openocd/src/flash/nor/lpc2900.c

1618 lines
49 KiB
C

/***************************************************************************
* Copyright (C) 2009 by *
* Rolf Meeser <rolfm_9dq@yahoo.de> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/arm.h>
#include <target/image.h>
/* 1024 bytes */
#define KiB 1024
/* Some flash constants */
#define FLASH_PAGE_SIZE 512 /* bytes */
#define FLASH_ERASE_TIME 100000 /* microseconds */
#define FLASH_PROGRAM_TIME 1000 /* microseconds */
/* Chip ID / Feature Registers */
#define CHIPID 0xE0000000 /* Chip ID */
#define FEAT0 0xE0000100 /* Chip feature 0 */
#define FEAT1 0xE0000104 /* Chip feature 1 */
#define FEAT2 0xE0000108 /* Chip feature 2 (contains flash size indicator) */
#define FEAT3 0xE000010C /* Chip feature 3 */
#define EXPECTED_CHIPID 0x209CE02B /* Chip ID of all LPC2900 devices */
/* Flash/EEPROM Control Registers */
#define FCTR 0x20200000 /* Flash control */
#define FPTR 0x20200008 /* Flash program-time */
#define FTCTR 0x2020000C /* Flash test control */
#define FBWST 0x20200010 /* Flash bridge wait-state */
#define FCRA 0x2020001C /* Flash clock divider */
#define FMSSTART 0x20200020 /* Flash Built-In Selft Test start address */
#define FMSSTOP 0x20200024 /* Flash Built-In Selft Test stop address */
#define FMS16 0x20200028 /* Flash 16-bit signature */
#define FMSW0 0x2020002C /* Flash 128-bit signature Word 0 */
#define FMSW1 0x20200030 /* Flash 128-bit signature Word 1 */
#define FMSW2 0x20200034 /* Flash 128-bit signature Word 2 */
#define FMSW3 0x20200038 /* Flash 128-bit signature Word 3 */
#define EECMD 0x20200080 /* EEPROM command */
#define EEADDR 0x20200084 /* EEPROM address */
#define EEWDATA 0x20200088 /* EEPROM write data */
#define EERDATA 0x2020008C /* EEPROM read data */
#define EEWSTATE 0x20200090 /* EEPROM wait state */
#define EECLKDIV 0x20200094 /* EEPROM clock divider */
#define EEPWRDWN 0x20200098 /* EEPROM power-down/start */
#define EEMSSTART 0x2020009C /* EEPROM BIST start address */
#define EEMSSTOP 0x202000A0 /* EEPROM BIST stop address */
#define EEMSSIG 0x202000A4 /* EEPROM 24-bit BIST signature */
#define INT_CLR_ENABLE 0x20200FD8 /* Flash/EEPROM interrupt clear enable */
#define INT_SET_ENABLE 0x20200FDC /* Flash/EEPROM interrupt set enable */
#define INT_STATUS 0x20200FE0 /* Flash/EEPROM interrupt status */
#define INT_ENABLE 0x20200FE4 /* Flash/EEPROM interrupt enable */
#define INT_CLR_STATUS 0x20200FE8 /* Flash/EEPROM interrupt clear status */
#define INT_SET_STATUS 0x20200FEC /* Flash/EEPROM interrupt set status */
/* Interrupt sources */
#define INTSRC_END_OF_PROG (1 << 28)
#define INTSRC_END_OF_BIST (1 << 27)
#define INTSRC_END_OF_RDWR (1 << 26)
#define INTSRC_END_OF_MISR (1 << 2)
#define INTSRC_END_OF_BURN (1 << 1)
#define INTSRC_END_OF_ERASE (1 << 0)
/* FCTR bits */
#define FCTR_FS_LOADREQ (1 << 15)
#define FCTR_FS_CACHECLR (1 << 14)
#define FCTR_FS_CACHEBYP (1 << 13)
#define FCTR_FS_PROGREQ (1 << 12)
#define FCTR_FS_RLS (1 << 11)
#define FCTR_FS_PDL (1 << 10)
#define FCTR_FS_PD (1 << 9)
#define FCTR_FS_WPB (1 << 7)
#define FCTR_FS_ISS (1 << 6)
#define FCTR_FS_RLD (1 << 5)
#define FCTR_FS_DCR (1 << 4)
#define FCTR_FS_WEB (1 << 2)
#define FCTR_FS_WRE (1 << 1)
#define FCTR_FS_CS (1 << 0)
/* FPTR bits */
#define FPTR_EN_T (1 << 15)
/* FTCTR bits */
#define FTCTR_FS_BYPASS_R (1 << 29)
#define FTCTR_FS_BYPASS_W (1 << 28)
/* FMSSTOP bits */
#define FMSSTOP_MISR_START (1 << 17)
/* EEMSSTOP bits */
#define EEMSSTOP_STRTBIST (1 << 31)
/* Index sector */
#define ISS_CUSTOMER_START1 (0x830)
#define ISS_CUSTOMER_END1 (0xA00)
#define ISS_CUSTOMER_SIZE1 (ISS_CUSTOMER_END1 - ISS_CUSTOMER_START1)
#define ISS_CUSTOMER_NWORDS1 (ISS_CUSTOMER_SIZE1 / 4)
#define ISS_CUSTOMER_START2 (0xA40)
#define ISS_CUSTOMER_END2 (0xC00)
#define ISS_CUSTOMER_SIZE2 (ISS_CUSTOMER_END2 - ISS_CUSTOMER_START2)
#define ISS_CUSTOMER_NWORDS2 (ISS_CUSTOMER_SIZE2 / 4)
#define ISS_CUSTOMER_SIZE (ISS_CUSTOMER_SIZE1 + ISS_CUSTOMER_SIZE2)
/**
* Private data for \c lpc2900 flash driver.
*/
struct lpc2900_flash_bank {
/**
* This flag is set when the device has been successfully probed.
*/
bool is_probed;
/**
* Holds the value read from CHIPID register.
* The driver will not load if the chipid doesn't match the expected
* value of 0x209CE02B of the LPC2900 family. A probe will only be done
* if the chipid does not yet contain the expected value.
*/
uint32_t chipid;
/**
* String holding device name.
