openocd/src/flash/nand/mxc.c

972 lines
29 KiB
C

/***************************************************************************
* Copyright (C) 2009 by Alexei Babich *
* Rezonans plc., Chelyabinsk, Russia *
* impatt@mail.ru *
* *
* Copyright (C) 2010 by Gaetan CARLIER *
* Trump s.a., Belgium *
* *
* Copyright (C) 2011 by Erik Ahlen *
* Avalon Innovation, Sweden *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
/*
* Freescale iMX OpenOCD NAND Flash controller support.
* based on Freescale iMX2* and iMX3* OpenOCD NAND Flash controller support.
*/
/*
* driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @mxc
* tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #",
* "nand write # file 0", "nand verify"
*
* get_next_halfword_from_sram_buffer() not tested
* !! all function only tested with 2k page nand device; mxc_write_page
* writes the 4 MAIN_BUFFER's and is not compatible with < 2k page
* !! oob must be be used due to NFS bug
* !! oob must be 64 bytes per 2KiB page
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "mxc.h"
#include <target/target.h>
#define OOB_SIZE 64
#define nfc_is_v1() (mxc_nf_info->mxc_version == MXC_VERSION_MX27 || \
mxc_nf_info->mxc_version == MXC_VERSION_MX31)
#define nfc_is_v2() (mxc_nf_info->mxc_version == MXC_VERSION_MX25 || \
mxc_nf_info->mxc_version == MXC_VERSION_MX35)
/* This permits to print (in LOG_INFO) how much bytes
* has been written after a page read or write.
* This is useful when OpenOCD is used with a graphical
* front-end to estimate progression of the global read/write
*/
#undef _MXC_PRINT_STAT
/* #define _MXC_PRINT_STAT */
static const char target_not_halted_err_msg[] =
"target must be halted to use mxc NAND flash controller";
static const char data_block_size_err_msg[] =
"minimal granularity is one half-word, %" PRId32 " is incorrect";
static const char sram_buffer_bounds_err_msg[] =
"trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")";
static const char get_status_register_err_msg[] = "can't get NAND status";
static uint32_t in_sram_address;
static unsigned char sign_of_sequental_byte_read;
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr);
static int initialize_nf_controller(struct nand_device *nand);
static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value);
static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value);
static int poll_for_complete_op(struct nand_device *nand, const char *text);
static int validate_target_state(struct nand_device *nand);
static int do_data_output(struct nand_device *nand);
static int mxc_command(struct nand_device *nand, uint8_t command);
static int mxc_address(struct nand_device *nand, uint8_t address);
NAND_DEVICE_COMMAND_HANDLER(mxc_nand_device_command)
{
struct mxc_nf_controller *mxc_nf_info;
int hwecc_needed;
int x;
mxc_nf_info = malloc(sizeof(struct mxc_nf_controller));
if (mxc_nf_info == NULL) {
LOG_ERROR("no memory for nand controller");
return ERROR_FAIL;
}
nand->controller_priv = mxc_nf_info;
if (CMD_ARGC < 4) {
LOG_ERROR("use \"nand device mxc target mx25|mx27|mx31|mx35 noecc|hwecc [biswap]\"");
return ERROR_FAIL;
}
/*
* check board type
*/
if (strcmp(CMD_ARGV[2], "mx25") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX25;
mxc_nf_info->mxc_base_addr = 0xBB000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
} else if (strcmp(CMD_ARGV[2], "mx27") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX27;
mxc_nf_info->mxc_base_addr = 0xD8000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
} else if (strcmp(CMD_ARGV[2], "mx31") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX31;
mxc_nf_info->mxc_base_addr = 0xB8000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
} else if (strcmp(CMD_ARGV[2], "mx35") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX35;
mxc_nf_info->mxc_base_addr = 0xBB000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
}
/*
* check hwecc requirements
*/
hwecc_needed = strcmp(CMD_ARGV[3], "hwecc");
if (hwecc_needed == 0)
mxc_nf_info->flags.hw_ecc_enabled = 1;
else
mxc_nf_info->flags.hw_ecc_enabled = 0;
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
mxc_nf_info->fin = MXC_NF_FIN_NONE;
mxc_nf_info->flags.target_little_endian =
(nand->target->endianness == TARGET_LITTLE_ENDIAN);
/*
* should factory bad block indicator be swaped
* as a workaround for how the nfc handles pages.
