openocd/src/flash/nor/fm3.c

910 lines
31 KiB
C

/***************************************************************************
* Copyright (C) 2011 by Marc Willam, Holger Wech *
* openOCD.fseu(AT)de.fujitsu.com *
* Copyright (C) 2011 Ronny Strutz *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#define FLASH_DQ6 0x00000040 /* Data toggle flag bit (TOGG) position */
#define FLASH_DQ5 0x00000020 /* Time limit exceeding flag bit (TLOV) position */
enum fm3_variant {
mb9bfxx1, /* Flash Type '1' */
mb9bfxx2,
mb9bfxx3,
mb9bfxx4,
mb9bfxx5,
mb9bfxx6,
mb9bfxx7,
mb9bfxx8,
mb9afxx1, /* Flash Type '2' */
mb9afxx2,
mb9afxx3,
mb9afxx4,
mb9afxx5,
mb9afxx6,
mb9afxx7,
mb9afxx8,
};
enum fm3_flash_type {
fm3_no_flash_type = 0,
fm3_flash_type1 = 1,
fm3_flash_type2 = 2
};
struct fm3_flash_bank {
enum fm3_variant variant;
enum fm3_flash_type flashtype;
int probed;
};
FLASH_BANK_COMMAND_HANDLER(fm3_flash_bank_command)
{
struct fm3_flash_bank *fm3_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
fm3_info = malloc(sizeof(struct fm3_flash_bank));
bank->driver_priv = fm3_info;
/* Flash type '1' */
if (strcmp(CMD_ARGV[5], "mb9bfxx1.cpu") == 0) {
fm3_info->variant = mb9bfxx1;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9bfxx2.cpu") == 0) {
fm3_info->variant = mb9bfxx2;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9bfxx3.cpu") == 0) {
fm3_info->variant = mb9bfxx3;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9bfxx4.cpu") == 0) {
fm3_info->variant = mb9bfxx4;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9bfxx5.cpu") == 0) {
fm3_info->variant = mb9bfxx5;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9bfxx6.cpu") == 0) {
fm3_info->variant = mb9bfxx6;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9bfxx7.cpu") == 0) {
fm3_info->variant = mb9bfxx7;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9bfxx8.cpu") == 0) {
fm3_info->variant = mb9bfxx8;
fm3_info->flashtype = fm3_flash_type1;
} else if (strcmp(CMD_ARGV[5], "mb9afxx1.cpu") == 0) { /* Flash type '2' */
fm3_info->variant = mb9afxx1;
fm3_info->flashtype = fm3_flash_type2;
} else if (strcmp(CMD_ARGV[5], "mb9afxx2.cpu") == 0) {
fm3_info->variant = mb9afxx2;
fm3_info->flashtype = fm3_flash_type2;
} else if (strcmp(CMD_ARGV[5], "mb9afxx3.cpu") == 0) {
fm3_info->variant = mb9afxx3;
fm3_info->flashtype = fm3_flash_type2;
} else if (strcmp(CMD_ARGV[5], "mb9afxx4.cpu") == 0) {
fm3_info->variant = mb9afxx4;
fm3_info->flashtype = fm3_flash_type2;
} else if (strcmp(CMD_ARGV[5], "mb9afxx5.cpu") == 0) {
fm3_info->variant = mb9afxx5;
fm3_info->flashtype = fm3_flash_type2;
} else if (strcmp(CMD_ARGV[5], "mb9afxx6.cpu") == 0) {
fm3_info->variant = mb9afxx6;
fm3_info->flashtype = fm3_flash_type2;
} else if (strcmp(CMD_ARGV[5], "mb9afxx7.cpu") == 0) {
fm3_info->variant = mb9afxx7;
fm3_info->flashtype = fm3_flash_type2;
} else if (strcmp(CMD_ARGV[5], "mb9afxx8.cpu") == 0) {
fm3_info->variant = mb9afxx8;
fm3_info->flashtype = fm3_flash_type2;
}
/* unknown Flash type */
else {
LOG_ERROR("unknown fm3 variant: %s", CMD_ARGV[5]);
free(fm3_info);
return ERROR_FLASH_BANK_INVALID;
}
fm3_info->probed = 0;
return ERROR_OK;
}
/* Data polling algorithm */
static int fm3_busy_wait(struct target *target, uint32_t offset, int timeout_ms)
{
