openocd/src/flash/nor/stmsmi.c

660 lines
18 KiB
C

/***************************************************************************
* Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
/* STM Serial Memory Interface (SMI) controller is a SPI bus controller
* specifically designed for SPI memories.
* Only SPI "mode 3" (CPOL=1 and CPHA=1) is supported.
* Two working modes are available:
* - SW mode: the SPI is controlled by SW. Any custom commands can be sent
* on the bus.
* - HW mode: the SPI but is under SMI control. Memory content is directly
* accessible in CPU memory space. CPU can read, write and execute memory
* content. */
/* ATTENTION:
* To have flash memory mapped in CPU memory space, the SMI controller
* have to be in "HW mode". This requires following constraints:
* 1) The command "reset init" have to initialize SMI controller and put
* it in HW mode;
* 2) every command in this file have to return to prompt in HW mode. */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "spi.h"
#include <jtag/jtag.h>
#include <helper/time_support.h>
#define SMI_READ_REG(a) (_SMI_READ_REG(a))
#define _SMI_READ_REG(a) \
{ \
int __a; \
uint32_t __v; \
\
__a = target_read_u32(target, io_base + (a), &__v); \
if (__a != ERROR_OK) \
return __a; \
__v; \
}
#define SMI_WRITE_REG(a, v) \
{ \
int __r; \
\
__r = target_write_u32(target, io_base + (a), (v)); \
if (__r != ERROR_OK) \
return __r; \
}
#define SMI_POLL_TFF(timeout) \
{ \
int __r; \
\
__r = poll_tff(target, io_base, timeout); \
if (__r != ERROR_OK) \
return __r; \
}
#define SMI_SET_SW_MODE() SMI_WRITE_REG(SMI_CR1, \
SMI_READ_REG(SMI_CR1) | SMI_SW_MODE)
#define SMI_SET_HWWB_MODE() SMI_WRITE_REG(SMI_CR1, \
(SMI_READ_REG(SMI_CR1) | SMI_WB_MODE) & ~SMI_SW_MODE)
#define SMI_SET_HW_MODE() SMI_WRITE_REG(SMI_CR1, \
SMI_READ_REG(SMI_CR1) & ~(SMI_SW_MODE | SMI_WB_MODE))
#define SMI_CLEAR_TFF() SMI_WRITE_REG(SMI_SR, ~SMI_TFF)
#define SMI_BANK_SIZE (0x01000000)
#define SMI_CR1 (0x00) /* Control register 1 */
#define SMI_CR2 (0x04) /* Control register 2 */
#define SMI_SR (0x08) /* Status register */
#define SMI_TR (0x0c) /* TX */
#define SMI_RR (0x10) /* RX */
/* fields in SMI_CR1 */
#define SMI_SW_MODE 0x10000000 /* set to enable SW Mode */
#define SMI_WB_MODE 0x20000000 /* Write Burst Mode */
/* fields in SMI_CR2 */
#define SMI_TX_LEN_1 0x00000001 /* data length = 1 byte */
#define SMI_TX_LEN_4 0x00000004 /* data length = 4 byte */
#define SMI_RX_LEN_3 0x00000030 /* data length = 3 byte */
#define SMI_SEND 0x00000080 /* Send data */
#define SMI_RSR 0x00000400 /* reads status reg */
#define SMI_WE 0x00000800 /* Write Enable */
#define SMI_SEL_BANK0 0x00000000 /* Select Bank0 */
#define SMI_SEL_BANK1 0x00001000 /* Select Bank1 */
#define SMI_SEL_BANK2 0x00002000 /* Select Bank2 */
#define SMI_SEL_BANK3 0x00003000 /* Select Bank3 */
/* fields in SMI_SR */
#define SMI_TFF 0x00000100 /* Transfer Finished Flag */
/* Commands */
#define SMI_READ_ID 0x0000009F /* Read Flash Identification */
/* Timeout in ms */
#define SMI_CMD_TIMEOUT (100)
#define SMI_PROBE_TIMEOUT (100)
#define SMI_MAX_TIMEOUT (3000)
struct stmsmi_flash_bank {
int probed;
uint32_t io_base;
uint32_t bank_num;
struct flash_device *dev;
};
struct stmsmi_target {
char *name;
uint32_t tap_idcode;
uint32_t smi_base;
uint32_t io_base;
};
static struct stmsmi_target target_devices[] = {
/* name, tap_idcode, smi_base, io_base */
{ "SPEAr3xx/6xx", 0x07926041, 0xf8000000, 0xfc000000 },
{ "STR75x", 0x4f1f0041, 0x80000000, 0x90000000 },
{ NULL, 0, 0, 0 }
};
FLASH_BANK_COMMAND_HANDLER(stmsmi_flash_bank_command)
{
struct stmsmi_flash_bank *stmsmi_info;
LOG_DEBUG("%s", __func__);
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stmsmi_info = malloc(sizeof(struct stmsmi_flash_bank));
if (stmsmi_info == NULL) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
bank->driver_priv = stmsmi_info;
stmsmi_info->probed = 0;
return ERROR_OK;
}
/* Poll transmit finished flag */
/* timeout in ms */
static int poll_tff(struct target *target, uint32_t io_base, int timeout)
{
long long endtime;
if (SMI_READ_REG(SMI_SR) & SMI_TFF)
return ERROR_OK;
endtime = timeval_ms() + timeout;
do {
alive_sleep(1);
if (SMI_READ_REG(SMI_SR) & SMI_TFF)
return ERROR_OK;
} while (timeval_ms() < endtime);
LOG_ERROR("Timeout while polling TFF");
return ERROR_FLASH_OPERATION_FAILED;
}
/* Read the status register of the external SPI flash chip.