*/
if (CMD_ARGC > 4 && strcmp(CMD_ARGV[4], "biswap") == 0) {
LOG_DEBUG("BI-swap enabled");
mxc_nf_info->flags.biswap_enabled = 1;
}
/*
* testing host endianness
*/
x = 1;
if (*(char *) &x == 1)
mxc_nf_info->flags.host_little_endian = 1;
else
mxc_nf_info->flags.host_little_endian = 0;
return ERROR_OK;
}
COMMAND_HANDLER(handle_mxc_biswap_command)
{
struct nand_device *nand = NULL;
struct mxc_nf_controller *mxc_nf_info = NULL;
if (CMD_ARGC < 1 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &nand);
if (retval != ERROR_OK) {
command_print(CMD_CTX, "invalid nand device number or name: %s", CMD_ARGV[0]);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
mxc_nf_info = nand->controller_priv;
if (CMD_ARGC == 2) {
if (strcmp(CMD_ARGV[1], "enable") == 0)
mxc_nf_info->flags.biswap_enabled = true;
else
mxc_nf_info->flags.biswap_enabled = false;
}
if (mxc_nf_info->flags.biswap_enabled)
command_print(CMD_CTX, "BI-swapping enabled on %s", nand->name);
else
command_print(CMD_CTX, "BI-swapping disabled on %s", nand->name);
return ERROR_OK;
}
static const struct command_registration mxc_sub_command_handlers[] = {
{
.name = "biswap",
.handler = handle_mxc_biswap_command,
.help = "Turns on/off bad block information swaping from main area, "
"without parameter query status.",
.usage = "bank_id ['enable'|'disable']",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration mxc_nand_command_handler[] = {
{
.name = "mxc",
.mode = COMMAND_ANY,
.help = "MXC NAND flash controller commands",
.chain = mxc_sub_command_handlers
},
COMMAND_REGISTRATION_DONE
};
static int mxc_init(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int validate_target_result;
uint16_t buffsize_register_content;
uint32_t sreg_content;
uint32_t SREG = MX2_FMCR;
uint32_t SEL_16BIT = MX2_FMCR_NF_16BIT_SEL;
uint32_t SEL_FMS = MX2_FMCR_NF_FMS;
int retval;
uint16_t nand_status_content;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
if (nfc_is_v1()) {
target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content);
mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
} else
mxc_nf_info->flags.one_kb_sram = 0;
if (mxc_nf_info->mxc_version == MXC_VERSION_MX31) {
SREG = MX3_PCSR;
SEL_16BIT = MX3_PCSR_NF_16BIT_SEL;
SEL_FMS = MX3_PCSR_NF_FMS;
} else if (mxc_nf_info->mxc_version == MXC_VERSION_MX25) {
SREG = MX25_RCSR;
SEL_16BIT = MX25_RCSR_NF_16BIT_SEL;
SEL_FMS = MX25_RCSR_NF_FMS;
} else if (mxc_nf_info->mxc_version == MXC_VERSION_MX35) {
SREG = MX35_RCSR;
SEL_16BIT = MX35_RCSR_NF_16BIT_SEL;
SEL_FMS = MX35_RCSR_NF_FMS;
}
target_read_u32(target, SREG, &sreg_content);
if (!nand->bus_width) {
/* bus_width not yet defined. Read it from MXC_FMCR */
nand->bus_width = (sreg_content & SEL_16BIT) ? 16 : 8;
} else {
/* bus_width forced in soft. Sync it to MXC_FMCR */
sreg_content |= ((nand->bus_width == 16) ? SEL_16BIT : 0x00000000);
target_write_u32(target, SREG, sreg_content);
}
if (nand->bus_width == 16)
LOG_DEBUG("MXC_NF : bus is 16-bit width");
else
LOG_DEBUG("MXC_NF : bus is 8-bit width");
if (!nand->page_size)
nand->page_size = (sreg_content & SEL_FMS) ? 2048 : 512;
else {
sreg_content |= ((nand->page_size == 2048) ? SEL_FMS : 0x00000000);
target_write_u32(target, SREG, sreg_content);
}
if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
LOG_ERROR("NAND controller have only 1 kb SRAM, so "
"pagesize 2048 is incompatible with it");
} else
LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048");
if (nfc_is_v2() && sreg_content & MX35_RCSR_NF_4K)
LOG_ERROR("MXC driver does not have support for 4k pagesize.");
initialize_nf_controller(nand);
retval = ERROR_OK;
retval |= mxc_command(nand, NAND_CMD_STATUS);
retval |= mxc_address(nand, 0x00);
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return ERROR_FAIL;
}
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
