openocd/src/flash/nor/cfi.c

3053 lines
94 KiB
C

/***************************************************************************
* Copyright (C) 2005, 2007 by Dominic Rath *
* Dominic.Rath@gmx.de *
* Copyright (C) 2009 Michael Schwingen *
* michael@schwingen.org *
* Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
* Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "cfi.h"
#include "non_cfi.h"
#include <target/arm.h>
#include <target/arm7_9_common.h>
#include <target/armv7m.h>
#include <target/mips32.h>
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#define CFI_MAX_BUS_WIDTH 4
#define CFI_MAX_CHIP_WIDTH 4
/* defines internal maximum size for code fragment in cfi_intel_write_block() */
#define CFI_MAX_INTEL_CODESIZE 256
/* some id-types with specific handling */
#define AT49BV6416 0x00d6
#define AT49BV6416T 0x00d2
static struct cfi_unlock_addresses cfi_unlock_addresses[] = {
[CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
[CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
};
/* CFI fixups forward declarations */
static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param);
static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param);
static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param);
static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param);
/* fixup after reading cmdset 0002 primary query table */
static const struct cfi_fixup cfi_0002_fixups[] = {
{CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
{CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
{CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
{CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
&cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
{CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
{CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
{0, 0, NULL, NULL}
};
/* fixup after reading cmdset 0001 primary query table */
static const struct cfi_fixup cfi_0001_fixups[] = {
{0, 0, NULL, NULL}
};
static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
const struct cfi_fixup *f;
for (f = fixups; f->fixup; f++) {
if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
f->fixup(bank, f->param);
}
}
static inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->x16_as_x8)
offset *= 2;
/* while the sector list isn't built, only accesses to sector 0 work */
if (sector == 0)
return bank->base + offset * bank->bus_width;
else {
if (!bank->sectors) {
LOG_ERROR("BUG: sector list not yet built");
exit(-1);
}
return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
}
}
static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
{
int i;
/* clear whole buffer, to ensure bits that exceed the bus_width
* are set to zero
*/
for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
cmd_buf[i] = 0;
if (bank->target->endianness == TARGET_LITTLE_ENDIAN) {
for (i = bank->bus_width; i > 0; i--)
*cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
} else {
for (i = 1; i <= bank->bus_width; i++)
*cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
}
}
static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
{
uint8_t command[CFI_MAX_BUS_WIDTH];
cfi_command(bank, cmd, command);
return target_write_memory(bank->target, address, bank->bus_width, 1, command);
}
/* read unsigned 8-bit value from the bank
* flash banks are expected to be made of similar chips
* the query result should be the same for all
*/
static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
{
struct target *target = bank->target;
uint8_t data[CFI_MAX_BUS_WIDTH];
int retval;
retval = target_read_memory(target, flash_address(bank, sector, offset),
bank->bus_width, 1, data);
if (retval != ERROR_OK)
return retval;
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
*val = data[0];
else
*val = data[bank->bus_width - 1];
return ERROR_OK;
}
/* read unsigned 8-bit value from the bank
* in case of a bank made of multiple chips,
* the individual values are ORed
*/
static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
{
struct target *target = bank->target;
uint8_t data[CFI_MAX_BUS_WIDTH];
int i;
int retval;
retval = target_read_memory(target, flash_address(bank, sector, offset),
bank->bus_width, 1, data);
if (retval != ERROR_OK)
return retval;
if (bank->target->endianness == TARGET_LITTLE_ENDIAN) {
for (i = 0; i < bank->bus_width / bank->chip_width; i++)
data[0] |= data[i];
*val = data[0];
} else {
uint8_t value = 0;
for (i = 0; i < bank->bus_width / bank->chip_width; i++)
value |= data[bank->bus_width - 1 - i];
*val = value;
}
return ERROR_OK;
}
static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
{
struct target *target = bank->target;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
uint8_t data[CFI_MAX_BUS_WIDTH * 2];
int retval;
if (cfi_info->x16_as_x8) {
uint8_t i;
for (i = 0; i < 2; i++) {
retval = target_read_memory(target, flash_address(bank, sector, offset + i),
bank->bus_width, 1, &data[i * bank->bus_width]);
if (retval != ERROR_OK)
return retval;
}
} else {
retval = target_read_memory(target, flash_address(bank, sector, offset),
bank->bus_width, 2, data);
if (retval != ERROR_OK)
return retval;
}
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
*val = data[0] | data[bank->bus_width] << 8;
else
*val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
return ERROR_OK;
}
static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
{
struct target *target = bank->target;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
uint8_t data[CFI_MAX_BUS_WIDTH * 4];
int retval;
if (cfi_info->x16_as_x8) {
uint8_t i;
for (i = 0; i < 4; i++) {
retval = target_read_memory(target, flash_address(bank, sector, offset + i),
bank->bus_width, 1, &data[i * bank->bus_width]);
if (retval != ERROR_OK)
return retval;
}
} else {
retval = target_read_memory(target, flash_address(bank, sector, offset),
bank->bus_width, 4, data);
if (retval != ERROR_OK)
return retval;
}
if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
*val = data[0] | data[bank->bus_width] << 8 |
data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
else
*val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
data[(3 * bank->bus_width) - 1] << 16 |
data[(4 * bank->bus_width) - 1] << 24;
return ERROR_OK;
}
static int cfi_reset(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int retval = ERROR_OK;
retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
if (cfi_info->manufacturer == 0x20 &&
(cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
/* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
* so we send an extra 0xF0 reset to fix the bug */
retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00));
if (retval != ERROR_OK)
return retval;
}
return retval;
}
static void cfi_intel_clear_status_register(struct flash_bank *bank)
{
cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
}
static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
{
uint8_t status;
int retval = ERROR_OK;
for (;; ) {
if (timeout-- < 0) {
LOG_ERROR("timeout while waiting for WSM to become ready");
return ERROR_FAIL;
}
retval = cfi_get_u8(bank, 0, 0x0, &status);
if (retval != ERROR_OK)
return retval;
if (status & 0x80)
break;
alive_sleep(1);
}
/* mask out bit 0 (reserved) */
status = status & 0xfe;
LOG_DEBUG("status: 0x%x", status);
if (status != 0x80) {
LOG_ERROR("status register: 0x%x", status);
if (status & 0x2)
LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
if (status & 0x4)
LOG_ERROR("Program suspended");
if (status & 0x8)
LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
if (status & 0x10)
LOG_ERROR("Program Error / Error in Setting Lock-Bit");
if (status & 0x20)
LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
if (status & 0x40)
LOG_ERROR("Block Erase Suspended");
cfi_intel_clear_status_register(bank);
retval = ERROR_FAIL;
}
*val = status;
return retval;
}
static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
{
uint8_t status, oldstatus;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int retval;
retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
if (retval != ERROR_OK)
return retval;
do {
retval = cfi_get_u8(bank, 0, 0x0, &status);
if (retval != ERROR_OK)
return retval;
if ((status ^ oldstatus) & 0x40) {
if (status & cfi_info->status_poll_mask & 0x20) {
retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
if (retval != ERROR_OK)
return retval;
retval = cfi_get_u8(bank, 0, 0x0, &status);
if (retval != ERROR_OK)
return retval;
if ((status ^ oldstatus) & 0x40) {
LOG_ERROR("dq5 timeout, status: 0x%x", status);
return ERROR_FLASH_OPERATION_FAILED;
} else {
LOG_DEBUG("status: 0x%x", status);
return ERROR_OK;
}
}
} else {/* no toggle: finished, OK */
LOG_DEBUG("status: 0x%x", status);