* The operation is triggered by setting SMI_RSR bit.
* SMI sends the proper SPI command (0x05) and returns value in SMI_SR */
static int read_status_reg(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base = stmsmi_info->io_base;
/* clear transmit finished flag */
SMI_CLEAR_TFF();
/* Read status */
SMI_WRITE_REG(SMI_CR2, stmsmi_info->bank_num | SMI_RSR);
/* Poll transmit finished flag */
SMI_POLL_TFF(SMI_CMD_TIMEOUT);
/* clear transmit finished flag */
SMI_CLEAR_TFF();
*status = SMI_READ_REG(SMI_SR) & 0x0000ffff;
/* clean-up SMI_CR2 */
SMI_WRITE_REG(SMI_CR2, 0); /* AB: Required ? */
return ERROR_OK;
}
/* check for WIP (write in progress) bit in status register */
/* timeout in ms */
static int wait_till_ready(struct flash_bank *bank, int timeout)
{
uint32_t status;
int retval;
long long endtime;
endtime = timeval_ms() + timeout;
do {
/* read flash status register */
retval = read_status_reg(bank, &status);
if (retval != ERROR_OK)
return retval;
if ((status & SPIFLASH_BSY_BIT) == 0)
return ERROR_OK;
alive_sleep(1);
} while (timeval_ms() < endtime);
LOG_ERROR("timeout");
return ERROR_FAIL;
}
/* Send "write enable" command to SPI flash chip.
* The operation is triggered by setting SMI_WE bit, and SMI sends
* the proper SPI command (0x06) */
static int smi_write_enable(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base = stmsmi_info->io_base;
uint32_t status;
int retval;
/* Enter in HW mode */
SMI_SET_HW_MODE(); /* AB: is this correct ?*/
/* clear transmit finished flag */
SMI_CLEAR_TFF();
/* Send write enable command */
SMI_WRITE_REG(SMI_CR2, stmsmi_info->bank_num | SMI_WE);
/* Poll transmit finished flag */
SMI_POLL_TFF(SMI_CMD_TIMEOUT);
/* read flash status register */
retval = read_status_reg(bank, &status);
if (retval != ERROR_OK)
return retval;
/* Check write enabled */
if ((status & SPIFLASH_WE_BIT) == 0) {
LOG_ERROR("Cannot enable write to flash. Status=0x%08" PRIx32, status);
return ERROR_FAIL;
}
return ERROR_OK;
}
static uint32_t erase_command(struct stmsmi_flash_bank *stmsmi_info,
uint32_t offset)
{
union {
uint32_t command;
uint8_t x[4];
} cmd;
cmd.x[0] = stmsmi_info->dev->erase_cmd;
cmd.x[1] = offset >> 16;
cmd.x[2] = offset >> 8;
cmd.x[3] = offset;
return cmd.command;
}
static int smi_erase_sector(struct flash_bank *bank, int sector)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base = stmsmi_info->io_base;
uint32_t cmd;
int retval;
retval = smi_write_enable(bank);
if (retval != ERROR_OK)
return retval;
/* Switch to SW mode to send sector erase command */
SMI_SET_SW_MODE();
/* clear transmit finished flag */
SMI_CLEAR_TFF();
/* send SPI command "block erase" */
cmd = erase_command(stmsmi_info, bank->sectors[sector].offset);
SMI_WRITE_REG(SMI_TR, cmd);
SMI_WRITE_REG(SMI_CR2, stmsmi_info->bank_num | SMI_SEND | SMI_TX_LEN_4);
/* Poll transmit finished flag */
SMI_POLL_TFF(SMI_CMD_TIMEOUT);
/* poll WIP for end of self timed Sector Erase cycle */
retval = wait_till_ready(bank, SMI_MAX_TIMEOUT);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stmsmi_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base = stmsmi_info->io_base;
int retval = ERROR_OK;
int sector;
LOG_DEBUG("%s: from sector %d to sector %d", __func__, first, last);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
LOG_ERROR("Flash sector invalid");
return ERROR_FLASH_SECTOR_INVALID;
}
if (!(stmsmi_info->probed)) {
LOG_ERROR("Flash bank not probed");
return ERROR_FLASH_BANK_NOT_PROBED;
}
for (sector = first; sector <= last; sector++) {
if (bank->sectors[sector].is_protected) {