int retval = ERROR_OK;
uint16_t state1, state2;
int ms = 0;
/* While(1) loop exit via "break" and "return" on error */
while (1) {
/* dummy-read - see flash manual */
retval = target_read_u16(target, offset, &state1);
if (retval != ERROR_OK)
return retval;
/* Data polling 1 */
retval = target_read_u16(target, offset, &state1);
if (retval != ERROR_OK)
return retval;
/* Data polling 2 */
retval = target_read_u16(target, offset, &state2);
if (retval != ERROR_OK)
return retval;
/* Flash command finished via polled data equal? */
if ((state1 & FLASH_DQ6) == (state2 & FLASH_DQ6))
break;
/* Timeout Flag? */
else if (state1 & FLASH_DQ5) {
/* Retry data polling */
/* Data polling 1 */
retval = target_read_u16(target, offset, &state1);
if (retval != ERROR_OK)
return retval;
/* Data polling 2 */
retval = target_read_u16(target, offset, &state2);
if (retval != ERROR_OK)
return retval;
/* Flash command finished via polled data equal? */
if ((state1 & FLASH_DQ6) != (state2 & FLASH_DQ6))
return ERROR_FLASH_OPERATION_FAILED;
/* finish anyway */
break;
}
usleep(1000);
++ms;
/* Polling time exceeded? */
if (ms > timeout_ms) {
LOG_ERROR("Polling data reading timed out!");
return ERROR_FLASH_OPERATION_FAILED;
}
}
if (retval == ERROR_OK)
LOG_DEBUG("fm3_busy_wait(%x) needs about %d ms", offset, ms);
return retval;
}
static int fm3_erase(struct flash_bank *bank, int first, int last)
{
struct fm3_flash_bank *fm3_info = bank->driver_priv;
struct target *target = bank->target;
int retval = ERROR_OK;
uint32_t u32DummyRead;
int sector, odd;
uint32_t u32FlashType;
uint32_t u32FlashSeqAddress1;
uint32_t u32FlashSeqAddress2;
u32FlashType = (uint32_t) fm3_info->flashtype;
if (u32FlashType == fm3_flash_type1) {
u32FlashSeqAddress1 = 0x00001550;
u32FlashSeqAddress2 = 0x00000AA8;
} else if (u32FlashType == fm3_flash_type2) {
u32FlashSeqAddress1 = 0x00000AA8;
u32FlashSeqAddress2 = 0x00000554;
} else {
LOG_ERROR("Flash/Device type unknown!");
return ERROR_FLASH_OPERATION_FAILED;
}
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
LOG_INFO("Fujitsu MB9Bxxx: Sector Erase ... (%d to %d)", first, last);
/* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash acccess) */
retval = target_write_u32(target, 0x40000000, 0x0001);
if (retval != ERROR_OK)
return retval;
/* dummy read of FASZR */
retval = target_read_u32(target, 0x40000000, &u32DummyRead);
if (retval != ERROR_OK)
return retval;
for (sector = first ; sector <= last ; sector++) {
uint32_t offset = bank->sectors[sector].offset;
for (odd = 0; odd < 2 ; odd++) {
if (odd)
offset += 4;
/* Flash unlock sequence */
retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress1, 0x0080);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
if (retval != ERROR_OK)
return retval;
/* Sector erase command (0x0030) */
retval = target_write_u16(target, offset, 0x0030);
if (retval != ERROR_OK)
return retval;
retval = fm3_busy_wait(target, offset, 500);
if (retval != ERROR_OK)
return retval;
}
bank->sectors[sector].is_erased = 1;
}
/* FASZR = 0x02, Enables CPU Run Mode (32-bit Flash acccess) */
retval = target_write_u32(target, 0x40000000, 0x0002);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
return retval;
}