if (!(nand_status_content & 0x0080)) {
LOG_INFO("NAND read-only");
mxc_nf_info->flags.nand_readonly = 1;
} else
mxc_nf_info->flags.nand_readonly = 0;
return ERROR_OK;
}
static int mxc_read_data(struct nand_device *nand, void *data)
{
int validate_target_result;
int try_data_output_from_nand_chip;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
/*
* get data from nand chip
*/
try_data_output_from_nand_chip = do_data_output(nand);
if (try_data_output_from_nand_chip != ERROR_OK) {
LOG_ERROR("mxc_read_data : read data failed : '%x'",
try_data_output_from_nand_chip);
return try_data_output_from_nand_chip;
}
if (nand->bus_width == 16)
get_next_halfword_from_sram_buffer(nand, data);
else
get_next_byte_from_sram_buffer(nand, data);
return ERROR_OK;
}
static int mxc_write_data(struct nand_device *nand, uint16_t data)
{
LOG_ERROR("write_data() not implemented");
return ERROR_NAND_OPERATION_FAILED;
}
static int mxc_reset(struct nand_device *nand)
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
initialize_nf_controller(nand);
return ERROR_OK;
}
static int mxc_command(struct nand_device *nand, uint8_t command)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int validate_target_result;
int poll_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
switch (command) {
case NAND_CMD_READOOB:
command = NAND_CMD_READ0;
/* set read point for data_read() and read_block_data() to
* spare area in SRAM buffer
*/
if (nfc_is_v1())
in_sram_address = MXC_NF_V1_SPARE_BUFFER0;
else
in_sram_address = MXC_NF_V2_SPARE_BUFFER0;
break;
case NAND_CMD_READ1:
command = NAND_CMD_READ0;
/*
* offset == one half of page size
*/
in_sram_address = MXC_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
break;
default:
in_sram_address = MXC_NF_MAIN_BUFFER0;
break;
}
target_write_u16(target, MXC_NF_FCMD, command);
/*
* start command input operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FCI);
poll_result = poll_for_complete_op(nand, "command");
if (poll_result != ERROR_OK)
return poll_result;
/*
* reset cursor to begin of the buffer
*/
sign_of_sequental_byte_read = 0;
/* Handle special read command and adjust NF_CFG2(FDO) */
switch (command) {
case NAND_CMD_READID:
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDID;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
break;
case NAND_CMD_STATUS:
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
target_write_u16 (target, MXC_NF_BUFADDR, 0);
in_sram_address = 0;
break;
case NAND_CMD_READ0:
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
break;
default:
/* Ohter command use the default 'One page data out' FDO */
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
break;
}
return ERROR_OK;
}
static int mxc_address(struct nand_device *nand, uint8_t address)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int validate_target_result;
int poll_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
target_write_u16(target, MXC_NF_FADDR, address);
/*
* start address input operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FAI);
poll_result = poll_for_complete_op(nand, "address");
if (poll_result != ERROR_OK)
return poll_result;
return ERROR_OK;
}
static int mxc_nand_ready(struct nand_device *nand, int tout)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t poll_complete_status;
int validate_target_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
do {
target_read_u16(target, MXC_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MXC_NF_BIT_OP_DONE)
return tout;
alive_sleep(1);
} while (tout-- > 0);
return tout;
}
static int mxc_write_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
uint16_t nand_status_content;
uint16_t swap1, swap2, new_swap1;
uint8_t bufs;
int poll_result;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (!data) {
LOG_ERROR("nothing to program");
