openocd/src/flash/nor/efm32.c

1070 lines
30 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* Copyright (C) 2013 by Roman Dmitrienko *
* me@iamroman.org *
* *
* Copyright (C) 2014 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
/* keep family IDs in decimal */
#define EFM_FAMILY_ID_GECKO 71
#define EFM_FAMILY_ID_GIANT_GECKO 72
#define EFM_FAMILY_ID_TINY_GECKO 73
#define EFM_FAMILY_ID_LEOPARD_GECKO 74
#define EFM_FAMILY_ID_WONDER_GECKO 75
#define EFM_FAMILY_ID_ZERO_GECKO 76
#define EFM_FAMILY_ID_HAPPY_GECKO 77
#define EZR_FAMILY_ID_WONDER_GECKO 120
#define EZR_FAMILY_ID_LEOPARD_GECKO 121
#define EFM32_FLASH_ERASE_TMO 100
#define EFM32_FLASH_WDATAREADY_TMO 100
#define EFM32_FLASH_WRITE_TMO 100
/* size in bytes, not words; must fit all Gecko devices */
#define LOCKBITS_PAGE_SZ 512
#define EFM32_MSC_INFO_BASE 0x0fe00000
#define EFM32_MSC_USER_DATA EFM32_MSC_INFO_BASE
#define EFM32_MSC_LOCK_BITS (EFM32_MSC_INFO_BASE+0x4000)
#define EFM32_MSC_DEV_INFO (EFM32_MSC_INFO_BASE+0x8000)
/* PAGE_SIZE is only present in Leopard, Giant and Wonder Gecko MCUs */
#define EFM32_MSC_DI_PAGE_SIZE (EFM32_MSC_DEV_INFO+0x1e7)
#define EFM32_MSC_DI_FLASH_SZ (EFM32_MSC_DEV_INFO+0x1f8)
#define EFM32_MSC_DI_RAM_SZ (EFM32_MSC_DEV_INFO+0x1fa)
#define EFM32_MSC_DI_PART_NUM (EFM32_MSC_DEV_INFO+0x1fc)
#define EFM32_MSC_DI_PART_FAMILY (EFM32_MSC_DEV_INFO+0x1fe)
#define EFM32_MSC_DI_PROD_REV (EFM32_MSC_DEV_INFO+0x1ff)
#define EFM32_MSC_REGBASE 0x400c0000
#define EFM32_MSC_WRITECTRL (EFM32_MSC_REGBASE+0x008)
#define EFM32_MSC_WRITECTRL_WREN_MASK 0x1
#define EFM32_MSC_WRITECMD (EFM32_MSC_REGBASE+0x00c)
#define EFM32_MSC_WRITECMD_LADDRIM_MASK 0x1
#define EFM32_MSC_WRITECMD_ERASEPAGE_MASK 0x2
#define EFM32_MSC_WRITECMD_WRITEONCE_MASK 0x8
#define EFM32_MSC_ADDRB (EFM32_MSC_REGBASE+0x010)
#define EFM32_MSC_WDATA (EFM32_MSC_REGBASE+0x018)
#define EFM32_MSC_STATUS (EFM32_MSC_REGBASE+0x01c)
#define EFM32_MSC_STATUS_BUSY_MASK 0x1
#define EFM32_MSC_STATUS_LOCKED_MASK 0x2
#define EFM32_MSC_STATUS_INVADDR_MASK 0x4
#define EFM32_MSC_STATUS_WDATAREADY_MASK 0x8
#define EFM32_MSC_STATUS_WORDTIMEOUT_MASK 0x10
#define EFM32_MSC_STATUS_ERASEABORTED_MASK 0x20
#define EFM32_MSC_LOCK (EFM32_MSC_REGBASE+0x03c)
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71
struct efm32x_flash_bank {
int probed;
uint32_t lb_page[LOCKBITS_PAGE_SZ/4];
};
struct efm32_info {
uint16_t flash_sz_kib;
uint16_t ram_sz_kib;
uint16_t part_num;
uint8_t part_family;
uint8_t prod_rev;
uint16_t page_size;
};
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count);
static int efm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_sz)
{
return target_read_u16(bank->target, EFM32_MSC_DI_FLASH_SZ, flash_sz);
}
static int efm32x_get_ram_size(struct flash_bank *bank, uint16_t *ram_sz)
{
return target_read_u16(bank->target, EFM32_MSC_DI_RAM_SZ, ram_sz);
}
static int efm32x_get_part_num(struct flash_bank *bank, uint16_t *pnum)
{
return target_read_u16(bank->target, EFM32_MSC_DI_PART_NUM, pnum);
}
static int efm32x_get_part_family(struct flash_bank *bank, uint8_t *pfamily)
{
return target_read_u8(bank->target, EFM32_MSC_DI_PART_FAMILY, pfamily);
}
static int efm32x_get_prod_rev(struct flash_bank *bank, uint8_t *prev)
{
return target_read_u8(bank->target, EFM32_MSC_DI_PROD_REV, prev);