return ERROR_OK;
}
oldstatus = status;
alive_sleep(1);
} while (timeout-- > 0);
LOG_ERROR("timeout, status: 0x%x", status);
return ERROR_FLASH_BUSY;
}
static int cfi_read_intel_pri_ext(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext;
if (cfi_info->pri_ext)
free(cfi_info->pri_ext);
pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
if (pri_ext == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cfi_info->pri_ext = pri_ext;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
if (retval != ERROR_OK)
return retval;
if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
retval = cfi_reset(bank);
if (retval != ERROR_OK)
return retval;
LOG_ERROR("Could not read bank flash bank information");
return ERROR_FLASH_BANK_INVALID;
}
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
"0x%x, blk_status_reg_mask: 0x%x",
pri_ext->feature_support,
pri_ext->suspend_cmd_support,
pri_ext->blk_status_reg_mask);
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
(pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
(pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
if (retval != ERROR_OK)
return retval;
if (pri_ext->num_protection_fields != 1) {
LOG_WARNING("expected one protection register field, but found %i",
pri_ext->num_protection_fields);
}
retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
"factory pre-programmed: %i, user programmable: %i",
pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
return ERROR_OK;
}
static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext;
if (cfi_info->pri_ext)
free(cfi_info->pri_ext);
pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
if (pri_ext == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cfi_info->pri_ext = pri_ext;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
if (retval != ERROR_OK)
return retval;
if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("Could not read spansion bank information");
return ERROR_FLASH_BANK_INVALID;
}
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
"Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
(pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
(pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
/* default values for implementation specific workarounds */
pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
pri_ext->_reversed_geometry = 0;
return ERROR_OK;
}
static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
{
int retval;
struct cfi_atmel_pri_ext atmel_pri_ext;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext;
if (cfi_info->pri_ext)
free(cfi_info->pri_ext);
pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
if (pri_ext == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
/* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
* but a different primary extended query table.
* We read the atmel table, and prepare a valid AMD/Spansion query table.
*/
memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
cfi_info->pri_ext = pri_ext;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
if (retval != ERROR_OK)
return retval;
if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
|| (atmel_pri_ext.pri[2] != 'I')) {
retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("Could not read atmel bank information");
return ERROR_FLASH_BANK_INVALID;
}
pri_ext->pri[0] = atmel_pri_ext.pri[0];
pri_ext->pri[1] = atmel_pri_ext.pri[1];
pri_ext->pri[2] = atmel_pri_ext.pri[2];
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
pri_ext->major_version = atmel_pri_ext.major_version;
pri_ext->minor_version = atmel_pri_ext.minor_version;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG(
"features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
atmel_pri_ext.features,
atmel_pri_ext.bottom_boot,
atmel_pri_ext.burst_mode,
atmel_pri_ext.page_mode);
if (atmel_pri_ext.features & 0x02)
pri_ext->EraseSuspend = 2;
/* some chips got it backwards... */
if (cfi_info->device_id == AT49BV6416 ||
cfi_info->device_id == AT49BV6416T) {
if (atmel_pri_ext.bottom_boot)
pri_ext->TopBottom = 3;
else
pri_ext->TopBottom = 2;
} else {
if (atmel_pri_ext.bottom_boot)
pri_ext->TopBottom = 2;
else
pri_ext->TopBottom = 3;
}
pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
return ERROR_OK;
}
static int cfi_read_0002_pri_ext(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->manufacturer == CFI_MFR_ATMEL)
return cfi_read_atmel_pri_ext(bank);
else
return cfi_read_spansion_pri_ext(bank);
}
static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
{
int printed;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
pri_ext->pri[1], pri_ext->pri[2],
pri_ext->major_version, pri_ext->minor_version);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
(pri_ext->SiliconRevision) >> 2,
(pri_ext->SiliconRevision) & 0x03);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
pri_ext->EraseSuspend,
pri_ext->BlkProt);
buf += printed;
buf_size -= printed;
snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
(pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
(pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
return ERROR_OK;
}
static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
{
int printed;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
buf += printed;
buf_size -= printed;
printed = snprintf(buf,
buf_size,
"pri: '%c%c%c', version: %c.%c\n",
pri_ext->pri[0],
pri_ext->pri[1],
pri_ext->pri[2],
pri_ext->major_version,
pri_ext->minor_version);
buf += printed;
buf_size -= printed;
printed = snprintf(buf,
buf_size,
"feature_support: 0x%" PRIx32 ", "
"suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
pri_ext->feature_support,
pri_ext->suspend_cmd_support,
pri_ext->blk_status_reg_mask);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
(pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
(pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
buf += printed;
buf_size -= printed;
snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
"factory pre-programmed: %i, user programmable: %i\n",
pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
return ERROR_OK;
}
/* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
*/
FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
{
struct cfi_flash_bank *cfi_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
/* both widths must:
* - not exceed max value;
* - not be null;
* - be equal to a power of 2.
* bus must be wide enough to hold one chip */
if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
|| (bank->bus_width > CFI_MAX_BUS_WIDTH)
|| (bank->chip_width == 0)
|| (bank->bus_width == 0)
|| (bank->chip_width & (bank->chip_width - 1))
|| (bank->bus_width & (bank->bus_width - 1))
|| (bank->chip_width > bank->bus_width)) {
LOG_ERROR("chip and bus width have to specified in bytes");
return ERROR_FLASH_BANK_INVALID;
}
cfi_info = malloc(sizeof(struct cfi_flash_bank));
cfi_info->probed = 0;
cfi_info->erase_region_info = NULL;
cfi_info->pri_ext = NULL;
bank->driver_priv = cfi_info;
cfi_info->x16_as_x8 = 0;
cfi_info->jedec_probe = 0;
cfi_info->not_cfi = 0;
for (unsigned i = 6; i < CMD_ARGC; i++) {
if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
cfi_info->x16_as_x8 = 1;
else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
cfi_info->jedec_probe = 1;
}
/* bank wasn't probed yet */
cfi_info->qry[0] = 0xff;
return ERROR_OK;
}
static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int i;
cfi_intel_clear_status_register(bank);
for (i = first; i <= last; i++) {
retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
if (retval != ERROR_OK)
return retval;
if (status == 0x80)
bank->sectors[i].is_erased = 1;
else {
retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
PRIx32, i, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
}
return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
}
static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
int i;
for (i = first; i <= last; i++) {
retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
bank->sectors[i].is_erased = 1;
else {
retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
PRIx32, i, bank->base);
return ERROR_FLASH_OPERATION_FAILED;
}
}
return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
}
static int cfi_erase(struct flash_bank *bank, int first, int last)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors))
return ERROR_FLASH_SECTOR_INVALID;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id) {
case 1:
case 3:
return cfi_intel_erase(bank, first, last);
break;
case 2:
return cfi_spansion_erase(bank, first, last);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
int retry = 0;
int i;
/* if the device supports neither legacy lock/unlock (bit 3) nor
* instant individual block locking (bit 5).
