openocd/src/flash/nor/psoc4.c

810 lines
23 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* Copyright (C) 2014 by Tomas Vanek (PSoC 4 support derived from STM32) *
* vanekt@fbl.cz *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <jtag/jtag.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/* device documets:
PSoC(R) 4: PSoC 4200 Family Datasheet
Document Number: 001-87197 Rev. *B Revised August 29, 2013
PSoC 4100/4200 Family PSoC(R) 4 Architecture TRM
Document No. 001-85634 Rev. *C March 25, 2014
PSoC(R) 4 Registers TRM Spec.
Document No. 001-85847 Rev. *A June 25, 2013
CY8C41xx, CY8C42xx Programming Specifications
Document No. 001-81799 Rev. *C March 4, 2014
*/
/* register locations */
#define PSOC4_CPUSS_SYSREQ 0x40000004
#define PSOC4_CPUSS_SYSARG 0x40000008
#define PSOC4_TEST_MODE 0x40030014
#define PSOC4_SPCIF_GEOMETRY 0x400E0000
#define PSOC4_SFLASH_MACRO 0x0ffff000
/* constants */
#define PSOC4_SROM_KEY1 0xb6
#define PSOC4_SROM_KEY2 0xd3
#define PSOC4_SROM_SYSREQ_BIT (1<<31)
#define PSOC4_SROM_HMASTER_BIT (1<<30)
#define PSOC4_SROM_PRIVILEGED_BIT (1<<28)
#define PSOC4_SROM_STATUS_SUCCEEDED 0xa0000000
#define PSOC4_SROM_STATUS_FAILED 0xf0000000
#define PSOC4_CMD_GET_SILICON_ID 0
#define PSOC4_CMD_LOAD_LATCH 4
#define PSOC4_CMD_WRITE_ROW 5
#define PSOC4_CMD_PROGRAM_ROW 6
#define PSOC4_CMD_ERASE_ALL 0xa
#define PSOC4_CMD_CHECKSUM 0xb
#define PSOC4_CMD_WRITE_PROTECTION 0xd
#define PSOC4_CHIP_PROT_VIRGIN 0x0
#define PSOC4_CHIP_PROT_OPEN 0x1
#define PSOC4_CHIP_PROT_PROTECTED 0x2
#define PSOC4_CHIP_PROT_KILL 0x4
struct psoc4_chip_details {
uint16_t id;
const char *type;
const char *package;
uint32_t flash_size_in_kb;
};
/* list of PSoC 4 chips
* flash_size_in_kb is not necessary as it can be decoded from SPCIF_GEOMETRY
*/
const struct psoc4_chip_details psoc4_devices[] = {
/* 4200 series */
{ 0x04A6, "CY8C4245PVI-482", "SSOP-28", .flash_size_in_kb = 32 },
{ 0x04B6, "CY8C4245LQI-483", "QFN-40", .flash_size_in_kb = 32 },
{ 0x04C8, "CY8C4245AXI-483", "TQFP-44", .flash_size_in_kb = 32 },
{ 0x04FB, "CY8C4245AXI-473", "TQFP-44", .flash_size_in_kb = 32 },
{ 0x04F0, "CY8C4244PVI-432", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x04F1, "CY8C4244PVI-442", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x04F6, "CY8C4244LQI-443", "QFN-40", .flash_size_in_kb = 16 },
{ 0x04FA, "CY8C4244AXI-443", "TQFP-44", .flash_size_in_kb = 16 },
/* 4100 series */
{ 0x0410, "CY8C4124PVI-432", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x0411, "CY8C4124PVI-442", "SSOP-28", .flash_size_in_kb = 16 },