}
static int efm32x_read_info(struct flash_bank *bank,
struct efm32_info *efm32_info)
{
int ret;
uint32_t cpuid = 0;
memset(efm32_info, 0, sizeof(struct efm32_info));
ret = target_read_u32(bank->target, CPUID, &cpuid);
if (ERROR_OK != ret)
return ret;
if (((cpuid >> 4) & 0xfff) == 0xc23) {
/* Cortex-M3 device */
} else if (((cpuid >> 4) & 0xfff) == 0xc24) {
/* Cortex-M4 device (WONDER GECKO) */
} else if (((cpuid >> 4) & 0xfff) == 0xc60) {
/* Cortex-M0+ device */
} else {
LOG_ERROR("Target is not Cortex-Mx Device");
return ERROR_FAIL;
}
ret = efm32x_get_flash_size(bank, &(efm32_info->flash_sz_kib));
if (ERROR_OK != ret)
return ret;
ret = efm32x_get_ram_size(bank, &(efm32_info->ram_sz_kib));
if (ERROR_OK != ret)
return ret;
ret = efm32x_get_part_num(bank, &(efm32_info->part_num));
if (ERROR_OK != ret)
return ret;
ret = efm32x_get_part_family(bank, &(efm32_info->part_family));
if (ERROR_OK != ret)
return ret;
ret = efm32x_get_prod_rev(bank, &(efm32_info->prod_rev));
if (ERROR_OK != ret)
return ret;
if (EFM_FAMILY_ID_GECKO == efm32_info->part_family ||
EFM_FAMILY_ID_TINY_GECKO == efm32_info->part_family)
efm32_info->page_size = 512;
else if (EFM_FAMILY_ID_ZERO_GECKO == efm32_info->part_family ||
EFM_FAMILY_ID_HAPPY_GECKO == efm32_info->part_family)
efm32_info->page_size = 1024;
else if (EFM_FAMILY_ID_GIANT_GECKO == efm32_info->part_family ||
EFM_FAMILY_ID_LEOPARD_GECKO == efm32_info->part_family) {
if (efm32_info->prod_rev >= 18) {
uint8_t pg_size = 0;
ret = target_read_u8(bank->target, EFM32_MSC_DI_PAGE_SIZE,
&pg_size);
if (ERROR_OK != ret)
return ret;
efm32_info->page_size = (1 << ((pg_size+10) & 0xff));
} else {
/* EFM32 GG/LG errata: MEM_INFO_PAGE_SIZE is invalid
for MCUs with PROD_REV < 18 */
if (efm32_info->flash_sz_kib < 512)
efm32_info->page_size = 2048;
else
efm32_info->page_size = 4096;
}
if ((2048 != efm32_info->page_size) &&
(4096 != efm32_info->page_size)) {
LOG_ERROR("Invalid page size %u", efm32_info->page_size);
return ERROR_FAIL;
}
} else if (EFM_FAMILY_ID_WONDER_GECKO == efm32_info->part_family ||
EZR_FAMILY_ID_WONDER_GECKO == efm32_info->part_family ||
EZR_FAMILY_ID_LEOPARD_GECKO == efm32_info->part_family) {
uint8_t pg_size = 0;
ret = target_read_u8(bank->target, EFM32_MSC_DI_PAGE_SIZE,
&pg_size);
if (ERROR_OK != ret)
return ret;
efm32_info->page_size = (1 << ((pg_size+10) & 0xff));
if (2048 != efm32_info->page_size) {
LOG_ERROR("Invalid page size %u", efm32_info->page_size);
return ERROR_FAIL;
}
} else {
LOG_ERROR("Unknown MCU family %d", efm32_info->part_family);
return ERROR_FAIL;
}
return ERROR_OK;
}
/*
* Helper to create a human friendly string describing a part
*/
static int efm32x_decode_info(struct efm32_info *info, char *buf, int buf_size)
{
int printed = 0;
switch (info->part_family) {
case EZR_FAMILY_ID_WONDER_GECKO:
case EZR_FAMILY_ID_LEOPARD_GECKO:
printed = snprintf(buf, buf_size, "EZR32 ");
break;
default:
printed = snprintf(buf, buf_size, "EFM32 ");
}
buf += printed;
buf_size -= printed;
if (0 >= buf_size)
return ERROR_BUF_TOO_SMALL;
switch (info->part_family) {
case EFM_FAMILY_ID_GECKO:
printed = snprintf(buf, buf_size, "Gecko");
break;
case EFM_FAMILY_ID_GIANT_GECKO:
printed = snprintf(buf, buf_size, "Giant Gecko");
break;
case EFM_FAMILY_ID_TINY_GECKO:
printed = snprintf(buf, buf_size, "Tiny Gecko");
break;
case EFM_FAMILY_ID_LEOPARD_GECKO:
case EZR_FAMILY_ID_LEOPARD_GECKO:
printed = snprintf(buf, buf_size, "Leopard Gecko");
break;
case EFM_FAMILY_ID_WONDER_GECKO:
case EZR_FAMILY_ID_WONDER_GECKO:
printed = snprintf(buf, buf_size, "Wonder Gecko");
break;
case EFM_FAMILY_ID_ZERO_GECKO:
printed = snprintf(buf, buf_size, "Zero Gecko");
break;
case EFM_FAMILY_ID_HAPPY_GECKO:
printed = snprintf(buf, buf_size, "Happy Gecko");
break;
}
buf += printed;
buf_size -= printed;
if (0 >= buf_size)
return ERROR_BUF_TOO_SMALL;
printed = snprintf(buf, buf_size, " - Rev: %d", info->prod_rev);
buf += printed;
buf_size -= printed;
if (0 >= buf_size)
return ERROR_BUF_TOO_SMALL;
return ERROR_OK;
}
/* flash bank efm32 <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(efm32x_flash_bank_command)
{
struct efm32x_flash_bank *efm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
efm32x_info = malloc(sizeof(struct efm32x_flash_bank));
bank->driver_priv = efm32x_info;
efm32x_info->probed = 0;
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ);
return ERROR_OK;
}
/* set or reset given bits in a register */
static int efm32x_set_reg_bits(struct flash_bank *bank, uint32_t reg,
uint32_t bitmask, int set)
{
int ret = 0;
uint32_t reg_val = 0;
ret = target_read_u32(bank->target, reg, &reg_val);
if (ERROR_OK != ret)
return ret;
if (set)
reg_val |= bitmask;
else
reg_val &= ~bitmask;
return target_write_u32(bank->target, reg, reg_val);
}
static int efm32x_set_wren(struct flash_bank *bank, int write_enable)
{
return efm32x_set_reg_bits(bank, EFM32_MSC_WRITECTRL,
EFM32_MSC_WRITECTRL_WREN_MASK, write_enable);
}
static int efm32x_msc_lock(struct flash_bank *bank, int lock)
{
return target_write_u32(bank->target, EFM32_MSC_LOCK,
(lock ? 0 : EFM32_MSC_LOCK_LOCKKEY));
}
static int efm32x_wait_status(struct flash_bank *bank, int timeout,
uint32_t wait_mask, int wait_for_set)
{
int ret = 0;
uint32_t status = 0;
while (1) {
ret = target_read_u32(bank->target, EFM32_MSC_STATUS, &status);
if (ERROR_OK != ret)
break;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if (((status & wait_mask) == 0) && (0 == wait_for_set))
break;
else if (((status & wait_mask) != 0) && wait_for_set)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for MSC status");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & EFM32_MSC_STATUS_ERASEABORTED_MASK)
LOG_WARNING("page erase was aborted");
return ret;
}
static int efm32x_erase_page(struct flash_bank *bank, uint32_t addr)
{
/* this function DOES NOT set WREN; must be set already */
/* 1. write address to ADDRB
2. write LADDRIM
3. check status (INVADDR, LOCKED)
4. write ERASEPAGE
5. wait until !STATUS_BUSY
*/
int ret = 0;
uint32_t status = 0;
LOG_DEBUG("erasing flash page at 0x%08" PRIx32, addr);
ret = target_write_u32(bank->target, EFM32_MSC_ADDRB, addr);
if (ERROR_OK != ret)
return ret;
ret = efm32x_set_reg_bits(bank, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
if (ERROR_OK != ret)
return ret;
ret = target_read_u32(bank->target, EFM32_MSC_STATUS, &status);
if (ERROR_OK != ret)
return ret;
LOG_DEBUG("status 0x%" PRIx32, status);
if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("Page is locked");
return ERROR_FAIL;
