openocd/src/flash/nand/mx3.c

731 lines
20 KiB
C

/***************************************************************************
* Copyright (C) 2009 by Alexei Babich *
* Rezonans plc., Chelyabinsk, Russia *
* impatt@mail.ru *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
/*
* Freescale iMX3* OpenOCD NAND Flash controller support.
*
* Many thanks to Ben Dooks for writing s3c24xx driver.
*/
/*
driver tested with STMicro NAND512W3A @imx31
tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #", "nand write # file 0"
get_next_halfword_from_sram_buffer() not tested
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "mx3.h"
#include <target/target.h>
static const char target_not_halted_err_msg[] =
"target must be halted to use mx3 NAND flash controller";
static const char data_block_size_err_msg[] =
"minimal granularity is one half-word, %" PRId32 " is incorrect";
static const char sram_buffer_bounds_err_msg[] =
"trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")";
static const char get_status_register_err_msg[] = "can't get NAND status";
static uint32_t in_sram_address;
static unsigned char sign_of_sequental_byte_read;
static int test_iomux_settings(struct target *target, uint32_t value,
uint32_t mask, const char *text);
static int initialize_nf_controller(struct nand_device *nand);
static int get_next_byte_from_sram_buffer(struct target *target, uint8_t *value);
static int get_next_halfword_from_sram_buffer(struct target *target,
uint16_t *value);
static int poll_for_complete_op(struct target *target, const char *text);
static int validate_target_state(struct nand_device *nand);
static int do_data_output(struct nand_device *nand);
static int imx31_command(struct nand_device *nand, uint8_t command);
static int imx31_address(struct nand_device *nand, uint8_t address);
NAND_DEVICE_COMMAND_HANDLER(imx31_nand_device_command)
{
struct mx3_nf_controller *mx3_nf_info;
mx3_nf_info = malloc(sizeof(struct mx3_nf_controller));
if (mx3_nf_info == NULL) {
LOG_ERROR("no memory for nand controller");
return ERROR_FAIL;
}
nand->controller_priv = mx3_nf_info;
if (CMD_ARGC < 3)
return ERROR_COMMAND_SYNTAX_ERROR;
/*
* check hwecc requirements
*/
{
int hwecc_needed;
hwecc_needed = strcmp(CMD_ARGV[2], "hwecc");
if (hwecc_needed == 0)
mx3_nf_info->flags.hw_ecc_enabled = 1;
else
mx3_nf_info->flags.hw_ecc_enabled = 0;
}
mx3_nf_info->optype = MX3_NF_DATAOUT_PAGE;
mx3_nf_info->fin = MX3_NF_FIN_NONE;
mx3_nf_info->flags.target_little_endian =
(nand->target->endianness == TARGET_LITTLE_ENDIAN);
/*
* testing host endianness
*/
{
int x = 1;
if (*(char *) &x == 1)
mx3_nf_info->flags.host_little_endian = 1;
else
mx3_nf_info->flags.host_little_endian = 0;
}
return ERROR_OK;
}
static int imx31_init(struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = nand->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
}
{
uint16_t buffsize_register_content;
target_read_u16(target, MX3_NF_BUFSIZ, &buffsize_register_content);
mx3_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
}
{
uint32_t pcsr_register_content;
target_read_u32(target, MX3_PCSR, &pcsr_register_content);
if (!nand->bus_width) {
nand->bus_width = (pcsr_register_content & 0x80000000) ? 16 : 8;
} else {
pcsr_register_content |= ((nand->bus_width == 16) ? 0x80000000 : 0x00000000);
target_write_u32(target, MX3_PCSR, pcsr_register_content);
}
if (!nand->page_size) {
nand->page_size = (pcsr_register_content & 0x40000000) ? 2048 : 512;
} else {
pcsr_register_content |= ((nand->page_size == 2048) ? 0x40000000 : 0x00000000);
target_write_u32(target, MX3_PCSR, pcsr_register_content);
}
if (mx3_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
LOG_ERROR("NAND controller have only 1 kb SRAM, "
"so pagesize 2048 is incompatible with it");
}
}
{
uint32_t cgr_register_content;
target_read_u32(target, MX3_CCM_CGR2, &cgr_register_content);
if (!(cgr_register_content & 0x00000300)) {
LOG_ERROR("clock gating to EMI disabled");
return ERROR_FAIL;
}
}
{
uint32_t gpr_register_content;