static int fm3_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct fm3_flash_bank *fm3_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 2048; /* 8192 for MB9Bxx6! */
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[6];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
uint32_t u32FlashType;
uint32_t u32FlashSeqAddress1;
uint32_t u32FlashSeqAddress2;
u32FlashType = (uint32_t) fm3_info->flashtype;
if (u32FlashType == fm3_flash_type1) {
u32FlashSeqAddress1 = 0x00001550;
u32FlashSeqAddress2 = 0x00000AA8;
} else if (u32FlashType == fm3_flash_type2) {
u32FlashSeqAddress1 = 0x00000AA8;
u32FlashSeqAddress2 = 0x00000554;
} else {
LOG_ERROR("Flash/Device type unknown!");
return ERROR_FLASH_OPERATION_FAILED;
}
/* RAMCODE used for fm3 Flash programming: */
/* R0 keeps source start address (u32Source) */
/* R1 keeps target start address (u32Target) */
/* R2 keeps number of halfwords to write (u32Count) */
/* R3 keeps Flash Sequence address 1 (u32FlashSeq1) */
/* R4 keeps Flash Sequence address 2 (u32FlashSeq2) */
/* R5 returns result value (u32FlashResult) */
const uint8_t fm3_flash_write_code[] = {
/* fm3_FLASH_IF->FASZ &= 0xFFFD; */
0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
0x2D, 0x68, /* LDR R5, [R5] */
0x4F, 0xF6, 0xFD, 0x76, /* MOVW R6, #0xFFFD */
0x35, 0x40, /* ANDS R5, R5, R6 */
0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
0x35, 0x60, /* STR R5, [R6] */
/* fm3_FLASH_IF->FASZ |= 1; */
0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
0x2D, 0x68, /* LDR R5, [R3] */
0x55, 0xF0, 0x01, 0x05, /* ORRS.W R5, R5, #1 */
0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
0x35, 0x60, /* STR R5, [R6] */
/* u32DummyRead = fm3_FLASH_IF->FASZ; */
0x28, 0x4D, /* LDR.N R5, ??u32DummyRead */
0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
0x36, 0x68, /* LDR R6, [R6] */
0x2E, 0x60, /* STR R6, [R5] */
/* u32FlashResult = FLASH_WRITE_NO_RESULT */
0x26, 0x4D, /* LDR.N R5, ??u32FlashResult */
0x00, 0x26, /* MOVS R6, #0 */
0x2E, 0x60, /* STR R6, [R5] */
/* while ((u32Count > 0 ) */
/* && (u32FlashResult */
/* == FLASH_WRITE_NO_RESULT)) */
0x01, 0x2A, /* L0: CMP R2, #1 */
0x2C, 0xDB, /* BLT.N L1 */
0x24, 0x4D, /* LDR.N R5, ??u32FlashResult */
0x2D, 0x68, /* LDR R5, [R5] */
0x00, 0x2D, /* CMP R5, #0 */
0x28, 0xD1, /* BNE.N L1 */
/* *u32FlashSeq1 = FLASH_WRITE_1; */
0xAA, 0x25, /* MOVS R5, #0xAA */
0x1D, 0x60, /* STR R5, [R3] */
/* *u32FlashSeq2 = FLASH_WRITE_2; */
0x55, 0x25, /* MOVS R5, #0x55 */
0x25, 0x60, /* STR R5, [R4] */
/* *u32FlashSeq1 = FLASH_WRITE_3; */
0xA0, 0x25, /* MOVS R5, #0xA0 */
0x1D, 0x60, /* STRH R5, [R3] */
/* *(volatile uint16_t*)u32Target */
/* = *(volatile uint16_t*)u32Source; */
0x05, 0x88, /* LDRH R5, [R0] */
0x0D, 0x80, /* STRH R5, [R1] */
/* while (u32FlashResult */
/* == FLASH_WRITE_NO_RESTULT) */
0x1E, 0x4D, /* L2: LDR.N R5, ??u32FlashResult */
0x2D, 0x68, /* LDR R5, [R5] */
0x00, 0x2D, /* CMP R5, #0 */
0x11, 0xD1, /* BNE.N L3 */
/* if ((*(volatile uint16_t*)u32Target */
/* & FLASH_DQ5) == FLASH_DQ5) */
0x0D, 0x88, /* LDRH R5, [R1] */
0xAD, 0x06, /* LSLS R5, R5, #0x1A */
0x02, 0xD5, /* BPL.N L4 */
/* u32FlashResult = FLASH_WRITE_TIMEOUT */
0x1A, 0x4D, /* LDR.N R5, ??u32FlashResult */
0x02, 0x26, /* MOVS R6, #2 */
0x2E, 0x60, /* STR R6, [R5] */
/* if ((*(volatile uint16_t *)u32Target */