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("Invalid address 0x%" PRIx32, addr);
return ERROR_FAIL;
}
ret = efm32x_set_reg_bits(bank, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_ERASEPAGE_MASK, 1);
if (ERROR_OK != ret)
return ret;
return efm32x_wait_status(bank, EFM32_FLASH_ERASE_TMO,
EFM32_MSC_STATUS_BUSY_MASK, 0);
}
static int efm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i = 0;
int ret = 0;
if (TARGET_HALTED != target->state) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
efm32x_msc_lock(bank, 0);
ret = efm32x_set_wren(bank, 1);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to enable MSC write");
return ret;
}
for (i = first; i <= last; i++) {
ret = efm32x_erase_page(bank, bank->sectors[i].offset);
if (ERROR_OK != ret)
LOG_ERROR("Failed to erase page %d", i);
}
ret = efm32x_set_wren(bank, 0);
efm32x_msc_lock(bank, 1);
return ret;
}
static int efm32x_read_lock_data(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
struct target *target = bank->target;
int i = 0;
int data_size = 0;
uint32_t *ptr = NULL;
int ret = 0;
assert(!(bank->num_sectors & 0x1f));
data_size = bank->num_sectors / 8; /* number of data bytes */
data_size /= 4; /* ...and data dwords */
ptr = efm32x_info->lb_page;
for (i = 0; i < data_size; i++, ptr++) {
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+i*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read PLW %d", i);
return ret;
}
}
/* also, read ULW, DLW and MLW */
/* ULW, word 126 */
ptr = efm32x_info->lb_page + 126;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+126*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read ULW");
return ret;
}
/* DLW, word 127 */
ptr = efm32x_info->lb_page + 127;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+127*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read DLW");
return ret;
}
/* MLW, word 125, present in GG and LG */
ptr = efm32x_info->lb_page + 125;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+125*4, ptr);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read MLW");
return ret;
}
return ERROR_OK;
}
static int efm32x_write_lock_data(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
int ret = 0;
ret = efm32x_erase_page(bank, EFM32_MSC_LOCK_BITS);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to erase LB page");
return ret;
}
return efm32x_write(bank, (uint8_t *)efm32x_info->lb_page, EFM32_MSC_LOCK_BITS,
LOCKBITS_PAGE_SZ);
}
static int efm32x_get_page_lock(struct flash_bank *bank, size_t page)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t dw = efm32x_info->lb_page[page >> 5];
uint32_t mask = 0;
mask = 1 << (page & 0x1f);
return (dw & mask) ? 0 : 1;
}
static int efm32x_set_page_lock(struct flash_bank *bank, size_t page, int set)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t *dw = &efm32x_info->lb_page[page >> 5];
uint32_t mask = 0;
mask = 1 << (page & 0x1f);
if (!set)
*dw |= mask;
else
*dw &= ~mask;
return ERROR_OK;
}
static int efm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct target *target = bank->target;
int i = 0;
int ret = 0;
if (!set) {
LOG_ERROR("Erase device data to reset page locks");
return ERROR_FAIL;
}
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (i = first; i <= last; i++) {