* This string is set by the probe function to the type number of the
* device. It takes the form "LPC29xx".
*/
char *target_name;
/**
* System clock frequency.
* Holds the clock frequency in Hz, as passed by the configuration file
* to the <tt>flash bank</tt> command.
*/
uint32_t clk_sys_fmc;
/**
* Flag to indicate that dangerous operations are possible.
* This flag can be set by passing the correct password to the
* <tt>lpc2900 password</tt> command. If set, other dangerous commands,
* which operate on the index sector, can be executed.
*/
uint32_t risky;
/**
* Maximum contiguous block of internal SRAM (bytes).
* Autodetected by the driver. Not the total amount of SRAM, only the
* the largest \em contiguous block!
*/
uint32_t max_ram_block;
};
static uint32_t lpc2900_wait_status(struct flash_bank *bank, uint32_t mask, int timeout);
static void lpc2900_setup(struct flash_bank *bank);
static uint32_t lpc2900_is_ready(struct flash_bank *bank);
static uint32_t lpc2900_read_security_status(struct flash_bank *bank);
static uint32_t lpc2900_run_bist128(struct flash_bank *bank,
uint32_t addr_from, uint32_t addr_to,
uint32_t (*signature)[4]);
static uint32_t lpc2900_address2sector(struct flash_bank *bank, uint32_t offset);
static uint32_t lpc2900_calc_tr(uint32_t clock_var, uint32_t time_var);
/*********************** Helper functions **************************/
/**
* Wait for an event in mask to occur in INT_STATUS.
*
* Return when an event occurs, or after a timeout.
*
* @param[in] bank Pointer to the flash bank descriptor
* @param[in] mask Mask to be used for INT_STATUS
* @param[in] timeout Timeout in ms
*/
static uint32_t lpc2900_wait_status(struct flash_bank *bank,
uint32_t mask,
int timeout)
{
uint32_t int_status;
struct target *target = bank->target;
do {
alive_sleep(1);
timeout--;
target_read_u32(target, INT_STATUS, &int_status);
} while (((int_status & mask) == 0) && (timeout != 0));
if (timeout == 0) {
LOG_DEBUG("Timeout!");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
/**
* Set up the flash for erase/program operations.
*
* Enable the flash, and set the correct CRA clock of 66 kHz.
*
* @param bank Pointer to the flash bank descriptor
*/
static void lpc2900_setup(struct flash_bank *bank)
{
uint32_t fcra;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
/* Power up the flash block */
target_write_u32(bank->target, FCTR, FCTR_FS_WEB | FCTR_FS_CS);
fcra = (lpc2900_info->clk_sys_fmc / (3 * 66000)) - 1;
target_write_u32(bank->target, FCRA, fcra);
}
/**
* Check if device is ready.
*
* Check if device is ready for flash operation:
* Must have been successfully probed.
* Must be halted.
*/
static uint32_t lpc2900_is_ready(struct flash_bank *bank)
{
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
if (!lpc2900_info->is_probed)
return ERROR_FLASH_BANK_NOT_PROBED;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_OK;
}
/**
* Read the status of sector security from the index sector.
*
* @param bank Pointer to the flash bank descriptor
*/
static uint32_t lpc2900_read_security_status(struct flash_bank *bank)
{
uint32_t status = lpc2900_is_ready(bank);
if (status != ERROR_OK)
return status;
struct target *target = bank->target;
/* Enable ISS access */
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB | FCTR_FS_ISS);
/* Read the relevant block of memory from the ISS sector */
uint32_t iss_secured_field[0x230/16][4];
target_read_memory(target, bank->base + 0xC00, 4, 0x230/4,
(uint8_t *)iss_secured_field);
/* Disable ISS access */
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
/* Check status of each sector. Note that the sector numbering in the LPC2900
* is different from the logical sector numbers used in OpenOCD!
* Refer to the user manual for details.
*
* All zeros (16x 0x00) are treated as a secured sector (is_protected = 1)
* All ones (16x 0xFF) are treated as a non-secured sector (is_protected = 0)
* Anything else is undefined (is_protected = -1). This is treated as
* a protected sector!
*/
int sector;
int index_t;
for (sector = 0; sector < bank->num_sectors; sector++) {
/* Convert logical sector number to physical sector number */
if (sector <= 4)
index_t = sector + 11;
else if (sector <= 7)
index_t = sector + 27;
else
index_t = sector - 8;
bank->sectors[sector].is_protected = -1;
if ((iss_secured_field[index_t][0] == 0x00000000) &&
(iss_secured_field[index_t][1] == 0x00000000) &&
(iss_secured_field[index_t][2] == 0x00000000) &&
(iss_secured_field[index_t][3] == 0x00000000))
bank->sectors[sector].is_protected = 1;
if ((iss_secured_field[index_t][0] == 0xFFFFFFFF) &&
(iss_secured_field[index_t][1] == 0xFFFFFFFF) &&
(iss_secured_field[index_t][2] == 0xFFFFFFFF) &&
(iss_secured_field[index_t][3] == 0xFFFFFFFF))
bank->sectors[sector].is_protected = 0;
}
return ERROR_OK;
}
/**
* Use BIST to calculate a 128-bit hash value over a range of flash.
*
* @param bank Pointer to the flash bank descriptor
* @param addr_from
* @param addr_to
* @param signature
*/
static uint32_t lpc2900_run_bist128(struct flash_bank *bank,
uint32_t addr_from,
uint32_t addr_to,
uint32_t (*signature)[4])
{
struct target *target = bank->target;
/* Clear END_OF_MISR interrupt status */
target_write_u32(target, INT_CLR_STATUS, INTSRC_END_OF_MISR);
/* Start address */
target_write_u32(target, FMSSTART, addr_from >> 4);
/* End address, and issue start command */
target_write_u32(target, FMSSTOP, (addr_to >> 4) | FMSSTOP_MISR_START);
/* Poll for end of operation. Calculate a reasonable timeout. */
if (lpc2900_wait_status(bank, INTSRC_END_OF_MISR, 1000) != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
/* Return the signature */
target_read_memory(target, FMSW0, 4, 4, (uint8_t *)signature);
return ERROR_OK;
}
/**
* Return sector number for given address.
*
* Return the (logical) sector number for a given relative address.