LOG_ERROR("Flash sector %d protected", sector);
return ERROR_FAIL;
}
}
for (sector = first; sector <= last; sector++) {
retval = smi_erase_sector(bank, sector);
if (retval != ERROR_OK)
break;
keep_alive();
}
/* Switch to HW mode before return to prompt */
SMI_SET_HW_MODE();
return retval;
}
static int stmsmi_protect(struct flash_bank *bank, int set,
int first, int last)
{
int sector;
for (sector = first; sector <= last; sector++)
bank->sectors[sector].is_protected = set;
return ERROR_OK;
}
static int smi_write_buffer(struct flash_bank *bank, uint8_t *buffer,
uint32_t address, uint32_t len)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base = stmsmi_info->io_base;
int retval;
LOG_DEBUG("%s: address=0x%08" PRIx32 " len=0x%08" PRIx32,
__func__, address, len);
retval = smi_write_enable(bank);
if (retval != ERROR_OK)
return retval;
/* HW mode, write burst mode */
SMI_SET_HWWB_MODE();
retval = target_write_buffer(target, address, len, buffer);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stmsmi_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base = stmsmi_info->io_base;
uint32_t cur_count, page_size, page_offset;
int sector;
int retval = ERROR_OK;
LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32,
__func__, offset, count);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > stmsmi_info->dev->size_in_bytes) {
LOG_WARNING("Write pasts end of flash. Extra data discarded.");
count = stmsmi_info->dev->size_in_bytes - offset;
}
/* Check sector protection */
for (sector = 0; sector < bank->num_sectors; sector++) {
/* Start offset in or before this sector? */
/* End offset in or behind this sector? */
if ((offset <
(bank->sectors[sector].offset + bank->sectors[sector].size))
&& ((offset + count - 1) >= bank->sectors[sector].offset)
&& bank->sectors[sector].is_protected) {
LOG_ERROR("Flash sector %d protected", sector);
return ERROR_FAIL;
}
}
page_size = stmsmi_info->dev->pagesize;
/* unaligned buffer head */
if (count > 0 && (offset & 3) != 0) {
cur_count = 4 - (offset & 3);
if (cur_count > count)
cur_count = count;
retval = smi_write_buffer(bank, buffer, bank->base + offset,
cur_count);
if (retval != ERROR_OK)
goto err;
offset += cur_count;
buffer += cur_count;
count -= cur_count;
}
page_offset = offset % page_size;
/* central part, aligned words */
while (count >= 4) {
/* clip block at page boundary */
if (page_offset + count > page_size)
cur_count = page_size - page_offset;
else
cur_count = count & ~3;
retval = smi_write_buffer(bank, buffer, bank->base + offset,
cur_count);
if (retval != ERROR_OK)
goto err;
page_offset = 0;
buffer += cur_count;
offset += cur_count;
count -= cur_count;
keep_alive();
}
/* buffer tail */
if (count > 0)
retval = smi_write_buffer(bank, buffer, bank->base + offset, count);
err:
/* Switch to HW mode before return to prompt */
SMI_SET_HW_MODE();
return retval;
}
/* Return ID of flash device */
/* On exit, SW mode is kept */
static int read_flash_id(struct flash_bank *bank, uint32_t *id)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base = stmsmi_info->io_base;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* poll WIP */
retval = wait_till_ready(bank, SMI_PROBE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
/* enter in SW mode */
SMI_SET_SW_MODE();
/* clear transmit finished flag */
SMI_CLEAR_TFF();
/* Send SPI command "read ID" */
SMI_WRITE_REG(SMI_TR, SMI_READ_ID);
SMI_WRITE_REG(SMI_CR2,
stmsmi_info->bank_num | SMI_SEND | SMI_RX_LEN_3 | SMI_TX_LEN_1);
/* Poll transmit finished flag */