{ 0x0416, "CY8C4124LQI-443", "QFN-40", .flash_size_in_kb = 16 },
{ 0x041A, "CY8C4124AXI-443", "TQFP-44", .flash_size_in_kb = 16 },
{ 0x041B, "CY8C4125AXI-473", "TQFP-44", .flash_size_in_kb = 32 },
{ 0x0412, "CY8C4125PVI-482", "SSOP-28", .flash_size_in_kb = 32 },
{ 0x0417, "CY8C4125LQI-483", "QFN-40", .flash_size_in_kb = 32 },
{ 0x041C, "CY8C4125AXI-483", "TQFP-44", .flash_size_in_kb = 32 },
/* CCG1 series */
{ 0x0490, "CYPD1103-35FNXI", "CSP-35", .flash_size_in_kb = 32 },
{ 0x0489, "CYPD1121-40LQXI", "QFN-40", .flash_size_in_kb = 32 },
{ 0x048A, "CYPD1122-40LQXI", "QFN-40", .flash_size_in_kb = 32 },
{ 0x0491, "CYPD1131-35FNXI", "CSP-35", .flash_size_in_kb = 32 },
{ 0x0498, "CYPD1132-16SXI", "SOIC-16", .flash_size_in_kb = 32 },
{ 0x0481, "CYPD1134-28PVXI", "SSOP-28", .flash_size_in_kb = 32 },
{ 0x048B, "CYPD1134-40LQXI", "QFN-40", .flash_size_in_kb = 32 },
};
struct psoc4_flash_bank {
uint32_t row_size;
uint32_t user_bank_size;
int probed;
uint32_t silicon_id;
uint8_t chip_protection;
uint8_t cmd_program_row;
};
static const struct psoc4_chip_details *psoc4_details_by_id(uint32_t silicon_id)
{
const struct psoc4_chip_details *p = psoc4_devices;
unsigned int i;
uint16_t id = silicon_id >> 16; /* ignore die revision */
for (i = 0; i < sizeof(psoc4_devices)/sizeof(psoc4_devices[0]); i++, p++) {
if (p->id == id)
return p;
}
LOG_DEBUG("Unknown PSoC 4 device silicon id 0x%08" PRIx32 ".", silicon_id);
return NULL;
}
static const char *psoc4_decode_chip_protection(uint8_t protection)
{
switch (protection) {
case PSOC4_CHIP_PROT_VIRGIN:
return "protection VIRGIN";
case PSOC4_CHIP_PROT_OPEN:
return "protection open";
case PSOC4_CHIP_PROT_PROTECTED:
return "PROTECTED";
case PSOC4_CHIP_PROT_KILL:
return "protection KILL";
default:
LOG_WARNING("Unknown protection state 0x%02" PRIx8 "", protection);
return "";
}
}
/* flash bank <name> psoc <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(psoc4_flash_bank_command)
{
struct psoc4_flash_bank *psoc4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
psoc4_info = calloc(1, sizeof(struct psoc4_flash_bank));
bank->driver_priv = psoc4_info;
psoc4_info->user_bank_size = bank->size;
return ERROR_OK;
}
/* PSoC 4 system ROM request
* Setting SROM_SYSREQ_BIT in CPUSS_SYSREQ register runs NMI service
* in sysrem ROM. Algorithm just waits for NMI to finish.
* When sysreq_params_size == 0 only one parameter is passed in CPUSS_SYSARG register.