/* & FLASH_DQ7) */
/* == (*(volatile uint16_t*)u32Source */
/* & FLASH_DQ7)) */
0x0D, 0x88, /* L4: LDRH R5, [R1] */
0x15, 0xF0, 0x80, 0x05, /* ANDS.W R5, R5, #0x80 */
0x06, 0x88, /* LDRH R6, [R0] */
0x16, 0xF0, 0x80, 0x06, /* ANDS.W R6, R6, #0x80 */
0xB5, 0x42, /* CMP R5, R6 */
0xED, 0xD1, /* BNE.N L2 */
/* u32FlashResult = FLASH_WRITE_OKAY */
0x15, 0x4D, /* LDR.N R5, ??u32FlashResult */
0x01, 0x26, /* MOVS R6, #1 */
0x2E, 0x60, /* STR R6, [R5] */
0xE9, 0xE7, /* B.N L2 */
/* if (u32FlashResult */
/* != FLASH_WRITE_TIMEOUT) */
0x13, 0x4D, /* LDR.N R5, ??u32FlashResult */
0x2D, 0x68, /* LDR R5, [R5] */
0x02, 0x2D, /* CMP R5, #2 */
0x02, 0xD0, /* BEQ.N L5 */
/* u32FlashResult = FLASH_WRITE_NO_RESULT */
0x11, 0x4D, /* LDR.N R5, ??u32FlashResult */
0x00, 0x26, /* MOVS R6, #0 */
0x2E, 0x60, /* STR R6, [R5] */
/* u32Count--; */
0x52, 0x1E, /* L5: SUBS R2, R2, #1 */
/* u32Source += 2; */
0x80, 0x1C, /* ADDS R0, R0, #2 */
/* u32Target += 2; */
0x89, 0x1C, /* ADDS R1, R1, #2 */
0xD0, 0xE7, /* B.N L0 */
/* fm3_FLASH_IF->FASZ &= 0xFFFE; */
0x5F, 0xF0, 0x80, 0x45, /* L1: MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
0x2D, 0x68, /* LDR R5, [R5] */
0x4F, 0xF6, 0xFE, 0x76, /* MOVW R6, #0xFFFE */
0x35, 0x40, /* ANDS R5, R5, R6 */
0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
0x35, 0x60, /* STR R5, [R6] */
/* fm3_FLASH_IF->FASZ |= 2; */
0x5F, 0xF0, 0x80, 0x45, /* MOVS.W R5, #(fm3_FLASH_IF->FASZ) */
0x2D, 0x68, /* LDR R5, [R5] */
0x55, 0xF0, 0x02, 0x05, /* ORRS.W R5, R5, #2 */
0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
0x35, 0x60, /* STR R5, [R6] */
/* u32DummyRead = fm3_FLASH_IF->FASZ; */
0x04, 0x4D, /* LDR.N R5, ??u32DummyRead */
0x5F, 0xF0, 0x80, 0x46, /* MOVS.W R6, #(fm3_FLASH_IF->FASZ) */
0x36, 0x68, /* LDR R6, [R6] */
0x2E, 0x60, /* STR R6, [R5] */
/* copy u32FlashResult to R3 for return */
/* value */
0xDF, 0xF8, 0x08, 0x50, /* LDR.W R5, ??u32FlashResult */
0x2D, 0x68, /* LDR R5, [R5] */
/* Breakpoint here */
0x00, 0xBE, /* BKPT #0 */
/* The following address pointers assume, that the code is running from */
/* address 0x1FFF8008. These address pointers will be patched, if a */
/* different start address in RAM is used (e.g. for Flash type 2)! */
0x00, 0x80, 0xFF, 0x1F, /* u32DummyRead address in RAM (0x1FFF8000) */
0x04, 0x80, 0xFF, 0x1F /* u32FlashResult address in RAM (0x1FFF8004) */
};
LOG_INFO("Fujitsu MB9B500: FLASH Write ...");
/* disable HW watchdog */
retval = target_write_u32(target, 0x40011C00, 0x1ACCE551);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, 0x40011C00, 0xE5331AAE);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, 0x40011008, 0x00000000);
if (retval != ERROR_OK)
return retval;
count = count / 2; /* number bytes -> number halfwords */
/* check code alignment */
if (offset & 0x1) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(fm3_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(fm3_flash_write_code), fm3_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= 256) {
/* free working area, write algorithm already allocated */
target_free_working_area(target, write_algorithm);