*/
if (!(pri_ext->feature_support & 0x28)) {
LOG_ERROR("lock/unlock not supported on flash");
return ERROR_FLASH_OPERATION_FAILED;
}
cfi_intel_clear_status_register(bank);
for (i = first; i <= last; i++) {
retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
if (set) {
retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_protected = 1;
} else {
retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_protected = 0;
}
/* instant individual block locking doesn't require reading of the status register
**/
if (!(pri_ext->feature_support & 0x20)) {
/* Clear lock bits operation may take up to 1.4s */
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 1400, &status);
if (retval != ERROR_OK)
return retval;
} else {
uint8_t block_status;
/* read block lock bit, to verify status */
retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
if (retval != ERROR_OK)
return retval;
retval = cfi_get_u8(bank, i, 0x2, &block_status);
if (retval != ERROR_OK)
return retval;
if ((block_status & 0x1) != set) {
LOG_ERROR(
"couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
set, block_status);
retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55));
if (retval != ERROR_OK)
return retval;
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 10, &status);
if (retval != ERROR_OK)
return retval;
if (retry > 10)
return ERROR_FLASH_OPERATION_FAILED;
else {
i--;
retry++;
}
}
}
}
/* if the device doesn't support individual block lock bits set/clear,
* all blocks have been unlocked in parallel, so we set those that should be protected
*/
if ((!set) && (!(pri_ext->feature_support & 0x20))) {
/* FIX!!! this code path is broken!!!
*
* The correct approach is:
*
* 1. read out current protection status
*
* 2. override read out protection status w/unprotected.
*
* 3. re-protect what should be protected.
*
*/
for (i = 0; i < bank->num_sectors; i++) {
if (bank->sectors[i].is_protected == 1) {
cfi_intel_clear_status_register(bank);
retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0));
if (retval != ERROR_OK)
return retval;
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, 100, &status);
if (retval != ERROR_OK)
return retval;
}
}
}
return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
}
static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
LOG_ERROR("Invalid sector range");
return ERROR_FLASH_SECTOR_INVALID;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id) {
case 1:
case 3:
return cfi_intel_protect(bank, set, first, last);
break;
default:
LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
return ERROR_OK;
}
}
/* Convert code image to target endian
* FIXME create general block conversion fcts in target.c?) */
static void cfi_fix_code_endian(struct target *target, uint8_t *dest,
const uint32_t *src, uint32_t count)
{
uint32_t i;
for (i = 0; i < count; i++) {
target_buffer_set_u32(target, dest, *src);
dest += 4;
src++;
}
}
static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
{
struct target *target = bank->target;
uint8_t buf[CFI_MAX_BUS_WIDTH];
cfi_command(bank, cmd, buf);
switch (bank->bus_width) {
case 1:
return buf[0];
break;
case 2:
return target_buffer_get_u16(target, buf);
break;
case 4:
return target_buffer_get_u32(target, buf);
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
bank->bus_width);
return 0;
}
}
static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t address, uint32_t count)
{
struct target *target = bank->target;
struct reg_param reg_params[7];
struct arm_algorithm arm_algo;
struct working_area *write_algorithm;
struct working_area *source = NULL;
uint32_t buffer_size = 32768;
uint32_t write_command_val, busy_pattern_val, error_pattern_val;
/* algorithm register usage:
* r0: source address (in RAM)
* r1: target address (in Flash)
* r2: count
* r3: flash write command
* r4: status byte (returned to host)
* r5: busy test pattern
* r6: error test pattern
*/
/* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
static const uint32_t word_32_code[] = {
0xe4904004, /* loop: ldr r4, [r0], #4 */
0xe5813000, /* str r3, [r1] */
0xe5814000, /* str r4, [r1] */
0xe5914000, /* busy: ldr r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811004, /* add r1, r1 #4 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
/* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
static const uint32_t word_16_code[] = {
0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
0xe1c130b0, /* strh r3, [r1] */
0xe1c140b0, /* strh r4, [r1] */
0xe1d140b0, /* busy ldrh r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811002, /* add r1, r1 #2 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
/* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
static const uint32_t word_8_code[] = {
0xe4d04001, /* loop: ldrb r4, [r0], #1 */
0xe5c13000, /* strb r3, [r1] */
0xe5c14000, /* strb r4, [r1] */
0xe5d14000, /* busy ldrb r4, [r1] */
0xe0047005, /* and r7, r4, r5 */
0xe1570005, /* cmp r7, r5 */
0x1afffffb, /* bne busy */
0xe1140006, /* tst r4, r6 */
0x1a000003, /* bne done */
0xe2522001, /* subs r2, r2, #1 */
0x0a000001, /* beq done */
0xe2811001, /* add r1, r1 #1 */
0xeafffff2, /* b loop */
0xeafffffe /* done: b -2 */
};
uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
const uint32_t *target_code_src;
uint32_t target_code_size;
int retval = ERROR_OK;
/* check we have a supported arch */
if (is_arm(target_to_arm(target))) {
/* All other ARM CPUs have 32 bit instructions */
arm_algo.common_magic = ARM_COMMON_MAGIC;
arm_algo.core_mode = ARM_MODE_SVC;
arm_algo.core_state = ARM_STATE_ARM;
} else {
LOG_ERROR("Unknown architecture");
return ERROR_FAIL;
}
cfi_intel_clear_status_register(bank);
/* If we are setting up the write_algorith, we need target_code_src
* if not we only need target_code_size. */
/* However, we don't want to create multiple code paths, so we
* do the unnecessary evaluation of target_code_src, which the
* compiler will probably nicely optimize away if not needed */
/* prepare algorithm code for target endian */
switch (bank->bus_width) {
case 1:
target_code_src = word_8_code;
target_code_size = sizeof(word_8_code);
break;
case 2:
target_code_src = word_16_code;
target_code_size = sizeof(word_16_code);
break;
case 4:
target_code_src = word_32_code;
target_code_size = sizeof(word_32_code);
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
bank->bus_width);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* flash write code */
if (target_code_size > sizeof(target_code)) {
LOG_WARNING("Internal error - target code buffer to small. "
"Increase CFI_MAX_INTEL_CODESIZE and recompile.");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
/* Get memory for block write handler */
retval = target_alloc_working_area(target,
target_code_size,
&write_algorithm);
if (retval != ERROR_OK) {
LOG_WARNING("No working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
;
/* write algorithm code to working area */
retval = target_write_buffer(target, write_algorithm->address,
target_code_size, target_code);
if (retval != ERROR_OK) {
LOG_ERROR("Unable to write block write code to target");
goto cleanup;
}
/* Get a workspace buffer for the data to flash starting with 32k size.