return ERROR_NAND_OPERATION_FAILED;
}
/*
* validate target state
*/
retval = validate_target_state(nand);
if (retval != ERROR_OK)
return retval;
in_sram_address = MXC_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
retval = ERROR_OK;
retval |= mxc_command(nand, NAND_CMD_SEQIN);
retval |= mxc_address(nand, 0); /* col */
retval |= mxc_address(nand, 0); /* col */
retval |= mxc_address(nand, page & 0xff); /* page address */
retval |= mxc_address(nand, (page >> 8) & 0xff);/* page address */
retval |= mxc_address(nand, (page >> 16) & 0xff); /* page address */
target_write_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
if (oob) {
if (mxc_nf_info->flags.hw_ecc_enabled) {
/*
* part of spare block will be overrided by hardware
* ECC generator
*/
LOG_DEBUG("part of spare block will be overrided "
"by hardware ECC generator");
}
if (nfc_is_v1())
target_write_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
else {
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
while (oob_size > 0) {
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
target_write_buffer(target, addr, len, oob);
addr = align_address_v2(nand, addr + len);
oob += len;
oob_size -= len;
}
}
}
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
/* BI-swap - work-around of i.MX NFC for NAND device with page == 2kb*/
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
if (oob) {
LOG_ERROR("Due to NFC Bug, oob is not correctly implemented in mxc driver");
return ERROR_NAND_OPERATION_FAILED;
}
swap2 = 0xffff; /* Spare buffer unused forced to 0xffff */
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
if (nfc_is_v1())
target_write_u16(target, MXC_NF_V1_SPARE_BUFFER3, swap2);
else
target_write_u16(target, MXC_NF_V2_SPARE_BUFFER3, swap2);
}
/*
* start data input operation (set MXC_NF_BIT_OP_DONE==0)
*/
if (nfc_is_v1() && nand->page_size > 512)
bufs = 4;
else
bufs = 1;
for (uint8_t i = 0; i < bufs; ++i) {
target_write_u16(target, MXC_NF_BUFADDR, i);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(nand, "data input");
if (poll_result != ERROR_OK)
return poll_result;
}
retval |= mxc_command(nand, NAND_CMD_PAGEPROG);
if (retval != ERROR_OK)
return retval;
/*
* check status register
*/
retval = ERROR_OK;
retval |= mxc_command(nand, NAND_CMD_STATUS);
target_write_u16 (target, MXC_NF_BUFADDR, 0);
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return retval;
}
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
if (nand_status_content & 0x0001) {
/*
* page not correctly written
*/
return ERROR_NAND_OPERATION_FAILED;
}
#ifdef _MXC_PRINT_STAT
LOG_INFO("%d bytes newly written", data_size);
#endif
return ERROR_OK;
}
static int mxc_read_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
uint8_t bufs;
uint16_t swap1, swap2, new_swap1;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
/*
* validate target state
*/
retval = validate_target_state(nand);
if (retval != ERROR_OK)
return retval;
/* Reset address_cycles before mxc_command ?? */
retval = mxc_command(nand, NAND_CMD_READ0);
if (retval != ERROR_OK)
return retval;
retval = mxc_address(nand, 0); /* col */
if (retval != ERROR_OK)
return retval;
retval = mxc_address(nand, 0); /* col */
if (retval != ERROR_OK)
return retval;
retval = mxc_address(nand, page & 0xff);/* page address */
if (retval != ERROR_OK)
return retval;
retval = mxc_address(nand, (page >> 8) & 0xff); /* page address */
if (retval != ERROR_OK)
return retval;
retval = mxc_address(nand, (page >> 16) & 0xff);/* page address */
if (retval != ERROR_OK)
return retval;
retval = mxc_command(nand, NAND_CMD_READSTART);
if (retval != ERROR_OK)
return retval;
if (nfc_is_v1() && nand->page_size > 512)
bufs = 4;
else
bufs = 1;
for (uint8_t i = 0; i < bufs; ++i) {
target_write_u16(target, MXC_NF_BUFADDR, i);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MXC_NF : Error reading page %d", i);