* No sanity check is done. It assumed that the address is valid.
*
* @param bank Pointer to the flash bank descriptor
* @param offset Offset address relative to bank start
*/
static uint32_t lpc2900_address2sector(struct flash_bank *bank,
uint32_t offset)
{
uint32_t address = bank->base + offset;
/* Run through all sectors of this bank */
int sector;
for (sector = 0; sector < bank->num_sectors; sector++) {
/* Return immediately if address is within the current sector */
if (address < (bank->sectors[sector].offset + bank->sectors[sector].size))
return sector;
}
/* We should never come here. If we do, return an arbitrary sector number. */
return 0;
}
/**
* Write one page to the index sector.
*
* @param bank Pointer to the flash bank descriptor
* @param pagenum Page number (0...7)
* @param page Page array (FLASH_PAGE_SIZE bytes)
*/
static int lpc2900_write_index_page(struct flash_bank *bank,
int pagenum,
uint8_t (*page)[FLASH_PAGE_SIZE])
{
/* Only pages 4...7 are user writable */
if ((pagenum < 4) || (pagenum > 7)) {
LOG_ERROR("Refuse to burn index sector page %d", pagenum);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
/* Get target, and check if it's halted */
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Private info */
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
/* Enable flash block and set the correct CRA clock of 66 kHz */
lpc2900_setup(bank);
/* Un-protect the index sector */
target_write_u32(target, bank->base, 0);
target_write_u32(target, FCTR,
FCTR_FS_LOADREQ | FCTR_FS_WPB | FCTR_FS_ISS |
FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS);
/* Set latch load mode */
target_write_u32(target, FCTR,
FCTR_FS_ISS | FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS);
/* Write whole page to flash data latches */
if (target_write_memory(target,
bank->base + pagenum * FLASH_PAGE_SIZE,
4, FLASH_PAGE_SIZE / 4, (uint8_t *)page) != ERROR_OK) {
LOG_ERROR("Index sector write failed @ page %d", pagenum);
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Clear END_OF_BURN interrupt status */
target_write_u32(target, INT_CLR_STATUS, INTSRC_END_OF_BURN);
/* Set the program/erase time to FLASH_PROGRAM_TIME */
target_write_u32(target, FPTR,
FPTR_EN_T | lpc2900_calc_tr(lpc2900_info->clk_sys_fmc,
FLASH_PROGRAM_TIME));
/* Trigger flash write */
target_write_u32(target, FCTR,
FCTR_FS_PROGREQ | FCTR_FS_ISS |
FCTR_FS_WPB | FCTR_FS_WRE | FCTR_FS_CS);
/* Wait for the end of the write operation. If it's not over after one
* second, something went dreadfully wrong... :-(
*/
if (lpc2900_wait_status(bank, INTSRC_END_OF_BURN, 1000) != ERROR_OK) {
LOG_ERROR("Index sector write failed @ page %d", pagenum);
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
return ERROR_FLASH_OPERATION_FAILED;
}
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
return ERROR_OK;
}
/**
* Calculate FPTR.TR register value for desired program/erase time.
*
* @param clock System clock in Hz
* @param time Program/erase time in µs
*/
static uint32_t lpc2900_calc_tr(uint32_t clock_var, uint32_t time_var)
{
/* ((time[µs]/1e6) * f[Hz]) + 511
* FPTR.TR = -------------------------------
* 512
*/
uint32_t tr_val = (uint32_t)((((time_var / 1e6) * clock_var) + 511.0) / 512.0);
return tr_val;
}
/*********************** Private flash commands **************************/
/**
* Command to determine the signature of the whole flash.
*
* Uses the Built-In-Self-Test (BIST) to generate a 128-bit hash value
* of the flash content.
*/
COMMAND_HANDLER(lpc2900_handle_signature_command)
{
uint32_t status;
uint32_t signature[4];
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Run BIST over whole flash range */
status = lpc2900_run_bist128(bank, bank->base, bank->base + (bank->size - 1), &signature);
if (status != ERROR_OK)
return status;
command_print(CMD_CTX, "signature: 0x%8.8" PRIx32
":0x%8.8" PRIx32
":0x%8.8" PRIx32
":0x%8.8" PRIx32,
signature[3], signature[2], signature[1], signature[0]);
return ERROR_OK;
}
/**
* Store customer info in file.
*
* Read customer info from index sector, and store that block of data into
* a disk file. The format is binary.
*/
COMMAND_HANDLER(lpc2900_handle_read_custom_command)
{
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
lpc2900_info->risky = 0;
/* Get target, and check if it's halted */
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Storage for customer info. Read in two parts */
uint32_t customer[ISS_CUSTOMER_NWORDS1 + ISS_CUSTOMER_NWORDS2];
/* Enable access to index sector */
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB | FCTR_FS_ISS);
/* Read two parts */
target_read_memory(target, bank->base+ISS_CUSTOMER_START1, 4,
ISS_CUSTOMER_NWORDS1,
(uint8_t *)&customer[0]);
target_read_memory(target, bank->base+ISS_CUSTOMER_START2, 4,
ISS_CUSTOMER_NWORDS2,
(uint8_t *)&customer[ISS_CUSTOMER_NWORDS1]);
/* Deactivate access to index sector */
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
/* Try and open the file */
struct fileio fileio;
const char *filename = CMD_ARGV[1];
int ret = fileio_open(&fileio, filename, FILEIO_WRITE, FILEIO_BINARY);
if (ret != ERROR_OK) {
LOG_WARNING("Could not open file %s", filename);
return ret;
}
size_t nwritten;
ret = fileio_write(&fileio, sizeof(customer),
(const uint8_t *)customer, &nwritten);
if (ret != ERROR_OK) {
LOG_ERROR("Write operation to file %s failed", filename);
fileio_close(&fileio);
return ret;
}
fileio_close(&fileio);
return ERROR_OK;
}
/**
* Enter password to enable potentially dangerous options.
*/
COMMAND_HANDLER(lpc2900_handle_password_command)
{
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
#define ISS_PASSWORD "I_know_what_I_am_doing"
lpc2900_info->risky = !strcmp(CMD_ARGV[1], ISS_PASSWORD);
if (!lpc2900_info->risky) {
command_print(CMD_CTX, "Wrong password (use '%s')", ISS_PASSWORD);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
command_print(CMD_CTX,
"Potentially dangerous operation allowed in next command!");
return ERROR_OK;
}
/**
* Write customer info from file to the index sector.