* Half size until buffer would be smaller 256 Bytes then fail back */
/* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
LOG_WARNING(
"no large enough working area available, can't do block memory writes");
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup;
}
}
;
/* setup algo registers */
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
/* prepare command and status register patterns */
write_command_val = cfi_command_val(bank, 0x40);
busy_pattern_val = cfi_command_val(bank, 0x80);
error_pattern_val = cfi_command_val(bank, 0x7e);
LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32,
source->address, buffer_size);
/* Programming main loop */
while (count > 0) {
uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
uint32_t wsm_error;
retval = target_write_buffer(target, source->address, thisrun_count, buffer);
if (retval != ERROR_OK)
goto cleanup;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
thisrun_count, address);
/* Execute algorithm, assume breakpoint for last instruction */
retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
write_algorithm->address,
write_algorithm->address + target_code_size -
sizeof(uint32_t),
10000, /* 10s should be enough for max. 32k of data */
&arm_algo);
/* On failure try a fall back to direct word writes */
if (retval != ERROR_OK) {
cfi_intel_clear_status_register(bank);
LOG_ERROR(
"Execution of flash algorythm failed. Can't fall back. Please report.");
retval = ERROR_FLASH_OPERATION_FAILED;
/* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
/* FIXME To allow fall back or recovery, we must save the actual status
* somewhere, so that a higher level code can start recovery. */
goto cleanup;
}
/* Check return value from algo code */
wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
if (wsm_error) {
/* read status register (outputs debug information) */
uint8_t status;
cfi_intel_wait_status_busy(bank, 100, &status);
cfi_intel_clear_status_register(bank);
retval = ERROR_FLASH_OPERATION_FAILED;
goto cleanup;
}
buffer += thisrun_count;
address += thisrun_count;
count -= thisrun_count;
keep_alive();
}
/* free up resources */
cleanup:
if (source)
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
destroy_reg_param(&reg_params[6]);
return retval;
}
static int cfi_spansion_write_block_mips(struct flash_bank *bank, uint8_t *buffer,
uint32_t address, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
struct target *target = bank->target;
struct reg_param reg_params[10];
struct mips32_algorithm mips32_info;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t buffer_size = 32768;
uint32_t status;
int retval = ERROR_OK;
/* input parameters -
* 4 A0 = source address
* 5 A1 = destination address
* 6 A2 = number of writes
* 7 A3 = flash write command
* 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
* output parameters -
* 9 T1 = 0x80 ok 0x00 bad
* temp registers -
* 10 T2 = value read from flash to test status
* 11 T3 = holding register
* unlock registers -
* 12 T4 = unlock1_addr
* 13 T5 = unlock1_cmd
* 14 T6 = unlock2_addr
* 15 T7 = unlock2_cmd */
static const uint32_t mips_word_16_code[] = {
/* start: */
MIPS32_LHU(9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
MIPS32_ADDI(4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
MIPS32_SH(13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
MIPS32_SH(15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
MIPS32_SH(7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
MIPS32_SH(9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
MIPS32_NOP, /* nop */
/* busy: */
MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
MIPS32_BNE(11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
MIPS32_NOP, /* nop */
MIPS32_SRL(10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
MIPS32_AND(11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
MIPS32_BNE(11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
MIPS32_NOP, /* nop */
MIPS32_LHU(10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
MIPS32_XOR(11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
MIPS32_AND(11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
MIPS32_BNE(11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
MIPS32_NOP, /* nop */
MIPS32_XOR(9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
MIPS32_BEQ(9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
MIPS32_NOP, /* nop */
/* cont: */
MIPS32_ADDI(6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
MIPS32_BNE(6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
MIPS32_NOP, /* nop */
MIPS32_LUI(9, 0), /* lui $t1, 0 */
MIPS32_ORI(9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
MIPS32_B(4), /* b done ; goto done */
MIPS32_NOP, /* nop */
/* cont2: */
MIPS32_ADDI(5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
MIPS32_B(NEG16(33)), /* b start ; goto start */
MIPS32_NOP, /* nop */
/* done: */
MIPS32_SDBBP, /* sdbbp ; break(); */
};
mips32_info.common_magic = MIPS32_COMMON_MAGIC;
mips32_info.isa_mode = MIPS32_ISA_MIPS32;
int target_code_size = 0;
const uint32_t *target_code_src = NULL;
switch (bank->bus_width) {
case 2:
/* Check for DQ5 support */
if (cfi_info->status_poll_mask & (1 << 5)) {
target_code_src = mips_word_16_code;
target_code_size = sizeof(mips_word_16_code);
} else {
LOG_ERROR("Need DQ5 support");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
/* target_code_src = mips_word_16_code_dq7only; */
/* target_code_size = sizeof(mips_word_16_code_dq7only); */
}
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
bank->bus_width);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* flash write code */
uint8_t *target_code;
/* convert bus-width dependent algorithm code to correct endianness */
target_code = malloc(target_code_size);
if (target_code == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
/* allocate working area */
retval = target_alloc_working_area(target, target_code_size,
&write_algorithm);
if (retval != ERROR_OK) {
free(target_code);
return retval;
}
/* write algorithm code to working area */
retval = target_write_buffer(target, write_algorithm->address,
target_code_size, target_code);
if (retval != ERROR_OK) {
free(target_code);
return retval;
}
free(target_code);
/* the following code still assumes target code is fixed 24*4 bytes */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING(
"not enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
;
init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "a3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "t0", 32, PARAM_OUT);
init_reg_param(&reg_params[5], "t1", 32, PARAM_IN);
init_reg_param(&reg_params[6], "t4", 32, PARAM_OUT);
init_reg_param(&reg_params[7], "t5", 32, PARAM_OUT);
init_reg_param(&reg_params[8], "t6", 32, PARAM_OUT);
init_reg_param(&reg_params[9], "t7", 32, PARAM_OUT);
while (count > 0) {
uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
retval = target_write_buffer(target, source->address, thisrun_count, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
write_algorithm->address,
write_algorithm->address + ((target_code_size) - 4),
10000, &mips32_info);
if (retval != ERROR_OK)
break;
status = buf_get_u32(reg_params[5].value, 0, 32);
if (status != 0x80) {
LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count;
address += thisrun_count;
count -= thisrun_count;
}
target_free_all_working_areas(target);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
destroy_reg_param(&reg_params[6]);
destroy_reg_param(&reg_params[7]);
destroy_reg_param(&reg_params[8]);
destroy_reg_param(&reg_params[9]);
return retval;
}
static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t address, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
struct target *target = bank->target;
struct reg_param reg_params[10];
void *arm_algo;
struct arm_algorithm armv4_5_algo;
struct armv7m_algorithm armv7m_algo;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t buffer_size = 32768;
uint32_t status;
int retval = ERROR_OK;
/* input parameters -
* R0 = source address
* R1 = destination address
* R2 = number of writes
* R3 = flash write command
* R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
* output parameters -
* R5 = 0x80 ok 0x00 bad
* temp registers -
* R6 = value read from flash to test status
* R7 = holding register
* unlock registers -
* R8 = unlock1_addr
* R9 = unlock1_cmd
* R10 = unlock2_addr
* R11 = unlock2_cmd */
/* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
static const uint32_t armv4_5_word_32_code[] = {
/* 00008100 <sp_32_code>: */
0xe4905004, /* ldr r5, [r0], #4 */
0xe5889000, /* str r9, [r8] */
0xe58ab000, /* str r11, [r10] */
0xe5883000, /* str r3, [r8] */
0xe5815000, /* str r5, [r1] */
0xe1a00000, /* nop */
/* 00008110 <sp_32_busy>: */
0xe5916000, /* ldr r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
0xe5916000, /* ldr r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
0x1a000004, /* bne 8154 <sp_32_done> */
/* 00008140 <sp_32_cont>: */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 8154 <sp_32_done> */
0xe2811004, /* add r1, r1, #4 ; 0x4 */
0xeaffffe8, /* b 8100 <sp_32_code> */
/* 00008154 <sp_32_done>: */
0xeafffffe /* b 8154 <sp_32_done> */
};
/* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
static const uint32_t armv4_5_word_16_code[] = {
/* 00008158 <sp_16_code>: */
0xe0d050b2, /* ldrh r5, [r0], #2 */
0xe1c890b0, /* strh r9, [r8] */
0xe1cab0b0, /* strh r11, [r10] */
0xe1c830b0, /* strh r3, [r8] */
0xe1c150b0, /* strh r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* 00008168 <sp_16_busy>: */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 8198 <sp_16_cont> */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 8168 <sp_16_busy> */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 8198 <sp_16_cont> */
0xe3a05000, /* mov r5, #0 ; 0x0 */
0x1a000004, /* bne 81ac <sp_16_done> */
/* 00008198 <sp_16_cont>: */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 81ac <sp_16_done> */
0xe2811002, /* add r1, r1, #2 ; 0x2 */
0xeaffffe8, /* b 8158 <sp_16_code> */
/* 000081ac <sp_16_done>: */
0xeafffffe /* b 81ac <sp_16_done> */
};
/* see contib/loaders/flash/armv7m_cfi_span_16.s for src */
static const uint32_t armv7m_word_16_code[] = {
0x5B02F830,
0x9000F8A8,
0xB000F8AA,
0x3000F8A8,
0xBF00800D,
0xEA85880E,
0x40270706,
0xEA16D00A,
0xD0F70694,
0xEA85880E,
0x40270706,
0xF04FD002,
0xD1070500,
0xD0023A01,
0x0102F101,
0xF04FE7E0,
0xE7FF0580,
0x0000BE00
};
/* see contib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
static const uint32_t armv4_5_word_16_code_dq7only[] = {
/* <sp_16_code>: */
0xe0d050b2, /* ldrh r5, [r0], #2 */
0xe1c890b0, /* strh r9, [r8] */
0xe1cab0b0, /* strh r11, [r10] */
0xe1c830b0, /* strh r3, [r8] */
0xe1c150b0, /* strh r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* <sp_16_busy>: */
0xe1d160b0, /* ldrh r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe2177080, /* ands r7, #0x80 */
0x1afffffb, /* bne 8168 <sp_16_busy> */
/* */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 81ac <sp_16_done> */
0xe2811002, /* add r1, r1, #2 ; 0x2 */
0xeafffff0, /* b 8158 <sp_16_code> */
/* 000081ac <sp_16_done>: */
0xeafffffe /* b 81ac <sp_16_done> */
};
/* see contib/loaders/flash/armv4_5_cfi_span_8.s for src */
static const uint32_t armv4_5_word_8_code[] = {
/* 000081b0 <sp_16_code_end>: */
0xe4d05001, /* ldrb r5, [r0], #1 */
0xe5c89000, /* strb r9, [r8] */
0xe5cab000, /* strb r11, [r10] */
0xe5c83000, /* strb r3, [r8] */
0xe5c15000, /* strb r5, [r1] */
0xe1a00000, /* nop (mov r0,r0) */
/* 000081c0 <sp_8_busy>: */
0xe5d16000, /* ldrb r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000007, /* beq 81f0 <sp_8_cont> */
0xe0166124, /* ands r6, r6, r4, lsr #2 */
0x0afffff9, /* beq 81c0 <sp_8_busy> */
0xe5d16000, /* ldrb r6, [r1] */
0xe0257006, /* eor r7, r5, r6 */
0xe0147007, /* ands r7, r4, r7 */
0x0a000001, /* beq 81f0 <sp_8_cont> */
0xe3a05000, /* mov r5, #0 ; 0x0 */
0x1a000004, /* bne 8204 <sp_8_done> */
/* 000081f0 <sp_8_cont>: */
0xe2522001, /* subs r2, r2, #1 ; 0x1 */
0x03a05080, /* moveq r5, #128 ; 0x80 */
0x0a000001, /* beq 8204 <sp_8_done> */
0xe2811001, /* add r1, r1, #1 ; 0x1 */
0xeaffffe8, /* b 81b0 <sp_16_code_end> */
/* 00008204 <sp_8_done>: */
0xeafffffe /* b 8204 <sp_8_done> */
};
if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
return cfi_spansion_write_block_mips(bank, buffer, address, count);
if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_algo.core_mode = ARM_MODE_THREAD;
arm_algo = &armv7m_algo;
} else if (is_arm(target_to_arm(target))) {
/* All other ARM CPUs have 32 bit instructions */
armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
armv4_5_algo.core_mode = ARM_MODE_SVC;
armv4_5_algo.core_state = ARM_STATE_ARM;
arm_algo = &armv4_5_algo;
} else {
LOG_ERROR("Unknown architecture");
return ERROR_FAIL;
}
int target_code_size = 0;
const uint32_t *target_code_src = NULL;
switch (bank->bus_width) {
case 1:
if (is_armv7m(target_to_armv7m(target))) {
LOG_ERROR("Unknown ARM architecture");
return ERROR_FAIL;
}
target_code_src = armv4_5_word_8_code;
target_code_size = sizeof(armv4_5_word_8_code);
break;
case 2:
/* Check for DQ5 support */
if (cfi_info->status_poll_mask & (1 << 5)) {
if (is_armv7m(target_to_armv7m(target))) {
/* armv7m target */
target_code_src = armv7m_word_16_code;
target_code_size = sizeof(armv7m_word_16_code);
} else { /* armv4_5 target */
target_code_src = armv4_5_word_16_code;
target_code_size = sizeof(armv4_5_word_16_code);
}
} else {
/* No DQ5 support. Use DQ7 DATA# polling only. */
if (is_armv7m(target_to_armv7m(target))) {
LOG_ERROR("Unknown ARM architecture");
return ERROR_FAIL;
}
target_code_src = armv4_5_word_16_code_dq7only;
target_code_size = sizeof(armv4_5_word_16_code_dq7only);
}
break;
case 4:
if (is_armv7m(target_to_armv7m(target))) {
LOG_ERROR("Unknown ARM architecture");
return ERROR_FAIL;
}
target_code_src = armv4_5_word_32_code;
target_code_size = sizeof(armv4_5_word_32_code);
break;
default:
LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes",
bank->bus_width);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* flash write code */
uint8_t *target_code;
/* convert bus-width dependent algorithm code to correct endianness */
target_code = malloc(target_code_size);
if (target_code == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
/* allocate working area */
retval = target_alloc_working_area(target, target_code_size,
&write_algorithm);
if (retval != ERROR_OK) {