ret = efm32x_set_page_lock(bank, i, set);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to set lock on page %d", i);
return ret;
}
}
ret = efm32x_write_lock_data(bank);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to write LB page");
return ret;
}
return ERROR_OK;
}
static int efm32x_write_block(struct flash_bank *bank, const uint8_t *buf,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int ret = ERROR_OK;
/* see contrib/loaders/flash/efm32.S for src */
static const uint8_t efm32x_flash_write_code[] = {
/* #define EFM32_MSC_WRITECTRL_OFFSET 0x008 */
/* #define EFM32_MSC_WRITECMD_OFFSET 0x00c */
/* #define EFM32_MSC_ADDRB_OFFSET 0x010 */
/* #define EFM32_MSC_WDATA_OFFSET 0x018 */
/* #define EFM32_MSC_STATUS_OFFSET 0x01c */
/* #define EFM32_MSC_LOCK_OFFSET 0x03c */
0x15, 0x4e, /* ldr r6, =#0x1b71 */
0xc6, 0x63, /* str r6, [r0, #EFM32_MSC_LOCK_OFFSET] */
0x01, 0x26, /* movs r6, #1 */
0x86, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECTRL_OFFSET] */
/* wait_fifo: */
0x16, 0x68, /* ldr r6, [r2, #0] */
0x00, 0x2e, /* cmp r6, #0 */
0x22, 0xd0, /* beq exit */
0x55, 0x68, /* ldr r5, [r2, #4] */
0xb5, 0x42, /* cmp r5, r6 */
0xf9, 0xd0, /* beq wait_fifo */
0x04, 0x61, /* str r4, [r0, #EFM32_MSC_ADDRB_OFFSET] */
0x01, 0x26, /* movs r6, #1 */
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x06, 0x27, /* movs r7, #6 */
0x3e, 0x42, /* tst r6, r7 */
0x16, 0xd1, /* bne error */
/* wait_wdataready: */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x08, 0x27, /* movs r7, #8 */
0x3e, 0x42, /* tst r6, r7 */
0xfb, 0xd0, /* beq wait_wdataready */
0x2e, 0x68, /* ldr r6, [r5] */
0x86, 0x61, /* str r6, [r0, #EFM32_MSC_WDATA_OFFSET] */
0x08, 0x26, /* movs r6, #8 */
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */
0x04, 0x35, /* adds r5, #4 */
0x04, 0x34, /* adds r4, #4 */
/* busy: */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x01, 0x27, /* movs r7, #1 */
0x3e, 0x42, /* tst r6, r7 */
0xfb, 0xd1, /* bne busy */
0x9d, 0x42, /* cmp r5, r3 */
0x01, 0xd3, /* bcc no_wrap */
0x15, 0x46, /* mov r5, r2 */
0x08, 0x35, /* adds r5, #8 */
/* no_wrap: */
0x55, 0x60, /* str r5, [r2, #4] */
0x01, 0x39, /* subs r1, r1, #1 */
0x00, 0x29, /* cmp r1, #0 */
0x02, 0xd0, /* beq exit */
0xdb, 0xe7, /* b wait_fifo */
/* error: */
0x00, 0x20, /* movs r0, #0 */
0x50, 0x60, /* str r0, [r2, #4] */
/* exit: */
0x30, 0x46, /* mov r0, r6 */
0x00, 0xbe, /* bkpt #0 */
/* LOCKKEY */
0x71, 0x1b, 0x00, 0x00
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(efm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
ret = target_write_buffer(target, write_algorithm->address,
sizeof(efm32x_flash_write_code), efm32x_flash_write_code);
if (ret != ERROR_OK)
return ret;
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (word-32bit) */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
buf_set_u32(reg_params[0].value, 0, 32, EFM32_MSC_REGBASE);
buf_set_u32(reg_params[1].value, 0, 32, count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
ret = target_run_flash_async_algorithm(target, buf, count, 4,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (ret == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));
if (buf_get_u32(reg_params[0].value, 0, 32) &
EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("flash memory write protected");
}
