> 4) + 1)));
}
if (data) {
retval = target_read_memory(target, 0x200a8000, 4, 128,
page_buffer + page_bytes_done);
if (ERROR_OK != retval) {
LOG_ERROR("could not read MLC_BUF (data)");
return ERROR_NAND_OPERATION_FAILED;
}
}
if (oob) {
retval = target_read_memory(target, 0x200a8000, 4, 4,
oob_buffer + oob_bytes_done);
if (ERROR_OK != retval) {
LOG_ERROR("could not read MLC_BUF (oob)");
return ERROR_NAND_OPERATION_FAILED;
}
}
page_bytes_done += 512;
oob_bytes_done += 16;
}
if (data)
memcpy(data, page_buffer, data_size);
if (oob)
memcpy(oob, oob_buffer, oob_size);
return ERROR_OK;
}
static int lpc32xx_read_page_slc(struct nand_device *nand,
struct working_area *pworking_area,
uint32_t page, uint8_t *data,
uint32_t data_size, uint8_t *oob,
uint32_t oob_size)
{
struct target *target = nand->target;
int retval;
uint32_t target_mem_base;
LOG_DEBUG("SLC read page %x data=%d, oob=%d",
page, data_size, oob_size);
target_mem_base = pworking_area->address;
/* Make the dma descriptors in local memory */
int nll = lpc32xx_make_dma_list(target_mem_base, nand->page_size, 1);
/* Write them to target.
XXX: Assumes host and target have same byte sex.
*/
retval = target_write_memory(target, target_mem_base, 4,
nll * sizeof(dmac_ll_t) / 4,
(uint8_t *)dmalist);
if (ERROR_OK != retval) {
LOG_ERROR("Could not write DMA descriptors to IRAM");
return retval;
}
retval = nand_page_command(nand, page, NAND_CMD_READ0, 0);
if (ERROR_OK != retval) {
LOG_ERROR("lpc32xx_read_page_slc: NAND_CMD_READ0 failed");
return retval;
}
/* SLC_CFG =
Force nCE assert,
DMA ECC enabled,
ECC enabled,
DMA burst enabled,
DMA read from SLC,
WIDTH = bus_width
*/
retval = target_write_u32(target, 0x20020014, 0x3e);
if (ERROR_OK != retval) {
LOG_ERROR("lpc32xx_read_page_slc: Could not set SLC_CFG");
return retval;
}
/* Write first decriptor to DMA controller */
retval = target_write_memory(target, 0x31000100, 4,
sizeof(dmac_ll_t) / 4, (uint8_t *)dmalist);
if (ERROR_OK != retval) {
LOG_ERROR("Could not write DMA descriptor to DMAC");
return retval;
}
/* Start xfer of data from flash to iram using DMA */
int tot_size = nand->page_size;
tot_size += nand->page_size == 2048 ? 64 : 16;
retval = lpc32xx_start_slc_dma(nand, tot_size, 1);
if (ERROR_OK != retval) {
LOG_ERROR("lpc32xx_read_page_slc: DMA read failed");
return retval;
}
/* Copy data from iram */
if (data) {
retval = target_read_memory(target, target_mem_base + DATA_OFFS,
4, data_size/4, data);
if (ERROR_OK != retval) {
LOG_ERROR("Could not read data from IRAM");
return retval;
}
}
if (oob) {
/* No error correction, just return data as read from flash */
retval = target_read_memory(target,
target_mem_base + SPARE_OFFS, 4,
oob_size/4, oob);
if (ERROR_OK != retval) {
LOG_ERROR("Could not read OOB from IRAM");
return retval;
}
return ERROR_OK;
}
/* Copy OOB from flash, stored in IRAM */
static uint8_t foob[64];
retval = target_read_memory(target, target_mem_base + SPARE_OFFS,
4, nand->page_size == 2048 ? 16 : 4, foob);
lpc32xx_dump_oob(foob, nand->page_size == 2048 ? 64 : 16);
if (ERROR_OK != retval) {
LOG_ERROR("Could not read OOB from IRAM");
return retval;
}
/* Copy ECC from HW, generated while reading */
int ecc_count = nand->page_size == 2048 ? 8 : 2;
static uint32_t hw_ecc[8]; /* max size */