*/
COMMAND_HANDLER(lpc2900_handle_write_custom_command)
{
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
/* Check if command execution is allowed. */
if (!lpc2900_info->risky) {
command_print(CMD_CTX, "Command execution not allowed!");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
lpc2900_info->risky = 0;
/* Get target, and check if it's halted */
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* The image will always start at offset 0 */
struct image image;
image.base_address_set = 1;
image.base_address = 0;
image.start_address_set = 0;
const char *filename = CMD_ARGV[1];
const char *type = (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL;
retval = image_open(&image, filename, type);
if (retval != ERROR_OK)
return retval;
/* Do a sanity check: The image must be exactly the size of the customer
programmable area. Any other size is rejected. */
if (image.num_sections != 1) {
LOG_ERROR("Only one section allowed in image file.");
return ERROR_COMMAND_SYNTAX_ERROR;
}
if ((image.sections[0].base_address != 0) ||
(image.sections[0].size != ISS_CUSTOMER_SIZE)) {
LOG_ERROR("Incorrect image file size. Expected %d, "
"got %" PRIu32,
ISS_CUSTOMER_SIZE, image.sections[0].size);
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* Well boys, I reckon this is it... */
/* Customer info is split into two blocks in pages 4 and 5. */
uint8_t page[FLASH_PAGE_SIZE];
/* Page 4 */
uint32_t offset = ISS_CUSTOMER_START1 % FLASH_PAGE_SIZE;
memset(page, 0xff, FLASH_PAGE_SIZE);
size_t size_read;
retval = image_read_section(&image, 0, 0,
ISS_CUSTOMER_SIZE1, &page[offset], &size_read);
if (retval != ERROR_OK) {
LOG_ERROR("couldn't read from file '%s'", filename);
image_close(&image);
return retval;
}
retval = lpc2900_write_index_page(bank, 4, &page);
if (retval != ERROR_OK) {
image_close(&image);
return retval;
}
/* Page 5 */
offset = ISS_CUSTOMER_START2 % FLASH_PAGE_SIZE;
memset(page, 0xff, FLASH_PAGE_SIZE);
retval = image_read_section(&image, 0, ISS_CUSTOMER_SIZE1,
ISS_CUSTOMER_SIZE2, &page[offset], &size_read);
if (retval != ERROR_OK) {
LOG_ERROR("couldn't read from file '%s'", filename);
image_close(&image);
return retval;
}
retval = lpc2900_write_index_page(bank, 5, &page);
if (retval != ERROR_OK) {
image_close(&image);
return retval;
}
image_close(&image);
return ERROR_OK;
}
/**
* Activate 'sector security' for a range of sectors.
*/
COMMAND_HANDLER(lpc2900_handle_secure_sector_command)
{
if (CMD_ARGC < 3)
return ERROR_COMMAND_SYNTAX_ERROR;
/* Get the bank descriptor */
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
/* Check if command execution is allowed. */
if (!lpc2900_info->risky) {
command_print(CMD_CTX, "Command execution not allowed! "
"(use 'password' command first)");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
lpc2900_info->risky = 0;
/* Read sector range, and do a sanity check. */
int first, last;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], first);
COMMAND_PARSE_NUMBER(int, CMD_ARGV[2], last);
if ((first >= bank->num_sectors) ||
(last >= bank->num_sectors) ||
(first > last)) {
command_print(CMD_CTX, "Illegal sector range");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
uint8_t page[FLASH_PAGE_SIZE];
int sector;
/* Sectors in page 6 */
if ((first <= 4) || (last >= 8)) {
memset(&page, 0xff, FLASH_PAGE_SIZE);
for (sector = first; sector <= last; sector++) {
if (sector <= 4)
memset(&page[0xB0 + 16*sector], 0, 16);
else if (sector >= 8)
memset(&page[0x00 + 16*(sector - 8)], 0, 16);
}
retval = lpc2900_write_index_page(bank, 6, &page);
if (retval != ERROR_OK) {
LOG_ERROR("failed to update index sector page 6");
return retval;
}
}
/* Sectors in page 7 */
if ((first <= 7) && (last >= 5)) {
memset(&page, 0xff, FLASH_PAGE_SIZE);
for (sector = first; sector <= last; sector++) {
if ((sector >= 5) && (sector <= 7))
memset(&page[0x00 + 16*(sector - 5)], 0, 16);
}
retval = lpc2900_write_index_page(bank, 7, &page);
if (retval != ERROR_OK) {
LOG_ERROR("failed to update index sector page 7");
return retval;
}
}
command_print(CMD_CTX,
"Sectors security will become effective after next power cycle");
/* Update the sector security status */
if (lpc2900_read_security_status(bank) != ERROR_OK) {
LOG_ERROR("Cannot determine sector security status");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
/**
* Activate JTAG protection.