LOG_WARNING("No large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* source start address */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* target start address */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of halfwords to program */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* Flash Sequence address 1 */
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* Flash Sequence address 1 */
init_reg_param(&reg_params[5], "r5", 32, PARAM_IN); /* result */
/* write code buffer and use Flash programming code within fm3 */
/* Set breakpoint to 0 with time-out of 1000 ms */
while (count > 0) {
uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
retval = target_write_buffer(target, write_algorithm->address, 8,
fm3_flash_write_code);
if (retval != ERROR_OK)
break;
/* Patching 'local variable address' for different RAM addresses */
if (write_algorithm->address != 0x1FFF8008) {
/* Algorithm: u32DummyRead: */
retval = target_write_u32(target, (write_algorithm->address)
+ sizeof(fm3_flash_write_code) - 8, (write_algorithm->address) - 8);
if (retval != ERROR_OK)
break;
/* Algorithm: u32FlashResult: */
retval = target_write_u32(target, (write_algorithm->address)
+ sizeof(fm3_flash_write_code) - 4, (write_algorithm->address) - 4);
if (retval != ERROR_OK)
break;
}
retval = target_write_buffer(target, source->address, thisrun_count * 2, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
buf_set_u32(reg_params[3].value, 0, 32, u32FlashSeqAddress1);
buf_set_u32(reg_params[4].value, 0, 32, u32FlashSeqAddress2);
retval = target_run_algorithm(target, 0, NULL, 6, reg_params,
write_algorithm->address, 0, 1000, &armv7m_info);
if (retval != ERROR_OK) {
LOG_ERROR("Error executing fm3 Flash programming algorithm");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (buf_get_u32(reg_params[5].value, 0, 32) != ERROR_OK) {
LOG_ERROR("Fujitsu MB9[A/B]FXXX: Flash programming ERROR (Timeout) -> Reg R3: %x",
buf_get_u32(reg_params[5].value, 0, 32));
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
return retval;
}
static int fm3_probe(struct flash_bank *bank)
{
struct fm3_flash_bank *fm3_info = bank->driver_priv;
uint16_t num_pages;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/*
-- page-- start -- blocksize - mpu - totalFlash --
page0 0x00000 16k
page1 0x04000 16k
page2 0x08000 96k ___ fxx3 128k Flash
page3 0x20000 128k ___ fxx4 256k Flash
page4 0x40000 128k ___ fxx5 384k Flash
page5 0x60000 128k ___ fxx6 512k Flash
-----------------------
page6 0x80000 128k
page7 0xa0000 128k ___ fxx7 256k Flash
page8 0xc0000 128k
page9 0xe0000 128k ___ fxx8 256k Flash
*/
num_pages = 10; /* max number of Flash pages for malloc */
fm3_info->probed = 0;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
bank->base = 0x00000000;
bank->size = 32 * 1024; /* bytes */
bank->sectors[0].offset = 0;
bank->sectors[0].size = 16 * 1024;
bank->sectors[0].is_erased = -1;
bank->sectors[0].is_protected = -1;
bank->sectors[1].offset = 0x4000;
bank->sectors[1].size = 16 * 1024;
bank->sectors[1].is_erased = -1;
bank->sectors[1].is_protected = -1;
if ((fm3_info->variant == mb9bfxx1)
|| (fm3_info->variant == mb9afxx1)) {
num_pages = 3;
bank->size = 64 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[2].offset = 0x8000;
bank->sectors[2].size = 32 * 1024;
bank->sectors[2].is_erased = -1;
bank->sectors[2].is_protected = -1;
}