retval = target_read_memory(target, target_mem_base + ECC_OFFS, 4,
ecc_count, (uint8_t *)hw_ecc);
if (ERROR_OK != retval) {
LOG_ERROR("Could not read hw generated ECC from IRAM");
return retval;
}
static uint8_t ecc[24];
slc_ecc_copy_to_buffer(ecc, hw_ecc, ecc_count);
/* Copy ECC from flash using correct layout */
static uint8_t fecc[24];/* max size */
int *layout = nand->page_size == 2048 ? lp_ooblayout : sp_ooblayout;
int i;
for (i = 0; i < ecc_count * 3; i++)
fecc[i] = foob[layout[i]];
/* Compare ECC and possibly correct data */
for (i = 0; i < ecc_count; i++) {
retval = nand_correct_data(nand, data + 256*i, &fecc[i * 3],
&ecc[i * 3]);
if (retval > 0)
LOG_WARNING("error detected and corrected: %d/%d",
page, i);
if (retval < 0)
break;
}
if (i == ecc_count)
retval = ERROR_OK;
else {
LOG_ERROR("uncorrectable error detected: %d/%d", page, i);
retval = ERROR_NAND_OPERATION_FAILED;
}
return retval;
}
static int lpc32xx_read_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval = ERROR_OK;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC32xx "
"NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
if (lpc32xx_info->selected_controller == LPC32xx_NO_CONTROLLER) {
LOG_ERROR("BUG: no LPC32xx NAND flash controller selected");
return ERROR_NAND_OPERATION_FAILED;
} else if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
if (data_size > (uint32_t)nand->page_size) {
LOG_ERROR("data size exceeds page size");
return ERROR_NAND_OPERATION_NOT_SUPPORTED;
}
retval = lpc32xx_read_page_mlc(nand, page, data, data_size,
oob, oob_size);
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
struct working_area *pworking_area;
retval = target_alloc_working_area(target,
nand->page_size + 0x200,
&pworking_area);
if (retval != ERROR_OK) {
LOG_ERROR("Can't allocate working area in "
"LPC internal RAM");
return ERROR_FLASH_OPERATION_FAILED;
}
retval = lpc32xx_read_page_slc(nand, pworking_area, page,
data, data_size, oob, oob_size);
target_free_working_area(target, pworking_area);
}
return retval;
}
static int lpc32xx_controller_ready(struct nand_device *nand, int timeout)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC32xx "
"NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("lpc32xx_controller_ready count start=%d", timeout);
do {
if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
uint8_t status;
/* Read MLC_ISR, wait for controller to become ready */
retval = target_read_u8(target, 0x200b8048, &status);
if (ERROR_OK != retval) {
LOG_ERROR("could not set MLC_STAT");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & 2) {
LOG_DEBUG("lpc32xx_controller_ready count=%d",
timeout);
return 1;
}
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
uint32_t status;
/* Read SLC_STAT and check READY bit */
retval = target_read_u32(target, 0x20020018, &status);
if (ERROR_OK != retval) {
LOG_ERROR("could not set SLC_STAT");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & 1) {
LOG_DEBUG("lpc32xx_controller_ready count=%d",
timeout);
return 1;
}
}
alive_sleep(1);
} while (timeout-- > 0);
return 0;
}
static int lpc32xx_nand_ready(struct nand_device *nand, int timeout)
{
struct lpc32xx_nand_controller *lpc32xx_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("target must be halted to use LPC32xx "
"NAND flash controller");