target_read_u32(target, MX3_GPR, &gpr_register_content);
if (gpr_register_content & 0x00000060) {
LOG_ERROR("pins mode overrided by GPR");
return ERROR_FAIL;
}
}
{
/*
* testing IOMUX settings; must be in "functional-mode output and
* functional-mode input" mode
*/
int test_iomux;
test_iomux = ERROR_OK;
test_iomux |= test_iomux_settings(target, 0x43fac0c0, 0x7f7f7f00, "d0,d1,d2");
test_iomux |= test_iomux_settings(target, 0x43fac0c4, 0x7f7f7f7f, "d3,d4,d5,d6");
test_iomux |= test_iomux_settings(target, 0x43fac0c8, 0x0000007f, "d7");
if (nand->bus_width == 16) {
test_iomux |= test_iomux_settings(target, 0x43fac0c8, 0x7f7f7f00, "d8,d9,d10");
test_iomux |= test_iomux_settings(target, 0x43fac0cc, 0x7f7f7f7f, "d11,d12,d13,d14");
test_iomux |= test_iomux_settings(target, 0x43fac0d0, 0x0000007f, "d15");
}
test_iomux |= test_iomux_settings(target, 0x43fac0d0, 0x7f7f7f00, "nfwp,nfce,nfrb");
test_iomux |= test_iomux_settings(target, 0x43fac0d4, 0x7f7f7f7f,
"nfwe,nfre,nfale,nfcle");
if (test_iomux != ERROR_OK)
return ERROR_FAIL;
}
initialize_nf_controller(nand);
{
int retval;
uint16_t nand_status_content;
retval = ERROR_OK;
retval |= imx31_command(nand, NAND_CMD_STATUS);
retval |= imx31_address(nand, 0x00);
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return ERROR_FAIL;
}
target_read_u16(target, MX3_NF_MAIN_BUFFER0, &nand_status_content);
if (!(nand_status_content & 0x0080)) {
/*
* is host-big-endian correctly ??
*/
LOG_INFO("NAND read-only");
mx3_nf_info->flags.nand_readonly = 1;
} else
mx3_nf_info->flags.nand_readonly = 0;
}
return ERROR_OK;
}
static int imx31_read_data(struct nand_device *nand, void *data)
{
struct target *target = nand->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
}
{
/*
* get data from nand chip
*/
int try_data_output_from_nand_chip;
try_data_output_from_nand_chip = do_data_output(nand);
if (try_data_output_from_nand_chip != ERROR_OK)
return try_data_output_from_nand_chip;
}
if (nand->bus_width == 16)
get_next_halfword_from_sram_buffer(target, data);
else
get_next_byte_from_sram_buffer(target, data);
return ERROR_OK;
}
static int imx31_write_data(struct nand_device *nand, uint16_t data)
{
LOG_ERROR("write_data() not implemented");
return ERROR_NAND_OPERATION_FAILED;
}
static int imx31_reset(struct nand_device *nand)
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
initialize_nf_controller(nand);
return ERROR_OK;
}
static int imx31_command(struct nand_device *nand, uint8_t command)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = nand->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
}
switch (command) {
case NAND_CMD_READOOB:
command = NAND_CMD_READ0;
in_sram_address = MX3_NF_SPARE_BUFFER0; /* set read point for
* data_read() and
* read_block_data() to
* spare area in SRAM
* buffer */
break;
case NAND_CMD_READ1:
command = NAND_CMD_READ0;
/*
* offset == one half of page size
*/
in_sram_address = MX3_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
default:
in_sram_address = MX3_NF_MAIN_BUFFER0;
}
target_write_u16(target, MX3_NF_FCMD, command);
/*
* start command input operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX3_NF_CFG2, MX3_NF_BIT_OP_FCI);
{
int poll_result;
poll_result = poll_for_complete_op(target, "command");
if (poll_result != ERROR_OK)
return poll_result;
}
/*
* reset cursor to begin of the buffer
*/
sign_of_sequental_byte_read = 0;
switch (command) {
case NAND_CMD_READID:
mx3_nf_info->optype = MX3_NF_DATAOUT_NANDID;
mx3_nf_info->fin = MX3_NF_FIN_DATAOUT;
break;
case NAND_CMD_STATUS:
mx3_nf_info->optype = MX3_NF_DATAOUT_NANDSTATUS;
mx3_nf_info->fin = MX3_NF_FIN_DATAOUT;
break;
case NAND_CMD_READ0:
mx3_nf_info->fin = MX3_NF_FIN_DATAOUT;
mx3_nf_info->optype = MX3_NF_DATAOUT_PAGE;
break;
default:
mx3_nf_info->optype = MX3_NF_DATAOUT_PAGE;
}
return ERROR_OK;
}
static int imx31_address(struct nand_device *nand, uint8_t address)
{
struct target *target = nand->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
}
target_write_u16(target, MX3_NF_FADDR, address);
/*