SMI_POLL_TFF(SMI_CMD_TIMEOUT);
/* clear transmit finished flag */
SMI_CLEAR_TFF();
/* read ID from Receive Register */
*id = SMI_READ_REG(SMI_RR) & 0x00ffffff;
return ERROR_OK;
}
static int stmsmi_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
uint32_t io_base;
struct flash_sector *sectors;
uint32_t id = 0; /* silence uninitialized warning */
struct stmsmi_target *target_device;
int retval;
if (stmsmi_info->probed)
free(bank->sectors);
stmsmi_info->probed = 0;
for (target_device = target_devices ; target_device->name ; ++target_device)
if (target_device->tap_idcode == target->tap->idcode)
break;
if (!target_device->name) {
LOG_ERROR("Device ID 0x%" PRIx32 " is not known as SMI capable",
target->tap->idcode);
return ERROR_FAIL;
}
switch (bank->base - target_device->smi_base) {
case 0:
stmsmi_info->bank_num = SMI_SEL_BANK0;
break;
case SMI_BANK_SIZE:
stmsmi_info->bank_num = SMI_SEL_BANK1;
break;
case 2*SMI_BANK_SIZE:
stmsmi_info->bank_num = SMI_SEL_BANK2;
break;
case 3*SMI_BANK_SIZE:
stmsmi_info->bank_num = SMI_SEL_BANK3;
break;
default:
LOG_ERROR("Invalid SMI base address 0x%" PRIx32, bank->base);
return ERROR_FAIL;
}
io_base = target_device->io_base;
stmsmi_info->io_base = io_base;
LOG_DEBUG("Valid SMI on device %s at address 0x%" PRIx32,
target_device->name, bank->base);
/* read and decode flash ID; returns in SW mode */
retval = read_flash_id(bank, &id);
SMI_SET_HW_MODE();
if (retval != ERROR_OK)
return retval;
stmsmi_info->dev = NULL;
for (struct flash_device *p = flash_devices; p->name ; p++)
if (p->device_id == id) {
stmsmi_info->dev = p;
break;
}
if (!stmsmi_info->dev) {
LOG_ERROR("Unknown flash device (ID 0x%08" PRIx32 ")", id);
return ERROR_FAIL;
}
LOG_INFO("Found flash device \'%s\' (ID 0x%08" PRIx32 ")",
stmsmi_info->dev->name, stmsmi_info->dev->device_id);
/* Set correct size value */
bank->size = stmsmi_info->dev->size_in_bytes;
/* create and fill sectors array */
bank->num_sectors =
stmsmi_info->dev->size_in_bytes / stmsmi_info->dev->sectorsize;
sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
if (sectors == NULL) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
for (int sector = 0; sector < bank->num_sectors; sector++) {
sectors[sector].offset = sector * stmsmi_info->dev->sectorsize;
sectors[sector].size = stmsmi_info->dev->sectorsize;
sectors[sector].is_erased = -1;
sectors[sector].is_protected = 1;
}
bank->sectors = sectors;
stmsmi_info->probed = 1;
return ERROR_OK;
}
static int stmsmi_auto_probe(struct flash_bank *bank)
{
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
if (stmsmi_info->probed)
return ERROR_OK;
return stmsmi_probe(bank);
}
static int stmsmi_protect_check(struct flash_bank *bank)
{
/* Nothing to do. Protection is only handled in SW. */
return ERROR_OK;
}
static int get_stmsmi_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct stmsmi_flash_bank *stmsmi_info = bank->driver_priv;
if (!(stmsmi_info->probed)) {
snprintf(buf, buf_size,
"\nSMI flash bank not probed yet\n");
return ERROR_OK;
}
snprintf(buf, buf_size, "\nSMI flash information:\n"
" Device \'%s\' (ID 0x%08x)\n",
stmsmi_info->dev->name, stmsmi_info->dev->device_id);
return ERROR_OK;
}
struct flash_driver stmsmi_flash = {
.name = "stmsmi",
.flash_bank_command = stmsmi_flash_bank_command,
.erase = stmsmi_erase,
.protect = stmsmi_protect,
.write = stmsmi_write,
.read = default_flash_read,
.probe = stmsmi_probe,
.auto_probe = stmsmi_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stmsmi_protect_check,
.info = get_stmsmi_info,
};