if ((fm3_info->variant == mb9bfxx2)
|| (fm3_info->variant == mb9bfxx4)
|| (fm3_info->variant == mb9bfxx5)
|| (fm3_info->variant == mb9bfxx6)
|| (fm3_info->variant == mb9bfxx7)
|| (fm3_info->variant == mb9bfxx8)
|| (fm3_info->variant == mb9afxx2)
|| (fm3_info->variant == mb9afxx4)
|| (fm3_info->variant == mb9afxx5)
|| (fm3_info->variant == mb9afxx6)
|| (fm3_info->variant == mb9afxx7)
|| (fm3_info->variant == mb9afxx8)) {
num_pages = 3;
bank->size = 128 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[2].offset = 0x8000;
bank->sectors[2].size = 96 * 1024;
bank->sectors[2].is_erased = -1;
bank->sectors[2].is_protected = -1;
}
if ((fm3_info->variant == mb9bfxx4)
|| (fm3_info->variant == mb9bfxx5)
|| (fm3_info->variant == mb9bfxx6)
|| (fm3_info->variant == mb9bfxx7)
|| (fm3_info->variant == mb9bfxx8)
|| (fm3_info->variant == mb9afxx4)
|| (fm3_info->variant == mb9afxx5)
|| (fm3_info->variant == mb9afxx6)
|| (fm3_info->variant == mb9afxx7)
|| (fm3_info->variant == mb9afxx8)) {
num_pages = 4;
bank->size = 256 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[3].offset = 0x20000;
bank->sectors[3].size = 128 * 1024;
bank->sectors[3].is_erased = -1;
bank->sectors[3].is_protected = -1;
}
if ((fm3_info->variant == mb9bfxx5)
|| (fm3_info->variant == mb9bfxx6)
|| (fm3_info->variant == mb9bfxx7)
|| (fm3_info->variant == mb9bfxx8)
|| (fm3_info->variant == mb9afxx5)
|| (fm3_info->variant == mb9afxx6)
|| (fm3_info->variant == mb9afxx7)
|| (fm3_info->variant == mb9afxx8)) {
num_pages = 5;
bank->size = 384 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[4].offset = 0x40000;
bank->sectors[4].size = 128 * 1024;
bank->sectors[4].is_erased = -1;
bank->sectors[4].is_protected = -1;
}
if ((fm3_info->variant == mb9bfxx6)
|| (fm3_info->variant == mb9bfxx7)
|| (fm3_info->variant == mb9bfxx8)
|| (fm3_info->variant == mb9afxx6)
|| (fm3_info->variant == mb9afxx7)
|| (fm3_info->variant == mb9afxx8)) {
num_pages = 6;
bank->size = 512 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[5].offset = 0x60000;
bank->sectors[5].size = 128 * 1024;
bank->sectors[5].is_erased = -1;
bank->sectors[5].is_protected = -1;
}
if ((fm3_info->variant == mb9bfxx7)
|| (fm3_info->variant == mb9bfxx8)
|| (fm3_info->variant == mb9afxx7)
|| (fm3_info->variant == mb9afxx8)) {
num_pages = 8;
bank->size = 768 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[6].offset = 0x80000;
bank->sectors[6].size = 128 * 1024;
bank->sectors[6].is_erased = -1;
bank->sectors[6].is_protected = -1;
bank->sectors[7].offset = 0xa0000;
bank->sectors[7].size = 128 * 1024;
bank->sectors[7].is_erased = -1;
bank->sectors[7].is_protected = -1;
}
if ((fm3_info->variant == mb9bfxx8)
|| (fm3_info->variant == mb9afxx8)) {
num_pages = 10;
bank->size = 1024 * 1024; /* bytes */
bank->num_sectors = num_pages;
bank->sectors[8].offset = 0xc0000;
bank->sectors[8].size = 128 * 1024;
bank->sectors[8].is_erased = -1;
bank->sectors[8].is_protected = -1;
bank->sectors[9].offset = 0xe0000;
bank->sectors[9].size = 128 * 1024;
bank->sectors[9].is_erased = -1;
bank->sectors[9].is_protected = -1;
}
fm3_info->probed = 1;
return ERROR_OK;
}
static int fm3_auto_probe(struct flash_bank *bank)
{
struct fm3_flash_bank *fm3_info = bank->driver_priv;
if (fm3_info->probed)
return ERROR_OK;