* start address input operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX3_NF_CFG2, MX3_NF_BIT_OP_FAI);
{
int poll_result;
poll_result = poll_for_complete_op(target, "address");
if (poll_result != ERROR_OK)
return poll_result;
}
return ERROR_OK;
}
static int imx31_nand_ready(struct nand_device *nand, int tout)
{
uint16_t poll_complete_status;
struct target *target = nand->target;
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
}
do {
target_read_u16(target, MX3_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX3_NF_BIT_OP_DONE)
return tout;
alive_sleep(1);
} while (tout-- > 0);
return tout;
}
static int imx31_write_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size, uint8_t *oob,
uint32_t oob_size)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = nand->target;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (!data) {
LOG_ERROR("nothing to program");
return ERROR_NAND_OPERATION_FAILED;
}
{
/*
* validate target state
*/
int retval;
retval = validate_target_state(nand);
if (retval != ERROR_OK)
return retval;
}
{
int retval = ERROR_OK;
retval |= imx31_command(nand, NAND_CMD_SEQIN);
retval |= imx31_address(nand, 0x00);
retval |= imx31_address(nand, page & 0xff);
retval |= imx31_address(nand, (page >> 8) & 0xff);
if (nand->address_cycles >= 4) {
retval |= imx31_address(nand, (page >> 16) & 0xff);
if (nand->address_cycles >= 5)
retval |= imx31_address(nand, (page >> 24) & 0xff);
}
target_write_buffer(target, MX3_NF_MAIN_BUFFER0, data_size, data);
if (oob) {
if (mx3_nf_info->flags.hw_ecc_enabled) {
/*
* part of spare block will be overrided by hardware
* ECC generator
*/
LOG_DEBUG("part of spare block will be overrided by hardware ECC generator");
}
target_write_buffer(target, MX3_NF_SPARE_BUFFER0, oob_size, oob);
}
/*
* start data input operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MX3_NF_CFG2, MX3_NF_BIT_OP_FDI);
{
int poll_result;
poll_result = poll_for_complete_op(target, "data input");
if (poll_result != ERROR_OK)
return poll_result;
}
retval |= imx31_command(nand, NAND_CMD_PAGEPROG);
if (retval != ERROR_OK)
return retval;
/*
* check status register
*/
{
uint16_t nand_status_content;
retval = ERROR_OK;
retval |= imx31_command(nand, NAND_CMD_STATUS);
retval |= imx31_address(nand, 0x00);
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return retval;
}
target_read_u16(target, MX3_NF_MAIN_BUFFER0, &nand_status_content);
if (nand_status_content & 0x0001) {
/*
* is host-big-endian correctly ??
*/
return ERROR_NAND_OPERATION_FAILED;
}
}
}
return ERROR_OK;
}
static int imx31_read_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size, uint8_t *oob,
uint32_t oob_size)
{
struct target *target = nand->target;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
{
/*
* validate target state
*/
int retval;
retval = validate_target_state(nand);
if (retval != ERROR_OK)
return retval;
}
{
int retval = ERROR_OK;
retval |= imx31_command(nand, NAND_CMD_READ0);
retval |= imx31_address(nand, 0x00);
retval |= imx31_address(nand, page & 0xff);
retval |= imx31_address(nand, (page >> 8) & 0xff);
if (nand->address_cycles >= 4) {
retval |= imx31_address(nand, (page >> 16) & 0xff);
if (nand->address_cycles >= 5) {
retval |= imx31_address(nand, (page >> 24) & 0xff);
retval |= imx31_command(nand, NAND_CMD_READSTART);
}
}
retval |= do_data_output(nand);
if (retval != ERROR_OK)
return retval;
if (data) {
target_read_buffer(target, MX3_NF_MAIN_BUFFER0, data_size,
data);
}
if (oob) {
target_read_buffer(target, MX3_NF_SPARE_BUFFER0, oob_size,
oob);
}
}
return ERROR_OK;
}
static int test_iomux_settings(struct target *target, uint32_t address,
uint32_t mask, const char *text)
{
uint32_t register_content;
target_read_u32(target, address, &register_content);
if ((register_content & mask) != (0x12121212 & mask)) {
LOG_ERROR("IOMUX for {%s} is bad", text);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int initialize_nf_controller(struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = nand->target;
/*
* resets NAND flash controller in zero time ? I dont know.