* Otherwise address of memory parameter block is set in CPUSS_SYSARG
* and the first parameter is written to the first word of parameter block
*/
static int psoc4_sysreq(struct target *target, uint8_t cmd, uint16_t cmd_param,
uint32_t *sysreq_params, uint32_t sysreq_params_size)
{
struct working_area *sysreq_wait_algorithm;
struct working_area *sysreq_mem;
struct reg_param reg_params[1];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
uint32_t param1 = PSOC4_SROM_KEY1
| ((PSOC4_SROM_KEY2 + cmd) << 8)
| (cmd_param << 16);
static uint8_t psoc4_sysreq_wait_code[] = {
/* system request NMI is served immediately after algo run
now we are done: break */
0x00, 0xbe, /* bkpt 0 */
};
const int code_words = (sizeof(psoc4_sysreq_wait_code) + 3) / 4;
/* stack must be aligned */
const int stack_size = 196;
/* tested stack sizes on PSoC 4:
ERASE_ALL 144
PROGRAM_ROW 112
other sysreq 68
*/
/* allocate area for sysreq wait code and stack */
if (target_alloc_working_area(target, code_words * 4 + stack_size,
&sysreq_wait_algorithm) != ERROR_OK) {
LOG_DEBUG("no working area for sysreq code");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Write the code */
retval = target_write_buffer(target,
sysreq_wait_algorithm->address,
sizeof(psoc4_sysreq_wait_code),
psoc4_sysreq_wait_code);
if (retval != ERROR_OK) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
goto cleanup_algo;
}
if (sysreq_params_size) {
/* Allocate memory for sysreq_params */
retval = target_alloc_working_area(target, sysreq_params_size, &sysreq_mem);
if (retval != ERROR_OK) {
LOG_WARNING("no working area for sysreq parameters");
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
goto cleanup_algo;
}
/* Write sysreq_params */
sysreq_params[0] = param1;
retval = target_write_buffer(target, sysreq_mem->address,
sysreq_params_size, (uint8_t *)sysreq_params);
if (retval != ERROR_OK)
goto cleanup_mem;
/* Set address of sysreq parameters block */
retval = target_write_u32(target, PSOC4_CPUSS_SYSARG, sysreq_mem->address);
if (retval != ERROR_OK)
goto cleanup_mem;
} else {
/* Sysreq without memory block of parameters */
/* Set register parameter */
retval = target_write_u32(target, PSOC4_CPUSS_SYSARG, param1);
if (retval != ERROR_OK)
goto cleanup_mem;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
/* sysreq stack */
init_reg_param(&reg_params[0], "sp", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32,
sysreq_wait_algorithm->address + sysreq_wait_algorithm->size);
struct armv7m_common *armv7m = target_to_armv7m(target);
if (armv7m == NULL) {
/* something is very wrong if armv7m is NULL */
LOG_ERROR("unable to get armv7m target");
goto cleanup;
}
/* Set SROM request */
retval = target_write_u32(target, PSOC4_CPUSS_SYSREQ,
PSOC4_SROM_SYSREQ_BIT | PSOC4_SROM_HMASTER_BIT | cmd);
if (retval != ERROR_OK)
goto cleanup;
/* Execute wait code */
retval = target_run_algorithm(target, 0, NULL,
sizeof(reg_params) / sizeof(*reg_params), reg_params,
sysreq_wait_algorithm->address, 0, 1000, &armv7m_info);
if (retval != ERROR_OK)
LOG_ERROR("sysreq wait code execution failed");
cleanup:
destroy_reg_param(&reg_params[0]);
cleanup_mem:
if (sysreq_params_size)
target_free_working_area(target, sysreq_mem);
cleanup_algo:
target_free_working_area(target, sysreq_wait_algorithm);
return retval;
}
/* helper routine to get silicon ID from a PSoC 4 chip */
static int psoc4_get_silicon_id(struct target *target, uint32_t *silicon_id, uint8_t *protection)
{
uint32_t params = PSOC4_SROM_KEY1
| ((PSOC4_SROM_KEY2 + PSOC4_CMD_GET_SILICON_ID) << 8);
uint32_t part0, part1;
int retval = psoc4_sysreq(target, PSOC4_CMD_GET_SILICON_ID, 0, NULL, 0);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, PSOC4_CPUSS_SYSARG, &part0);
if (retval != ERROR_OK)
return retval;
if (part0 == params) {
LOG_ERROR("sysreq silicon id request not served");
return ERROR_FAIL;
}
retval = target_read_u32(target, PSOC4_CPUSS_SYSREQ, &part1);