return retval;
}
}
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
uint32_t SPARE_BUFFER3;
/* BI-swap - work-around of mxc NFC for NAND device with page == 2k */
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
if (nfc_is_v1())
SPARE_BUFFER3 = MXC_NF_V1_SPARE_BUFFER3;
else
SPARE_BUFFER3 = MXC_NF_V2_SPARE_BUFFER3;
target_read_u16(target, SPARE_BUFFER3, &swap2);
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, SPARE_BUFFER3, swap2);
}
if (data)
target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
if (oob) {
if (nfc_is_v1())
target_read_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
else {
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
while (oob_size > 0) {
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
target_read_buffer(target, addr, len, oob);
addr = align_address_v2(nand, addr + len);
oob += len;
oob_size -= len;
}
}
}
#ifdef _MXC_PRINT_STAT
if (data_size > 0) {
/* When Operation Status is read (when page is erased),
* this function is used but data_size is null.
*/
LOG_INFO("%d bytes newly read", data_size);
}
#endif
return ERROR_OK;
}
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
uint32_t ret = addr;
if (addr > MXC_NF_V2_SPARE_BUFFER0 &&
(addr & 0x1F) == MXC_NF_SPARE_BUFFER_LEN)
ret += MXC_NF_SPARE_BUFFER_MAX - MXC_NF_SPARE_BUFFER_LEN;
else if (addr >= (mxc_nf_info->mxc_base_addr + (uint32_t)nand->page_size))
ret = MXC_NF_V2_SPARE_BUFFER0;
return ret;
}
static int initialize_nf_controller(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t work_mode = 0;
uint16_t temp;
/*
* resets NAND flash controller in zero time ? I dont know.
*/
target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN);
if (mxc_nf_info->mxc_version == MXC_VERSION_MX27)
work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */
if (target->endianness == TARGET_BIG_ENDIAN) {
LOG_DEBUG("MXC_NF : work in Big Endian mode");
work_mode |= MXC_NF_BIT_BE_EN;
} else
LOG_DEBUG("MXC_NF : work in Little Endian mode");
if (mxc_nf_info->flags.hw_ecc_enabled) {
LOG_DEBUG("MXC_NF : work with ECC mode");
work_mode |= MXC_NF_BIT_ECC_EN;
} else
LOG_DEBUG("MXC_NF : work without ECC mode");
if (nfc_is_v2()) {
target_write_u16(target, MXC_NF_V2_SPAS, OOB_SIZE / 2);
if (nand->page_size) {
uint16_t pages_per_block = nand->erase_size / nand->page_size;
work_mode |= MXC_NF_V2_CFG1_PPB(ffs(pages_per_block) - 6);
}
work_mode |= MXC_NF_BIT_ECC_4BIT;
}
target_write_u16(target, MXC_NF_CFG1, work_mode);
/*
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
*/
target_write_u16(target, MXC_NF_BUFCFG, 2);
target_read_u16(target, MXC_NF_FWP, &temp);
if ((temp & 0x0007) == 1) {
LOG_ERROR("NAND flash is tight-locked, reset needed");
return ERROR_FAIL;
}
/*
* unlock NAND flash for write
*/
if (nfc_is_v1()) {
target_write_u16(target, MXC_NF_V1_UNLOCKSTART, 0x0000);
target_write_u16(target, MXC_NF_V1_UNLOCKEND, 0xFFFF);
} else {
target_write_u16(target, MXC_NF_V2_UNLOCKSTART0, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART1, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART2, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART3, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKEND0, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND1, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND2, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND3, 0xFFFF);
}
target_write_u16(target, MXC_NF_FWP, 4);
/*
* 0x0000 means that first SRAM buffer @base_addr will be used
*/
target_write_u16(target, MXC_NF_BUFADDR, 0x0000);
/*
* address of SRAM buffer
*/
in_sram_address = MXC_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
return ERROR_OK;
}
static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
static uint8_t even_byte;
uint16_t temp;
/*
* host-big_endian ??