free(target_code);
return retval;
}
/* write algorithm code to working area */
retval = target_write_buffer(target, write_algorithm->address,
target_code_size, target_code);
if (retval != ERROR_OK) {
free(target_code);
return retval;
}
free(target_code);
/* the following code still assumes target code is fixed 24*4 bytes */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING(
"not enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
while (count > 0) {
uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
retval = target_write_buffer(target, source->address, thisrun_count, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
write_algorithm->address,
write_algorithm->address + ((target_code_size) - 4),
10000, arm_algo);
if (retval != ERROR_OK)
break;
status = buf_get_u32(reg_params[5].value, 0, 32);
if (status != 0x80) {
LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count;
address += thisrun_count;
count -= thisrun_count;
}
target_free_all_working_areas(target);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
destroy_reg_param(&reg_params[6]);
destroy_reg_param(&reg_params[7]);
destroy_reg_param(&reg_params[8]);
destroy_reg_param(&reg_params[9]);
return retval;
}
static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
cfi_intel_clear_status_register(bank);
retval = cfi_send_command(bank, 0x40, address);
if (retval != ERROR_OK)
return retval;
retval = target_write_memory(target, address, bank->bus_width, 1, word);
if (retval != ERROR_OK)
return retval;
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
if (retval != 0x80) {
retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address 0x%" PRIx32,
bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word,
uint32_t wordcount, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
/* Calculate buffer size and boundary mask
* buffersize is (buffer size per chip) * (number of chips)
* bufferwsize is buffersize in words */
uint32_t buffersize =
(1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize = buffersize / bank->bus_width;
/* Check for valid range */
if (address & buffermask) {
LOG_ERROR("Write address at base 0x%" PRIx32 ", address 0x%" PRIx32
" not aligned to 2^%d boundary",
bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check for valid size */
if (wordcount > bufferwsize) {
LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write to flash buffer */
cfi_intel_clear_status_register(bank);
/* Initiate buffer operation _*/
retval = cfi_send_command(bank, 0xe8, address);
if (retval != ERROR_OK)
return retval;
uint8_t status;
retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
if (retval != ERROR_OK)
return retval;
if (status != 0x80) {
retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR(
"couldn't start buffer write operation at base 0x%" PRIx32 ", address 0x%" PRIx32,
bank->base,
address);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Write buffer wordcount-1 and data words */
retval = cfi_send_command(bank, bufferwsize-1, address);
if (retval != ERROR_OK)
return retval;
retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
if (retval != ERROR_OK)
return retval;
/* Commit write operation */
retval = cfi_send_command(bank, 0xd0, address);
if (retval != ERROR_OK)
return retval;
retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
if (retval != ERROR_OK)
return retval;
if (status != 0x80) {
retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("Buffer write at base 0x%" PRIx32
", address 0x%" PRIx32 " failed.", bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
struct target *target = bank->target;
retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = target_write_memory(target, address, bank->bus_width, 1, word);
if (retval != ERROR_OK)
return retval;
if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("couldn't write word at base 0x%" PRIx32
", address 0x%" PRIx32, bank->base, address);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word,
uint32_t wordcount, uint32_t address)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
/* Calculate buffer size and boundary mask
* buffersize is (buffer size per chip) * (number of chips)
* bufferwsize is buffersize in words */
uint32_t buffersize =
(1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize = buffersize / bank->bus_width;
/* Check for valid range */
if (address & buffermask) {
LOG_ERROR("Write address at base 0x%" PRIx32
", address 0x%" PRIx32 " not aligned to 2^%d boundary",
bank->base, address, cfi_info->max_buf_write_size);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check for valid size */
if (wordcount > bufferwsize) {
LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
PRId32, wordcount, buffersize);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Unlock */
retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
if (retval != ERROR_OK)
return retval;
/* Buffer load command */
retval = cfi_send_command(bank, 0x25, address);
if (retval != ERROR_OK)
return retval;
/* Write buffer wordcount-1 and data words */
retval = cfi_send_command(bank, bufferwsize-1, address);
if (retval != ERROR_OK)
return retval;
retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word);
if (retval != ERROR_OK)
return retval;
/* Commit write operation */
retval = cfi_send_command(bank, 0x29, address);
if (retval != ERROR_OK)
return retval;
if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
if (retval != ERROR_OK)
return retval;
LOG_ERROR("couldn't write block at base 0x%" PRIx32
", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
bufferwsize);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
switch (cfi_info->pri_id) {
case 1:
case 3:
return cfi_intel_write_word(bank, word, address);
break;
case 2:
return cfi_spansion_write_word(bank, word, address);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_FLASH_OPERATION_FAILED;
}
static int cfi_write_words(struct flash_bank *bank, uint8_t *word,
uint32_t wordcount, uint32_t address)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->buf_write_timeout_typ == 0) {
/* buffer writes are not supported */
LOG_DEBUG("Buffer Writes Not Supported");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
switch (cfi_info->pri_id) {
case 1:
case 3:
return cfi_intel_write_words(bank, word, wordcount, address);
break;
case 2:
return cfi_spansion_write_words(bank, word, wordcount, address);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_FLASH_OPERATION_FAILED;
}
static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t address = bank->base + offset;
uint32_t read_p;
int align; /* number of unaligned bytes */
uint8_t current_word[CFI_MAX_BUS_WIDTH];
int i;
int retval;
LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
(int)count, (unsigned)offset);
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
/* start at the first byte of the first word (bus_width size) */
read_p = address & ~(bank->bus_width - 1);
align = address - read_p;
if (align != 0) {
LOG_INFO("Fixup %d unaligned read head bytes", align);
/* read a complete word from flash */
retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
if (retval != ERROR_OK)
return retval;
/* take only bytes we need */
for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