*/
COMMAND_HANDLER(lpc2900_handle_secure_jtag_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
/* Get the bank descriptor */
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
/* Check if command execution is allowed. */
if (!lpc2900_info->risky) {
command_print(CMD_CTX, "Command execution not allowed! "
"(use 'password' command first)");
return ERROR_COMMAND_ARGUMENT_INVALID;
}
lpc2900_info->risky = 0;
/* Prepare page */
uint8_t page[FLASH_PAGE_SIZE];
memset(&page, 0xff, FLASH_PAGE_SIZE);
/* Insert "soft" protection word */
page[0x30 + 15] = 0x7F;
page[0x30 + 11] = 0x7F;
page[0x30 + 7] = 0x7F;
page[0x30 + 3] = 0x7F;
/* Write to page 5 */
retval = lpc2900_write_index_page(bank, 5, &page);
if (retval != ERROR_OK) {
LOG_ERROR("failed to update index sector page 5");
return retval;
}
LOG_INFO("JTAG security set. Good bye!");
return ERROR_OK;
}
/*********************** Flash interface functions **************************/
static const struct command_registration lpc2900_exec_command_handlers[] = {
{
.name = "signature",
.usage = "<bank>",
.handler = lpc2900_handle_signature_command,
.mode = COMMAND_EXEC,
.help = "Calculate and display signature of flash bank.",
},
{
.name = "read_custom",
.handler = lpc2900_handle_read_custom_command,
.mode = COMMAND_EXEC,
.usage = "bank_id filename",
.help = "Copies 912 bytes of customer information "
"from index sector into file.",
},
{
.name = "password",
.handler = lpc2900_handle_password_command,
.mode = COMMAND_EXEC,
.usage = "bank_id password",
.help = "Enter fixed password to enable 'dangerous' options.",
},
{
.name = "write_custom",
.handler = lpc2900_handle_write_custom_command,
.mode = COMMAND_EXEC,
.usage = "bank_id filename ('bin'|'ihex'|'elf'|'s19')",
.help = "Copies 912 bytes of customer info from file "
"to index sector.",
},
{
.name = "secure_sector",
.handler = lpc2900_handle_secure_sector_command,
.mode = COMMAND_EXEC,
.usage = "bank_id first_sector last_sector",
.help = "Activate sector security for a range of sectors. "
"It will be effective after a power cycle.",
},
{
.name = "secure_jtag",
.handler = lpc2900_handle_secure_jtag_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Disable the JTAG port. "
"It will be effective after a power cycle.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration lpc2900_command_handlers[] = {
{
.name = "lpc2900",
.mode = COMMAND_ANY,
.help = "LPC2900 flash command group",
.usage = "",
.chain = lpc2900_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
/** Evaluate flash bank command. */
FLASH_BANK_COMMAND_HANDLER(lpc2900_flash_bank_command)
{
struct lpc2900_flash_bank *lpc2900_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
lpc2900_info = malloc(sizeof(struct lpc2900_flash_bank));
bank->driver_priv = lpc2900_info;
/* Get flash clock.
* Reject it if we can't meet the requirements for program time
* (if clock too slow), or for erase time (clock too fast).
*/
uint32_t clk_sys_fmc;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[6], clk_sys_fmc);
lpc2900_info->clk_sys_fmc = clk_sys_fmc * 1000;
uint32_t clock_limit;
/* Check program time limit */
clock_limit = 512000000l / FLASH_PROGRAM_TIME;
if (lpc2900_info->clk_sys_fmc < clock_limit) {
LOG_WARNING("flash clock must be at least %" PRIu32 " kHz",
(clock_limit / 1000));
return ERROR_FLASH_BANK_INVALID;
}
/* Check erase time limit */
clock_limit = (uint32_t)((32767.0 * 512.0 * 1e6) / FLASH_ERASE_TIME);
if (lpc2900_info->clk_sys_fmc > clock_limit) {
LOG_WARNING("flash clock must be a maximum of %" PRIu32 " kHz",
(clock_limit / 1000));
return ERROR_FLASH_BANK_INVALID;
}
/* Chip ID will be obtained by probing the device later */
lpc2900_info->chipid = 0;
lpc2900_info->is_probed = false;
return ERROR_OK;
}
/**
* Erase sector(s).
*
* @param bank Pointer to the flash bank descriptor
* @param first First sector to be erased
* @param last Last sector (including) to be erased
*/
static int lpc2900_erase(struct flash_bank *bank, int first, int last)
{
uint32_t status;
int sector;
int last_unsecured_sector;
struct target *target = bank->target;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
status = lpc2900_is_ready(bank);
if (status != ERROR_OK)
return status;
/* Sanity check on sector range */
if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
LOG_INFO("Bad sector range");
return ERROR_FLASH_SECTOR_INVALID;
}
/* Update the info about secured sectors */
lpc2900_read_security_status(bank);
/* The selected sector range might include secured sectors. An attempt
* to erase such a sector will cause the erase to fail also for unsecured
* sectors. It is necessary to determine the last unsecured sector now,
* because we have to treat the last relevant sector in the list in
* a special way.
*/
last_unsecured_sector = -1;
for (sector = first; sector <= last; sector++) {
if (!bank->sectors[sector].is_protected)
last_unsecured_sector = sector;
}
/* Exit now, in case of the rare constellation where all sectors in range
* are secured. This is regarded a success, since erasing/programming of
* secured sectors shall be handled transparently.
*/
if (last_unsecured_sector == -1)
return ERROR_OK;
/* Enable flash block and set the correct CRA clock of 66 kHz */
lpc2900_setup(bank);
/* Clear END_OF_ERASE interrupt status */
target_write_u32(target, INT_CLR_STATUS, INTSRC_END_OF_ERASE);
/* Set the program/erase timer to FLASH_ERASE_TIME */
target_write_u32(target, FPTR,
FPTR_EN_T | lpc2900_calc_tr(lpc2900_info->clk_sys_fmc,
FLASH_ERASE_TIME));
/* Sectors are marked for erasure, then erased all together */
for (sector = first; sector <= last_unsecured_sector; sector++) {
/* Only mark sectors that aren't secured. Any attempt to erase a group
* of sectors will fail if any single one of them is secured!
*/
if (!bank->sectors[sector].is_protected) {
/* Unprotect the sector */
target_write_u32(target, bank->sectors[sector].offset, 0);
target_write_u32(target, FCTR,
FCTR_FS_LOADREQ | FCTR_FS_WPB |
FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS);
/* Mark the sector for erasure. The last sector in the list
triggers the erasure. */
target_write_u32(target, bank->sectors[sector].offset, 0);
if (sector == last_unsecured_sector) {
target_write_u32(target, FCTR,
FCTR_FS_PROGREQ | FCTR_FS_WPB | FCTR_FS_CS);
} else {
target_write_u32(target, FCTR,
FCTR_FS_LOADREQ | FCTR_FS_WPB |
FCTR_FS_WEB | FCTR_FS_CS);
}
}
}
/* Wait for the end of the erase operation. If it's not over after two seconds,
* something went dreadfully wrong... :-(
*/
if (lpc2900_wait_status(bank, INTSRC_END_OF_ERASE, 2000) != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
/* Normal flash operating mode */
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
return ERROR_OK;
}
static int lpc2900_protect(struct flash_bank *bank, int set, int first, int last)
{
/* This command is not supported.
* "Protection" in LPC2900 terms is handled transparently. Sectors will
* automatically be unprotected as needed.