return fm3_probe(bank);
}
static int fm3_info(struct flash_bank *bank, char *buf, int buf_size)
{
snprintf(buf, buf_size, "Fujitsu fm3 Device does not support Chip-ID (Type unknown)");
return ERROR_OK;
}
/* Chip erase */
static int fm3_chip_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
struct fm3_flash_bank *fm3_info2 = bank->driver_priv;
int retval = ERROR_OK;
uint32_t u32DummyRead;
uint32_t u32FlashType;
uint32_t u32FlashSeqAddress1;
uint32_t u32FlashSeqAddress2;
u32FlashType = (uint32_t) fm3_info2->flashtype;
if (u32FlashType == fm3_flash_type1) {
LOG_INFO("*** Erasing mb9bfxxx type");
u32FlashSeqAddress1 = 0x00001550;
u32FlashSeqAddress2 = 0x00000AA8;
} else if (u32FlashType == fm3_flash_type2) {
LOG_INFO("*** Erasing mb9afxxx type");
u32FlashSeqAddress1 = 0x00000AA8;
u32FlashSeqAddress2 = 0x00000554;
} else {
LOG_ERROR("Flash/Device type unknown!");
return ERROR_FLASH_OPERATION_FAILED;
}
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
LOG_INFO("Fujitsu MB9[AB]xxx: Chip Erase ... (may take several seconds)");
/* Implement Flash chip erase (mass erase) completely on host */
/* FASZR = 0x01, Enables CPU Programming Mode (16-bit Flash access) */
retval = target_write_u32(target, 0x40000000, 0x0001);
if (retval != ERROR_OK)
return retval;
/* dummy read of FASZR */
retval = target_read_u32(target, 0x40000000, &u32DummyRead);
if (retval != ERROR_OK)
return retval;
/* Flash unlock sequence */
retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress1, 0x0080);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress1, 0x00AA);
if (retval != ERROR_OK)
return retval;
retval = target_write_u16(target, u32FlashSeqAddress2, 0x0055);
if (retval != ERROR_OK)
return retval;
/* Chip Erase command (0x0010) */
retval = target_write_u16(target, u32FlashSeqAddress1, 0x0010);
if (retval != ERROR_OK)
return retval;
retval = fm3_busy_wait(target, u32FlashSeqAddress2, 20000); /* 20s timeout */
if (retval != ERROR_OK)
return retval;
/* FASZR = 0x02, Re-enables CPU Run Mode (32-bit Flash access) */
retval = target_write_u32(target, 0x40000000, 0x0002);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, 0x40000000, &u32DummyRead); /* dummy read of FASZR */
return retval;
}
COMMAND_HANDLER(fm3_handle_chip_erase_command)
{
int i;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
if (fm3_chip_erase(bank) == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "fm3 chip erase complete");
} else {
command_print(CMD_CTX, "fm3 chip erase failed");
}
return ERROR_OK;
}
static const struct command_registration fm3_exec_command_handlers[] = {
{
.name = "chip_erase",
.usage = "<bank>",
.handler = fm3_handle_chip_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase entire Flash device.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration fm3_command_handlers[] = {
{
.name = "fm3",
.mode = COMMAND_ANY,
.help = "fm3 Flash command group",
.usage = "",
.chain = fm3_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver fm3_flash = {
.name = "fm3",
.commands = fm3_command_handlers,
.flash_bank_command = fm3_flash_bank_command,
.erase = fm3_erase,
.write = fm3_write_block,
.probe = fm3_probe,
.auto_probe = fm3_auto_probe,
.erase_check = default_flash_blank_check,
.info = fm3_info,
};