if (buf_get_u32(reg_params[0].value, 0, 32) &
EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("invalid flash memory write address");
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return ret;
}
static int efm32x_write_word(struct flash_bank *bank, uint32_t addr,
uint32_t val)
{
/* this function DOES NOT set WREN; must be set already */
/* 1. write address to ADDRB
2. write LADDRIM
3. check status (INVADDR, LOCKED)
4. wait for WDATAREADY
5. write data to WDATA
6. write WRITECMD_WRITEONCE to WRITECMD
7. wait until !STATUS_BUSY
*/
/* FIXME: EFM32G ref states (7.3.2) that writes should be
* performed twice per dword */
int ret = 0;
uint32_t status = 0;
/* if not called, GDB errors will be reported during large writes */
keep_alive();
ret = target_write_u32(bank->target, EFM32_MSC_ADDRB, addr);
if (ERROR_OK != ret)
return ret;
ret = efm32x_set_reg_bits(bank, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
if (ERROR_OK != ret)
return ret;
ret = target_read_u32(bank->target, EFM32_MSC_STATUS, &status);
if (ERROR_OK != ret)
return ret;
LOG_DEBUG("status 0x%" PRIx32, status);
if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("Page is locked");
return ERROR_FAIL;
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("Invalid address 0x%" PRIx32, addr);
return ERROR_FAIL;
}
ret = efm32x_wait_status(bank, EFM32_FLASH_WDATAREADY_TMO,
EFM32_MSC_STATUS_WDATAREADY_MASK, 1);
if (ERROR_OK != ret) {
LOG_ERROR("Wait for WDATAREADY failed");
return ret;
}
ret = target_write_u32(bank->target, EFM32_MSC_WDATA, val);
if (ERROR_OK != ret) {
LOG_ERROR("WDATA write failed");
return ret;
}
ret = target_write_u32(bank->target, EFM32_MSC_WRITECMD,
EFM32_MSC_WRITECMD_WRITEONCE_MASK);
if (ERROR_OK != ret) {
LOG_ERROR("WRITECMD write failed");
return ret;
}
ret = efm32x_wait_status(bank, EFM32_FLASH_WRITE_TMO,
EFM32_MSC_STATUS_BUSY_MASK, 0);
if (ERROR_OK != ret) {
LOG_ERROR("Wait for BUSY failed");
return ret;
}
return ERROR_OK;
}
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint8_t *new_buffer = NULL;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte "
"alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (new_buffer == NULL) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
"and padding with 0xff", old_count, count);
memset(new_buffer, 0xff, count);
buffer = memcpy(new_buffer, buffer, old_count);
}
uint32_t words_remaining = count / 4;
int retval, retval2;
/* unlock flash registers */
efm32x_msc_lock(bank, 0);
retval = efm32x_set_wren(bank, 1);
if (retval != ERROR_OK)
goto cleanup;
/* try using a block write */
retval = efm32x_write_block(bank, buffer, offset, words_remaining);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single word accesses */
LOG_WARNING("couldn't use block writes, falling back to single "
"memory accesses");
while (words_remaining > 0) {
uint32_t value;
memcpy(&value, buffer, sizeof(uint32_t));
retval = efm32x_write_word(bank, offset, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
words_remaining--;
buffer += 4;
offset += 4;
}
}
reset_pg_and_lock:
retval2 = efm32x_set_wren(bank, 0);
efm32x_msc_lock(bank, 1);
if (retval == ERROR_OK)
retval = retval2;
cleanup:
if (new_buffer)
free(new_buffer);
return retval;
}
static int efm32x_probe(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