* Instead we use the concept of sector security. A secured sector is shown
* as "protected" in OpenOCD. Sector security is a permanent feature, and
* cannot be disabled once activated.
*/
return ERROR_OK;
}
/**
* Write data to flash.
*
* @param bank Pointer to the flash bank descriptor
* @param buffer Buffer with data
* @param offset Start address (relative to bank start)
* @param count Number of bytes to be programmed
*/
static int lpc2900_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
uint8_t page[FLASH_PAGE_SIZE];
uint32_t status;
uint32_t num_bytes;
struct target *target = bank->target;
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
int sector;
int retval;
static const uint32_t write_target_code[] = {
/* Set auto latch mode: FCTR=CS|WRE|WEB */
0xe3a0a007, /* loop mov r10, #0x007 */
0xe583a000, /* str r10,[r3,#0] */
/* Load complete page into latches */
0xe3a06020, /* mov r6,#(512/16) */
0xe8b00f00, /* next ldmia r0!,{r8-r11} */
0xe8a10f00, /* stmia r1!,{r8-r11} */
0xe2566001, /* subs r6,#1 */
0x1afffffb, /* bne next */
/* Clear END_OF_BURN interrupt status */
0xe3a0a002, /* mov r10,#(1 << 1) */
0xe583afe8, /* str r10,[r3,#0xfe8] */
/* Set the erase time to FLASH_PROGRAM_TIME */
0xe5834008, /* str r4,[r3,#8] */
/* Trigger flash write
* FCTR = CS | WRE | WPB | PROGREQ */
0xe3a0a083, /* mov r10,#0x83 */
0xe38aaa01, /* orr r10,#0x1000 */
0xe583a000, /* str r10,[r3,#0] */
/* Wait for end of burn */
0xe593afe0, /* wait ldr r10,[r3,#0xfe0] */
0xe21aa002, /* ands r10,#(1 << 1) */
0x0afffffc, /* beq wait */
/* End? */
0xe2522001, /* subs r2,#1 */
0x1affffed, /* bne loop */
0xeafffffe /* done b done */
};
status = lpc2900_is_ready(bank);
if (status != ERROR_OK)
return status;
/* Enable flash block and set the correct CRA clock of 66 kHz */
lpc2900_setup(bank);
/* Update the info about secured sectors */
lpc2900_read_security_status(bank);
/* Unprotect all involved sectors */
for (sector = 0; sector < bank->num_sectors; sector++) {
/* Start address in or before this sector?
* End address in or behind this sector? */
if (((bank->base + offset) <
(bank->sectors[sector].offset + bank->sectors[sector].size)) &&
((bank->base + (offset + count - 1)) >= bank->sectors[sector].offset)) {
/* This sector is involved and needs to be unprotected.
* Don't do it for secured sectors.
*/
if (!bank->sectors[sector].is_protected) {
target_write_u32(target, bank->sectors[sector].offset, 0);
target_write_u32(target, FCTR,
FCTR_FS_LOADREQ | FCTR_FS_WPB |
FCTR_FS_WEB | FCTR_FS_WRE | FCTR_FS_CS);
}
}
}
/* Set the program/erase time to FLASH_PROGRAM_TIME */
uint32_t prog_time = FPTR_EN_T | lpc2900_calc_tr(lpc2900_info->clk_sys_fmc, FLASH_PROGRAM_TIME);
/* If there is a working area of reasonable size, use it to program via
* a target algorithm. If not, fall back to host programming. */
/* We need some room for target code. */
uint32_t target_code_size = sizeof(write_target_code);
/* Try working area allocation. Start with a large buffer, and try with
* reduced size if that fails. */
struct working_area *warea;
uint32_t buffer_size = lpc2900_info->max_ram_block - 1 * KiB;
while ((retval = target_alloc_working_area_try(target,
buffer_size + target_code_size,
&warea)) != ERROR_OK) {
/* Try a smaller buffer now, and stop if it's too small. */
buffer_size -= 1 * KiB;
if (buffer_size < 2 * KiB) {
LOG_INFO("no (large enough) working area, falling back to host mode");
warea = NULL;
break;
}
}
;
if (warea) {
struct reg_param reg_params[5];
struct arm_algorithm arm_algo;
/* We can use target mode. Download the algorithm. */
retval = target_write_buffer(target,
(warea->address)+buffer_size,
target_code_size,
(uint8_t *)write_target_code);
if (retval != ERROR_OK) {
LOG_ERROR("Unable to write block write code to target");
target_free_all_working_areas(target);
return ERROR_FLASH_OPERATION_FAILED;
}
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
/* Write to flash in large blocks */
while (count != 0) {
uint32_t this_npages;
uint8_t *this_buffer;
int start_sector = lpc2900_address2sector(bank, offset);
/* First page / last page / rest */
if (offset % FLASH_PAGE_SIZE) {
/* Block doesn't start on page boundary.
* Burn first partial page separately. */
memset(&page, 0xff, sizeof(page));
memcpy(&page[offset % FLASH_PAGE_SIZE],
buffer,
FLASH_PAGE_SIZE - (offset % FLASH_PAGE_SIZE));
this_npages = 1;
this_buffer = &page[0];
count = count + (offset % FLASH_PAGE_SIZE);
offset = offset - (offset % FLASH_PAGE_SIZE);
} else if (count < FLASH_PAGE_SIZE) {
/* Download last incomplete page separately. */
memset(&page, 0xff, sizeof(page));
memcpy(&page, buffer, count);
this_npages = 1;
this_buffer = &page[0];
count = FLASH_PAGE_SIZE;
} else {
/* Download as many full pages as possible */
this_npages = (count < buffer_size) ?