*buffer++ = current_word[i];
read_p += bank->bus_width;
}
align = count / bank->bus_width;
if (align) {
retval = target_read_memory(target, read_p, bank->bus_width, align, buffer);
if (retval != ERROR_OK)
return retval;
read_p += align * bank->bus_width;
buffer += align * bank->bus_width;
count -= align * bank->bus_width;
}
if (count) {
LOG_INFO("Fixup %d unaligned read tail bytes", count);
/* read a complete word from flash */
retval = target_read_memory(target, read_p, bank->bus_width, 1, current_word);
if (retval != ERROR_OK)
return retval;
/* take only bytes we need */
for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
*buffer++ = current_word[i];
}
return ERROR_OK;
}
static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t address = bank->base + offset; /* address of first byte to be programmed */
uint32_t write_p;
int align; /* number of unaligned bytes */
int blk_count; /* number of bus_width bytes for block copy */
uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
*programmed */
int i;
int retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
/* start at the first byte of the first word (bus_width size) */
write_p = address & ~(bank->bus_width - 1);
align = address - write_p;
if (align != 0) {
LOG_INFO("Fixup %d unaligned head bytes", align);
/* read a complete word from flash */
retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
if (retval != ERROR_OK)
return retval;
/* replace only bytes that must be written */
for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
}
/* handle blocks of bus_size aligned bytes */
blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
switch (cfi_info->pri_id) {
/* try block writes (fails without working area) */
case 1:
case 3:
retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
break;
case 2:
retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (retval == ERROR_OK) {
/* Increment pointers and decrease count on succesful block write */
buffer += blk_count;
write_p += blk_count;
count -= blk_count;
} else {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* Calculate buffer size and boundary mask
* buffersize is (buffer size per chip) * (number of chips)
* bufferwsize is buffersize in words */
uint32_t buffersize =
(1UL <<
cfi_info->max_buf_write_size) *
(bank->bus_width / bank->chip_width);
uint32_t buffermask = buffersize-1;
uint32_t bufferwsize = buffersize / bank->bus_width;
/* fall back to memory writes */
while (count >= (uint32_t)bank->bus_width) {
int fallback;
if ((write_p & 0xff) == 0) {
LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
PRIx32 " bytes remaining", write_p, count);
}
fallback = 1;
if ((bufferwsize > 0) && (count >= buffersize) &&
!(write_p & buffermask)) {
retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
if (retval == ERROR_OK) {
buffer += buffersize;
write_p += buffersize;
count -= buffersize;
fallback = 0;
} else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
return retval;
}
/* try the slow way? */
if (fallback) {
for (i = 0; i < bank->bus_width; i++)
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
write_p += bank->bus_width;
count -= bank->bus_width;
}
}
} else
return retval;
}
/* return to read array mode, so we can read from flash again for padding */
retval = cfi_reset(bank);
if (retval != ERROR_OK)
return retval;
/* handle unaligned tail bytes */
if (count > 0) {
LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
/* read a complete word from flash */
retval = target_read_memory(target, write_p, bank->bus_width, 1, current_word);
if (retval != ERROR_OK)
return retval;
/* replace only bytes that must be written */
for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
current_word[i] = *buffer++;
retval = cfi_write_word(bank, current_word, write_p);
if (retval != ERROR_OK)
return retval;
}
/* return to read array mode */
return cfi_reset(bank);
}
static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param)
{
(void) param;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
pri_ext->_reversed_geometry = 1;
}
static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
{
int i;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
(void) param;
if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
for (i = 0; i < cfi_info->num_erase_regions / 2; i++) {
int j = (cfi_info->num_erase_regions - 1) - i;
uint32_t swap;
swap = cfi_info->erase_region_info[i];
cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
cfi_info->erase_region_info[j] = swap;
}
}
}
static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
struct cfi_unlock_addresses *unlock_addresses = param;
pri_ext->_unlock1 = unlock_addresses->unlock1;
pri_ext->_unlock2 = unlock_addresses->unlock2;
}
static int cfi_query_string(struct flash_bank *bank, int address)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
int retval;
retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address));
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
retval = cfi_reset(bank);
if (retval != ERROR_OK)
return retval;
LOG_ERROR("Could not probe bank: no QRY");
return ERROR_FLASH_BANK_INVALID;
}
return ERROR_OK;
}
static int cfi_probe(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct target *target = bank->target;
int num_sectors = 0;
int i;
int sector = 0;
uint32_t unlock1 = 0x555;
uint32_t unlock2 = 0x2aa;
int retval;
uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
cfi_info->probed = 0;
cfi_info->num_erase_regions = 0;
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
if (cfi_info->erase_region_info) {
free(cfi_info->erase_region_info);
cfi_info->erase_region_info = NULL;
}
/* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
* while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
*/
if (cfi_info->jedec_probe) {
unlock1 = 0x5555;
unlock2 = 0x2aaa;
}
/* switch to read identifier codes mode ("AUTOSELECT") */
retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1));
if (retval != ERROR_OK)
return retval;
retval = target_read_memory(target, flash_address(bank, 0, 0x00),
bank->bus_width, 1, value_buf0);
if (retval != ERROR_OK)
return retval;
retval = target_read_memory(target, flash_address(bank, 0, 0x01),
bank->bus_width, 1, value_buf1);
if (retval != ERROR_OK)
return retval;
switch (bank->chip_width) {
case 1:
cfi_info->manufacturer = *value_buf0;
cfi_info->device_id = *value_buf1;
break;
case 2:
cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
break;
case 4:
cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
break;
default:
LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory",
bank->chip_width);
return ERROR_FLASH_OPERATION_FAILED;
}
LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
cfi_info->manufacturer, cfi_info->device_id);
/* switch back to read array mode */
retval = cfi_reset(bank);
if (retval != ERROR_OK)
return retval;
/* check device/manufacturer ID for known non-CFI flashes. */
cfi_fixup_non_cfi(bank);
/* query only if this is a CFI compatible flash,
* otherwise the relevant info has already been filled in
*/
if (cfi_info->not_cfi == 0) {
/* enter CFI query mode
* according to JEDEC Standard No. 68.01,
* a single bus sequence with address = 0x55, data = 0x98 should put
* the device into CFI query mode.