*/
if (sign_of_sequental_byte_read == 0)
even_byte = 0;
if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
sign_of_sequental_byte_read = 0;
even_byte = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
if (nfc_is_v2())
in_sram_address = align_address_v2(nand, in_sram_address);
target_read_u16(target, in_sram_address, &temp);
if (even_byte) {
*value = temp >> 8;
even_byte = 0;
in_sram_address += 2;
} else {
*value = temp & 0xff;
even_byte = 1;
}
}
sign_of_sequental_byte_read = 1;
return ERROR_OK;
}
static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
if (in_sram_address > (nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
if (nfc_is_v2())
in_sram_address = align_address_v2(nand, in_sram_address);
target_read_u16(target, in_sram_address, value);
in_sram_address += 2;
}
return ERROR_OK;
}
static int poll_for_complete_op(struct nand_device *nand, const char *text)
{
if (mxc_nand_ready(nand, 1000) == -1) {
LOG_ERROR("%s sending timeout", text);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int validate_target_state(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR(target_not_halted_err_msg);
return ERROR_NAND_OPERATION_FAILED;
}
if (mxc_nf_info->flags.target_little_endian !=
(target->endianness == TARGET_LITTLE_ENDIAN)) {
/*
* endianness changed after NAND controller probed
*/
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
int ecc_status_v1(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t ecc_status;
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
switch (ecc_status & 0x000c) {
case 1 << 2:
LOG_INFO("main area read with 1 (correctable) error");
break;
case 2 << 2:
LOG_INFO("main area read with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
switch (ecc_status & 0x0003) {
case 1:
LOG_INFO("spare area read with 1 (correctable) error");
break;
case 2:
LOG_INFO("main area read with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
return ERROR_OK;
}
int ecc_status_v2(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t ecc_status;
uint8_t no_subpages;
uint8_t err;
no_subpages = nand->page_size >> 9;
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
do {
err = ecc_status & 0xF;
if (err > 4) {
LOG_INFO("UnCorrectable RS-ECC Error");
return ERROR_NAND_OPERATION_FAILED;
} else if (err > 0)
LOG_INFO("%d Symbol Correctable RS-ECC Error", err);
ecc_status >>= 4;
} while (--no_subpages);
return ERROR_OK;
}
static int do_data_output(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int poll_result;
switch (mxc_nf_info->fin) {
case MXC_NF_FIN_DATAOUT:
/*
* start data output operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_DATAOUT_TYPE(mxc_nf_info->optype));
poll_result = poll_for_complete_op(nand, "data output");
if (poll_result != ERROR_OK)
return poll_result;
mxc_nf_info->fin = MXC_NF_FIN_NONE;
/*
* ECC stuff
*/
if (mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE && mxc_nf_info->flags.hw_ecc_enabled) {
int ecc_status;
if (nfc_is_v1())
ecc_status = ecc_status_v1(nand);
else
ecc_status = ecc_status_v2(nand);
if (ecc_status != ERROR_OK)
return ecc_status;
}
break;
case MXC_NF_FIN_NONE:
break;
}
return ERROR_OK;
}
struct nand_flash_controller mxc_nand_flash_controller = {
.name = "mxc",
.nand_device_command = &mxc_nand_device_command,
.commands = mxc_nand_command_handler,
.init = &mxc_init,
.reset = &mxc_reset,
.command = &mxc_command,
.address = &mxc_address,
.write_data = &mxc_write_data,
.read_data = &mxc_read_data,
.write_page = &mxc_write_page,
.read_page = &mxc_read_page,
.nand_ready = &mxc_nand_ready,
};