return ERROR_NAND_OPERATION_FAILED;
}
LOG_DEBUG("lpc32xx_nand_ready count start=%d", timeout);
do {
if (lpc32xx_info->selected_controller == LPC32xx_MLC_CONTROLLER) {
uint8_t status = 0x0;
/* Read MLC_ISR, wait for NAND flash device to
* become ready */
retval = target_read_u8(target, 0x200b8048, &status);
if (ERROR_OK != retval) {
LOG_ERROR("could not read MLC_ISR");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & 1) {
LOG_DEBUG("lpc32xx_nand_ready count end=%d",
timeout);
return 1;
}
} else if (lpc32xx_info->selected_controller == LPC32xx_SLC_CONTROLLER) {
uint32_t status = 0x0;
/* Read SLC_STAT and check READY bit */
retval = target_read_u32(target, 0x20020018, &status);
if (ERROR_OK != retval) {
LOG_ERROR("could not read SLC_STAT");
return ERROR_NAND_OPERATION_FAILED;
}
if (status & 1) {
LOG_DEBUG("lpc32xx_nand_ready count end=%d",
timeout);
return 1;
}
}
alive_sleep(1);
} while (timeout-- > 0);
return 0;
}
static int lpc32xx_tc_ready(struct nand_device *nand, int timeout)
{
struct target *target = nand->target;
LOG_DEBUG("lpc32xx_tc_ready count start=%d", timeout);
do {
uint32_t status = 0x0;
int retval;
/* Read SLC_INT_STAT and check INT_TC_STAT bit */
retval = target_read_u32(target, 0x2002001c, &status);
if (ERROR_OK != retval) {
LOG_ERROR("Could not read SLC_INT_STAT");
return 0;
}
if (status & 2) {
LOG_DEBUG("lpc32xx_tc_ready count=%d", timeout);
return 1;
}
alive_sleep(1);
} while (timeout-- > 0);
return 0;
}
COMMAND_HANDLER(handle_lpc32xx_select_command)
{
struct lpc32xx_nand_controller *lpc32xx_info = NULL;
char *selected[] = {
"no", "mlc", "slc"
};
if ((CMD_ARGC < 1) || (CMD_ARGC > 3))
return ERROR_COMMAND_SYNTAX_ERROR;
unsigned num;
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
struct nand_device *nand = get_nand_device_by_num(num);
if (!nand) {
command_print(CMD_CTX, "nand device '#%s' is out of bounds",
CMD_ARGV[0]);
return ERROR_OK;
}
lpc32xx_info = nand->controller_priv;
if (CMD_ARGC >= 2) {
if (strcmp(CMD_ARGV[1], "mlc") == 0) {
lpc32xx_info->selected_controller =
LPC32xx_MLC_CONTROLLER;
} else if (strcmp(CMD_ARGV[1], "slc") == 0) {
lpc32xx_info->selected_controller =
LPC32xx_SLC_CONTROLLER;
} else
return ERROR_COMMAND_SYNTAX_ERROR;
}
command_print(CMD_CTX, "%s controller selected",
selected[lpc32xx_info->selected_controller]);
return ERROR_OK;
}
static const struct command_registration lpc32xx_exec_command_handlers[] = {
{
.name = "select",
.handler = handle_lpc32xx_select_command,
.mode = COMMAND_EXEC,
.help = "select MLC or SLC controller (default is MLC)",
.usage = "bank_id ['mlc'|'slc' ]",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration lpc32xx_command_handler[] = {
{
.name = "lpc32xx",
.mode = COMMAND_ANY,
.help = "LPC32xx NAND flash controller commands",
.usage = "",
.chain = lpc32xx_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct nand_flash_controller lpc32xx_nand_controller = {
.name = "lpc32xx",
.commands = lpc32xx_command_handler,
.nand_device_command = lpc32xx_nand_device_command,
.init = lpc32xx_init,
.reset = lpc32xx_reset,
.command = lpc32xx_command,
.address = lpc32xx_address,
.write_data = lpc32xx_write_data,
.read_data = lpc32xx_read_data,
.write_page = lpc32xx_write_page,
.read_page = lpc32xx_read_page,
.nand_ready = lpc32xx_nand_ready,
};