*
* SST flashes clearly violate this, and we will consider them incompatible for now
*/
retval = cfi_query_string(bank, 0x55);
if (retval != ERROR_OK) {
/*
* Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
* be harmless enough:
*
* http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
*/
LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
retval = cfi_query_string(bank, 0x555);
}
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
"0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
cfi_info->alt_id, cfi_info->alt_addr);
retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
if (retval != ERROR_OK)
return retval;
uint8_t data;
retval = cfi_query_u8(bank, 0, 0x27, &data);
if (retval != ERROR_OK)
return retval;
cfi_info->dev_size = 1 << data;
retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
if (retval != ERROR_OK)
return retval;
retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
cfi_info->dev_size, cfi_info->interface_desc,
(1 << cfi_info->max_buf_write_size));
if (cfi_info->num_erase_regions) {
cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
* cfi_info->num_erase_regions);
for (i = 0; i < cfi_info->num_erase_regions; i++) {
retval = cfi_query_u32(bank,
0,
0x2d + (4 * i),
&cfi_info->erase_region_info[i]);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG(
"erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
i,
(cfi_info->erase_region_info[i] & 0xffff) + 1,
(cfi_info->erase_region_info[i] >> 16) * 256);
}
} else
cfi_info->erase_region_info = NULL;
/* We need to read the primary algorithm extended query table before calculating
* the sector layout to be able to apply fixups
*/
switch (cfi_info->pri_id) {
/* Intel command set (standard and extended) */
case 0x0001:
case 0x0003:
cfi_read_intel_pri_ext(bank);
break;
/* AMD/Spansion, Atmel, ... command set */
case 0x0002:
cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
*default
*for
*all
*CFI
*flashs
**/
cfi_read_0002_pri_ext(bank);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
/* return to read array mode
* we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
*/
retval = cfi_reset(bank);
if (retval != ERROR_OK)
return retval;
} /* end CFI case */
LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
(cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
(cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
(cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
(cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
"typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
"max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
(1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
(1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
(1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
(1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
/* convert timeouts to real values in ms */
cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
(1L << cfi_info->word_write_timeout_max), 1000);
cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
(1L << cfi_info->buf_write_timeout_max), 1000);
cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
(1L << cfi_info->block_erase_timeout_max);
cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
(1L << cfi_info->chip_erase_timeout_max);
LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
"block erase timeout: %u ms, chip erase timeout: %u ms",
cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
/* apply fixups depending on the primary command set */
switch (cfi_info->pri_id) {
/* Intel command set (standard and extended) */
case 0x0001:
case 0x0003:
cfi_fixup(bank, cfi_0001_fixups);
break;
/* AMD/Spansion, Atmel, ... command set */
case 0x0002:
cfi_fixup(bank, cfi_0002_fixups);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
" size flash was found", bank->size, cfi_info->dev_size);
}
if (cfi_info->num_erase_regions == 0) {
/* a device might have only one erase block, spanning the whole device */
bank->num_sectors = 1;
bank->sectors = malloc(sizeof(struct flash_sector));
bank->sectors[sector].offset = 0x0;
bank->sectors[sector].size = bank->size;
bank->sectors[sector].is_erased = -1;
bank->sectors[sector].is_protected = -1;
} else {
uint32_t offset = 0;
for (i = 0; i < cfi_info->num_erase_regions; i++)
num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
for (i = 0; i < cfi_info->num_erase_regions; i++) {
uint32_t j;
for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
bank->sectors[sector].offset = offset;
bank->sectors[sector].size =
((cfi_info->erase_region_info[i] >> 16) * 256)
* bank->bus_width / bank->chip_width;
offset += bank->sectors[sector].size;
bank->sectors[sector].is_erased = -1;
bank->sectors[sector].is_protected = -1;
sector++;
}
}
if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
LOG_WARNING(
"CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
(cfi_info->dev_size * bank->bus_width / bank->chip_width),
offset);
}
}
cfi_info->probed = 1;
return ERROR_OK;
}
static int cfi_auto_probe(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->probed)
return ERROR_OK;
return cfi_probe(bank);
}
static int cfi_intel_protect_check(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
int i;
/* check if block lock bits are supported on this device */
if (!(pri_ext->blk_status_reg_mask & 0x1))
return ERROR_FLASH_OPERATION_FAILED;
retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55));
if (retval != ERROR_OK)
return retval;
for (i = 0; i < bank->num_sectors; i++) {
uint8_t block_status;
retval = cfi_get_u8(bank, i, 0x2, &block_status);
if (retval != ERROR_OK)
return retval;
if (block_status & 1)
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
}
static int cfi_spansion_protect_check(struct flash_bank *bank)
{
int retval;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
int i;
retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2));
if (retval != ERROR_OK)
return retval;
retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1));
if (retval != ERROR_OK)
return retval;
for (i = 0; i < bank->num_sectors; i++) {
uint8_t block_status;
retval = cfi_get_u8(bank, i, 0x2, &block_status);
if (retval != ERROR_OK)
return retval;
if (block_status & 1)
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
}
static int cfi_protect_check(struct flash_bank *bank)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (cfi_info->qry[0] != 'Q')
return ERROR_FLASH_BANK_NOT_PROBED;
switch (cfi_info->pri_id) {
case 1:
case 3:
return cfi_intel_protect_check(bank);
break;
case 2:
return cfi_spansion_protect_check(bank);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
{
int printed;
struct cfi_flash_bank *cfi_info = bank->driver_priv;
if (cfi_info->qry[0] == 0xff) {
snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
return ERROR_OK;
}
if (cfi_info->not_cfi == 0)
printed = snprintf(buf, buf_size, "\nCFI flash: ");
else
printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
cfi_info->manufacturer, cfi_info->device_id);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
"0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
"Vpp min: %u.%x, Vpp max: %u.%x\n",
(cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
(cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
(cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
(cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
"typ. buf write timeout: %u us, "
"typ. block erase timeout: %u ms, "
"typ. chip erase timeout: %u ms\n",
1 << cfi_info->word_write_timeout_typ,
1 << cfi_info->buf_write_timeout_typ,
1 << cfi_info->block_erase_timeout_typ,
1 << cfi_info->chip_erase_timeout_typ);
buf += printed;
buf_size -= printed;
printed = snprintf(buf,
buf_size,
"max. word write timeout: %u us, "
"max. buf write timeout: %u us, max. "
"block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
(1 <<
cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
(1 <<
cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
(1 <<
cfi_info->block_erase_timeout_max) *
(1 << cfi_info->block_erase_timeout_typ),
(1 <<
cfi_info->chip_erase_timeout_max) *
(1 << cfi_info->chip_erase_timeout_typ));
buf += printed;
buf_size -= printed;
printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
"max buffer write size: 0x%x\n",
cfi_info->dev_size,
cfi_info->interface_desc,
1 << cfi_info->max_buf_write_size);
buf += printed;
buf_size -= printed;
switch (cfi_info->pri_id) {
case 1:
case 3:
cfi_intel_info(bank, buf, buf_size);
break;
case 2:
cfi_spansion_info(bank, buf, buf_size);
break;
default:
LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
break;
}
return ERROR_OK;
}
static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param)
{
struct cfi_flash_bank *cfi_info = bank->driver_priv;
/* disable write buffer for M29W128G */
cfi_info->buf_write_timeout_typ = 0;
}
struct flash_driver cfi_flash = {
.name = "cfi",
.flash_bank_command = cfi_flash_bank_command,
.erase = cfi_erase,
.protect = cfi_protect,
.write = cfi_write,
.read = cfi_read,
.probe = cfi_probe,
.auto_probe = cfi_auto_probe,
/* FIXME: access flash at bus_width size */
.erase_check = default_flash_blank_check,
.protect_check = cfi_protect_check,
.info = get_cfi_info,
};