count / FLASH_PAGE_SIZE :
buffer_size / FLASH_PAGE_SIZE;
this_buffer = buffer;
/* Make sure we stop at the next secured sector */
sector = start_sector + 1;
while (sector < bank->num_sectors) {
/* Secured? */
if (bank->sectors[sector].is_protected) {
/* Is that next sector within the current block? */
if ((bank->sectors[sector].offset - bank->base) <
(offset + (this_npages * FLASH_PAGE_SIZE))) {
/* Yes! Split the block */
this_npages =
(bank->sectors[sector].offset -
bank->base - offset)
/ FLASH_PAGE_SIZE;
break;
}
}
sector++;
}
}
/* Skip the current sector if it is secured */
if (bank->sectors[start_sector].is_protected) {
LOG_DEBUG("Skip secured sector %d",
start_sector);
/* Stop if this is the last sector */
if (start_sector == bank->num_sectors - 1)
break;
/* Skip */
uint32_t nskip = bank->sectors[start_sector].size -
(offset % bank->sectors[start_sector].size);
offset += nskip;
buffer += nskip;
count = (count >= nskip) ? (count - nskip) : 0;
continue;
}
/* Execute buffer download */
retval = target_write_buffer(target, warea->address,
this_npages * FLASH_PAGE_SIZE, this_buffer);
if (retval != ERROR_OK) {
LOG_ERROR("Unable to write data to target");
target_free_all_working_areas(target);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Prepare registers */
buf_set_u32(reg_params[0].value, 0, 32, warea->address);
buf_set_u32(reg_params[1].value, 0, 32, offset);
buf_set_u32(reg_params[2].value, 0, 32, this_npages);
buf_set_u32(reg_params[3].value, 0, 32, FCTR);
buf_set_u32(reg_params[4].value, 0, 32, FPTR_EN_T | prog_time);
/* Execute algorithm, assume breakpoint for last instruction */
arm_algo.common_magic = ARM_COMMON_MAGIC;
arm_algo.core_mode = ARM_MODE_SVC;
arm_algo.core_state = ARM_STATE_ARM;
retval = target_run_algorithm(target, 0, NULL, 5, reg_params,
(warea->address) + buffer_size,
(warea->address) + buffer_size + target_code_size - 4,
10000, /* 10s should be enough for max. 16 KiB of data */
&arm_algo);
if (retval != ERROR_OK) {
LOG_ERROR("Execution of flash algorithm failed.");
target_free_all_working_areas(target);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
count -= this_npages * FLASH_PAGE_SIZE;
buffer += this_npages * FLASH_PAGE_SIZE;
offset += this_npages * FLASH_PAGE_SIZE;
}
/* Free all resources */
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
target_free_all_working_areas(target);
} else {
/* Write to flash memory page-wise */
while (count != 0) {
/* How many bytes do we copy this time? */
num_bytes = (count >= FLASH_PAGE_SIZE) ?
FLASH_PAGE_SIZE - (offset % FLASH_PAGE_SIZE) :
count;
/* Don't do anything with it if the page is in a secured sector. */
if (!bank->sectors[lpc2900_address2sector(bank, offset)].is_protected) {
/* Set latch load mode */
target_write_u32(target, FCTR,
FCTR_FS_CS | FCTR_FS_WRE | FCTR_FS_WEB);
/* Always clear the buffer (a little overhead, but who cares) */
memset(page, 0xFF, FLASH_PAGE_SIZE);
/* Copy them to the buffer */
memcpy(&page[offset % FLASH_PAGE_SIZE],
&buffer[offset % FLASH_PAGE_SIZE],
num_bytes);
/* Write whole page to flash data latches */
if (target_write_memory(target,
bank->base + (offset - (offset % FLASH_PAGE_SIZE)),
4, FLASH_PAGE_SIZE / 4, page) != ERROR_OK) {
LOG_ERROR("Write failed @ 0x%8.8" PRIx32, offset);
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Clear END_OF_BURN interrupt status */
target_write_u32(target, INT_CLR_STATUS, INTSRC_END_OF_BURN);
/* Set the programming time */
target_write_u32(target, FPTR, FPTR_EN_T | prog_time);
/* Trigger flash write */
target_write_u32(target, FCTR,
FCTR_FS_CS | FCTR_FS_WRE | FCTR_FS_WPB | FCTR_FS_PROGREQ);
/* Wait for the end of the write operation. If it's not over
* after one second, something went dreadfully wrong... :-(
*/
if (lpc2900_wait_status(bank, INTSRC_END_OF_BURN, 1000) != ERROR_OK) {
LOG_ERROR("Write failed @ 0x%8.8" PRIx32, offset);
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
return ERROR_FLASH_OPERATION_FAILED;
}
}
/* Update pointers and counters */
offset += num_bytes;
buffer += num_bytes;
count -= num_bytes;
}
retval = ERROR_OK;
}
/* Normal flash operating mode */
target_write_u32(target, FCTR, FCTR_FS_CS | FCTR_FS_WEB);
return retval;
}
/**
* Try and identify the device.
*
* Determine type number and its memory layout.
*
* @param bank Pointer to the flash bank descriptor
*/
static int lpc2900_probe(struct flash_bank *bank)
{
struct lpc2900_flash_bank *lpc2900_info = bank->driver_priv;
struct target *target = bank->target;
int i = 0;
uint32_t offset;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* We want to do this only once. */
if (lpc2900_info->is_probed)
return ERROR_OK;
/* Probing starts with reading the CHIPID register. We will continue only
* if this identifies as an LPC2900 device.