*/
target_write_u16(target, MX3_NF_CFG1, MX3_NF_BIT_RESET_EN);
{
uint16_t work_mode;
work_mode = MX3_NF_BIT_INT_DIS; /* disable interrupt */
if (target->endianness == TARGET_BIG_ENDIAN)
work_mode |= MX3_NF_BIT_BE_EN;
if (mx3_nf_info->flags.hw_ecc_enabled)
work_mode |= MX3_NF_BIT_ECC_EN;
target_write_u16(target, MX3_NF_CFG1, work_mode);
}
/*
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
*/
target_write_u16(target, MX3_NF_BUFCFG, 2);
{
uint16_t temp;
target_read_u16(target, MX3_NF_FWP, &temp);
if ((temp & 0x0007) == 1) {
LOG_ERROR("NAND flash is tight-locked, reset needed");
return ERROR_FAIL;
}
}
/*
* unlock NAND flash for write
*/
target_write_u16(target, MX3_NF_FWP, 4);
target_write_u16(target, MX3_NF_LOCKSTART, 0x0000);
target_write_u16(target, MX3_NF_LOCKEND, 0xFFFF);
/*
* 0x0000 means that first SRAM buffer @0xB800_0000 will be used
*/
target_write_u16(target, MX3_NF_BUFADDR, 0x0000);
/*
* address of SRAM buffer
*/
in_sram_address = MX3_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
return ERROR_OK;
}
static int get_next_byte_from_sram_buffer(struct target *target, uint8_t *value)
{
static uint8_t even_byte;
/*
* host-big_endian ??
*/
if (sign_of_sequental_byte_read == 0)
even_byte = 0;
if (in_sram_address > MX3_NF_LAST_BUFFER_ADDR) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
sign_of_sequental_byte_read = 0;
even_byte = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
uint16_t temp;
target_read_u16(target, in_sram_address, &temp);
if (even_byte) {
*value = temp >> 8;
even_byte = 0;
in_sram_address += 2;
} else {
*value = temp & 0xff;
even_byte = 1;
}
}
sign_of_sequental_byte_read = 1;
return ERROR_OK;
}
static int get_next_halfword_from_sram_buffer(struct target *target,
uint16_t *value)
{
if (in_sram_address > MX3_NF_LAST_BUFFER_ADDR) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
target_read_u16(target, in_sram_address, value);
in_sram_address += 2;
}
return ERROR_OK;
}
static int poll_for_complete_op(struct target *target, const char *text)
{
uint16_t poll_complete_status;
for (int poll_cycle_count = 0; poll_cycle_count < 100; poll_cycle_count++) {
usleep(25);
target_read_u16(target, MX3_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MX3_NF_BIT_OP_DONE)
break;
}
if (!(poll_complete_status & MX3_NF_BIT_OP_DONE)) {
LOG_ERROR("%s sending timeout", text);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int validate_target_state(struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR(target_not_halted_err_msg);
return ERROR_NAND_OPERATION_FAILED;
}
if (mx3_nf_info->flags.target_little_endian !=
(target->endianness == TARGET_LITTLE_ENDIAN)) {
/*
* endianness changed after NAND controller probed
*/
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int do_data_output(struct nand_device *nand)
{
struct mx3_nf_controller *mx3_nf_info = nand->controller_priv;
struct target *target = nand->target;
switch (mx3_nf_info->fin) {
case MX3_NF_FIN_DATAOUT:
/*
* start data output operation (set MX3_NF_BIT_OP_DONE==0)
*/
target_write_u16 (target, MX3_NF_CFG2,
MX3_NF_BIT_DATAOUT_TYPE(mx3_nf_info->optype));
{
int poll_result;
poll_result = poll_for_complete_op(target, "data output");
if (poll_result != ERROR_OK)
return poll_result;
}
mx3_nf_info->fin = MX3_NF_FIN_NONE;
/*
* ECC stuff
*/
if ((mx3_nf_info->optype == MX3_NF_DATAOUT_PAGE)
&& mx3_nf_info->flags.hw_ecc_enabled) {
uint16_t ecc_status;
target_read_u16 (target, MX3_NF_ECCSTATUS, &ecc_status);
switch (ecc_status & 0x000c) {
case 1 << 2:
LOG_DEBUG("main area readed with 1 (correctable) error");
break;
case 2 << 2:
LOG_DEBUG("main area readed with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
switch (ecc_status & 0x0003) {
case 1:
LOG_DEBUG("spare area readed with 1 (correctable) error");
break;
case 2:
LOG_DEBUG("main area readed with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
}
break;
case MX3_NF_FIN_NONE:
break;
}
return ERROR_OK;
}
struct nand_flash_controller imx31_nand_flash_controller = {
.name = "imx31",
.usage = "nand device imx31 target noecc|hwecc",
.nand_device_command = &imx31_nand_device_command,
.init = &imx31_init,
.reset = &imx31_reset,
.command = &imx31_command,
.address = &imx31_address,
.write_data = &imx31_write_data,
.read_data = &imx31_read_data,
.write_page = &imx31_write_page,
.read_page = &imx31_read_page,
.nand_ready = &imx31_nand_ready,
};