struct efm32_info efm32_mcu_info;
int ret;
int i;
uint32_t base_address = 0x00000000;
char buf[256];
efm32x_info->probed = 0;
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ);
ret = efm32x_read_info(bank, &efm32_mcu_info);
if (ERROR_OK != ret)
return ret;
ret = efm32x_decode_info(&efm32_mcu_info, buf, sizeof(buf));
if (ERROR_OK != ret)
return ret;
LOG_INFO("detected part: %s", buf);
LOG_INFO("flash size = %dkbytes", efm32_mcu_info.flash_sz_kib);
LOG_INFO("flash page size = %dbytes", efm32_mcu_info.page_size);
assert(0 != efm32_mcu_info.page_size);
int num_pages = efm32_mcu_info.flash_sz_kib * 1024 /
efm32_mcu_info.page_size;
assert(num_pages > 0);
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->size = (num_pages * efm32_mcu_info.page_size);
bank->num_sectors = num_pages;
ret = efm32x_read_lock_data(bank);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read LB data");
return ret;
}
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
for (i = 0; i < num_pages; i++) {
bank->sectors[i].offset = i * efm32_mcu_info.page_size;
bank->sectors[i].size = efm32_mcu_info.page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
efm32x_info->probed = 1;
return ERROR_OK;
}
static int efm32x_auto_probe(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
if (efm32x_info->probed)
return ERROR_OK;
return efm32x_probe(bank);
}
static int efm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
int ret = 0;
int i = 0;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
ret = efm32x_read_lock_data(bank);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read LB data");
return ret;
}
assert(NULL != bank->sectors);
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = efm32x_get_page_lock(bank, i);
return ERROR_OK;
}
static int get_efm32x_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct efm32_info info;
int ret = 0;
ret = efm32x_read_info(bank, &info);
if (ERROR_OK != ret) {
LOG_ERROR("Failed to read EFM32 info");
return ret;
}
return efm32x_decode_info(&info, buf, buf_size);
}
COMMAND_HANDLER(efm32x_handle_debuglock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint32_t *ptr;
ptr = efm32x_info->lb_page + 127;
*ptr = 0;
retval = efm32x_write_lock_data(bank);
if (ERROR_OK != retval) {
LOG_ERROR("Failed to write LB page");
return retval;
}
command_print(CMD_CTX, "efm32x debug interface locked, reset the device to apply");
return ERROR_OK;
}
static const struct command_registration efm32x_exec_command_handlers[] = {
{
.name = "debuglock",
.handler = efm32x_handle_debuglock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock the debug interface of the device.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration efm32x_command_handlers[] = {
{
.name = "efm32",
.mode = COMMAND_ANY,
.help = "efm32 flash command group",
.usage = "",
.chain = efm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver efm32_flash = {
.name = "efm32",
.commands = efm32x_command_handlers,
.flash_bank_command = efm32x_flash_bank_command,
.erase = efm32x_erase,
.protect = efm32x_protect,
.write = efm32x_write,
.read = default_flash_read,
.probe = efm32x_probe,
.auto_probe = efm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = efm32x_protect_check,
.info = get_efm32x_info,
};