*/
target_read_u32(target, CHIPID, &lpc2900_info->chipid);
if (lpc2900_info->chipid != EXPECTED_CHIPID) {
LOG_WARNING("Device is not an LPC29xx");
return ERROR_FLASH_OPERATION_FAILED;
}
/* It's an LPC29xx device. Now read the feature register FEAT0...FEAT3. */
uint32_t feat0, feat1, feat2, feat3;
target_read_u32(target, FEAT0, &feat0);
target_read_u32(target, FEAT1, &feat1);
target_read_u32(target, FEAT2, &feat2);
target_read_u32(target, FEAT3, &feat3);
/* Base address */
bank->base = 0x20000000;
/* Determine flash layout from FEAT2 register */
uint32_t num_64k_sectors = (feat2 >> 16) & 0xFF;
uint32_t num_8k_sectors = (feat2 >> 0) & 0xFF;
bank->num_sectors = num_64k_sectors + num_8k_sectors;
bank->size = KiB * (64 * num_64k_sectors + 8 * num_8k_sectors);
/* Determine maximum contiguous RAM block */
lpc2900_info->max_ram_block = 16 * KiB;
if ((feat1 & 0x30) == 0x30) {
lpc2900_info->max_ram_block = 32 * KiB;
if ((feat1 & 0x0C) == 0x0C)
lpc2900_info->max_ram_block = 48 * KiB;
}
/* Determine package code and ITCM size */
uint32_t package_code = feat0 & 0x0F;
uint32_t itcm_code = (feat1 >> 16) & 0x1F;
/* Determine the exact type number. */
uint32_t found = 1;
if ((package_code == 4) && (itcm_code == 5)) {
/* Old LPC2917 or LPC2919 (non-/01 devices) */
lpc2900_info->target_name = (bank->size == 768*KiB) ? "LPC2919" : "LPC2917";
} else {
if (package_code == 2) {
/* 100-pin package */
if (bank->size == 128*KiB)
lpc2900_info->target_name = "LPC2921";
else if (bank->size == 256*KiB)
lpc2900_info->target_name = "LPC2923";
else if (bank->size == 512*KiB)
lpc2900_info->target_name = "LPC2925";
else
found = 0;
} else if (package_code == 4) {
/* 144-pin package */
if ((bank->size == 256*KiB) && (feat3 == 0xFFFFFFE9))
lpc2900_info->target_name = "LPC2926";
else if ((bank->size == 512*KiB) && (feat3 == 0xFFFFFCF0))
lpc2900_info->target_name = "LPC2917/01";
else if ((bank->size == 512*KiB) && (feat3 == 0xFFFFFFF1))
lpc2900_info->target_name = "LPC2927";
else if ((bank->size == 768*KiB) && (feat3 == 0xFFFFFCF8))
lpc2900_info->target_name = "LPC2919/01";
else if ((bank->size == 768*KiB) && (feat3 == 0xFFFFFFF9))
lpc2900_info->target_name = "LPC2929";
else
found = 0;
} else if (package_code == 5) {
/* 208-pin package */
lpc2900_info->target_name = (bank->size == 0) ? "LPC2930" : "LPC2939";
} else
found = 0;
}
if (!found) {
LOG_WARNING("Unknown LPC29xx derivative (FEATx="
"%08" PRIx32 ":%08" PRIx32 ":%08" PRIx32 ":%08" PRIx32 ")",
feat0, feat1, feat2, feat3);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Show detected device */
LOG_INFO("Flash bank %d: Device %s, %" PRIu32
" KiB in %d sectors",
bank->bank_number,
lpc2900_info->target_name, bank->size / KiB,
bank->num_sectors);
/* Flashless devices cannot be handled */
if (bank->num_sectors == 0) {
LOG_WARNING("Flashless device cannot be handled");
return ERROR_FLASH_OPERATION_FAILED;
}
/* Sector layout.
* These are logical sector numbers. When doing real flash operations,
* the logical flash number are translated into the physical flash numbers
* of the device.
*/
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
offset = 0;
for (i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = offset;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
if (i <= 7)
bank->sectors[i].size = 8 * KiB;
else if (i <= 18)
bank->sectors[i].size = 64 * KiB;
else {
/* We shouldn't come here. But there might be a new part out there
* that has more than 19 sectors. Politely ask for a fix then.
*/
bank->sectors[i].size = 0;
LOG_ERROR("Never heard about sector %d", i);
}
offset += bank->sectors[i].size;
}
lpc2900_info->is_probed = true;
/* Read sector security status */
if (lpc2900_read_security_status(bank) != ERROR_OK) {
LOG_ERROR("Cannot determine sector security status");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
/**
* Run a blank check for each sector.
*
* For speed reasons, the device isn't read word by word.
* A hash value is calculated by the hardware ("BIST") for each sector.
* This value is then compared against the known hash of an empty sector.
*
* @param bank Pointer to the flash bank descriptor
*/
static int lpc2900_erase_check(struct flash_bank *bank)
{
uint32_t status = lpc2900_is_ready(bank);
if (status != ERROR_OK) {
LOG_INFO("Processor not halted/not probed");
return status;
}
/* Use the BIST (Built-In Selft Test) to generate a signature of each flash
* sector. Compare against the expected signature of an empty sector.
*/
int sector;
for (sector = 0; sector < bank->num_sectors; sector++) {
uint32_t signature[4];
status = lpc2900_run_bist128(bank, bank->sectors[sector].offset,
bank->sectors[sector].offset + (bank->sectors[sector].size - 1), &signature);
if (status != ERROR_OK)
return status;
/* The expected signatures for an empty sector are different
* for 8 KiB and 64 KiB sectors.
*/
if (bank->sectors[sector].size == 8*KiB) {
bank->sectors[sector].is_erased =
(signature[3] == 0x01ABAAAA) &&
(signature[2] == 0xAAAAAAAA) &&
(signature[1] == 0xAAAAAAAA) &&
(signature[0] == 0xAAA00AAA);
}
if (bank->sectors[sector].size == 64*KiB) {
bank->sectors[sector].is_erased =
(signature[3] == 0x11801222) &&
(signature[2] == 0xB88844FF) &&
(signature[1] == 0x11A22008) &&
(signature[0] == 0x2B1BFE44);
}
}
return ERROR_OK;
}
/**
* Get protection (sector security) status.
*
* Determine the status of "sector security" for each sector.
* A secured sector is one that can never be erased/programmed again.
*
* @param bank Pointer to the flash bank descriptor
*/
static int lpc2900_protect_check(struct flash_bank *bank)
{
return lpc2900_read_security_status(bank);
}
/**
* Print info about the driver (not the device).
*
* @param bank Pointer to the flash bank descriptor
* @param buf Buffer to take the string
* @param buf_size Maximum number of characters that the buffer can take
*/
static int lpc2900_info(struct flash_bank *bank, char *buf, int buf_size)
{
snprintf(buf, buf_size, "lpc2900 flash driver");
return ERROR_OK;
}
struct flash_driver lpc2900_flash = {
.name = "lpc2900",
.commands = lpc2900_command_handlers,
.flash_bank_command = lpc2900_flash_bank_command,
.erase = lpc2900_erase,
.protect = lpc2900_protect,
.write = lpc2900_write,
.read = default_flash_read,
.probe = lpc2900_probe,
.auto_probe = lpc2900_probe,
.erase_check = lpc2900_erase_check,
.protect_check = lpc2900_protect_check,
.info = lpc2900_info
};