if (retval != ERROR_OK)
return retval;
uint32_t silicon = ((part0 & 0xffff) << 16)
| (((part0 >> 16) & 0xff) << 8)
| (part1 & 0xff);
uint8_t prot = (part1 >> 12) & 0xff;
if (silicon_id)
*silicon_id = silicon;
if (protection)
*protection = prot;
LOG_DEBUG("silicon id: 0x%08" PRIx32 "", silicon);
LOG_DEBUG("protection: 0x%02" PRIx8 "", prot);
return retval;
}
static int psoc4_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
uint32_t prot_addr = PSOC4_SFLASH_MACRO;
uint32_t protection;
int i, s;
int num_bits;
int retval = ERROR_OK;
num_bits = bank->num_sectors;
for (i = 0; i < num_bits; i += 32) {
retval = target_read_u32(target, prot_addr, &protection);
if (retval != ERROR_OK)
return retval;
prot_addr += 4;
for (s = 0; s < 32; s++) {
if (i + s >= num_bits)
break;
bank->sectors[i + s].is_protected = (protection & (1 << s)) ? 1 : 0;
}
}
retval = psoc4_get_silicon_id(target, NULL, &(psoc4_info->chip_protection));
return retval;
}
static int psoc4_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
int i;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Call "Erase All" system ROM API */
uint32_t param;
int retval = psoc4_sysreq(target, PSOC4_CMD_ERASE_ALL,
0,
&param, sizeof(param));
if (retval == ERROR_OK)
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
return retval;
}
static int psoc4_erase(struct flash_bank *bank, int first, int last)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
if (psoc4_info->cmd_program_row == PSOC4_CMD_WRITE_ROW) {
LOG_INFO("Autoerase enabled, erase command ignored");
return ERROR_OK;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
return psoc4_mass_erase(bank);
LOG_ERROR("Only mass erase available");
return ERROR_FAIL;
}
static int psoc4_protect(struct flash_bank *bank, int set, int first, int last)
{
struct target *target = bank->target;
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
if (psoc4_info->probed == 0)
return ERROR_FAIL;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint32_t *sysrq_buffer = NULL;
int retval;
int num_bits = bank->num_sectors;
const int param_sz = 8;
int prot_sz = num_bits / 8;
int chip_prot = PSOC4_CHIP_PROT_OPEN;
int flash_macro = 0; /* PSoC 42xx has only macro 0 */
int i;
sysrq_buffer = calloc(1, param_sz + prot_sz);
if (sysrq_buffer == NULL) {
LOG_ERROR("no memory for row buffer");
return ERROR_FAIL;
}
for (i = first; i < num_bits && i <= last; i++)
bank->sectors[i].is_protected = set;
uint32_t *p = sysrq_buffer + 2;
for (i = 0; i < num_bits; i++) {
if (bank->sectors[i].is_protected)
p[i / 32] |= 1 << (i % 32);
}
/* Call "Load Latch" system ROM API */
sysrq_buffer[1] = prot_sz - 1;
retval = psoc4_sysreq(target, PSOC4_CMD_LOAD_LATCH,
0, /* Byte number in latch from what to write */
sysrq_buffer, param_sz + psoc4_info->row_size);
if (retval != ERROR_OK)
goto cleanup;
/* Call "Write Protection" system ROM API */
retval = psoc4_sysreq(target, PSOC4_CMD_WRITE_PROTECTION,
chip_prot | (flash_macro << 8), NULL, 0);
cleanup:
if (retval != ERROR_OK)
psoc4_protect_check(bank);
if (sysrq_buffer)
free(sysrq_buffer);
return retval;
}
COMMAND_HANDLER(psoc4_handle_flash_autoerase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
bool enable = psoc4_info->cmd_program_row == PSOC4_CMD_WRITE_ROW;
if (CMD_ARGC >= 2)
COMMAND_PARSE_ON_OFF(CMD_ARGV[1], enable);
if (enable) {
psoc4_info->cmd_program_row = PSOC4_CMD_WRITE_ROW;
LOG_INFO("Flash auto-erase enabled, non mass erase commands will be ignored.");
} else {
psoc4_info->cmd_program_row = PSOC4_CMD_PROGRAM_ROW;
LOG_INFO("Flash auto-erase disabled. Use psoc mass_erase before flash programming.");
}
return retval;
}
static int psoc4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t *sysrq_buffer = NULL;
int retval = ERROR_OK;
const int param_sz = 8;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1) {
LOG_ERROR("offset 0x%08" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
sysrq_buffer = malloc(param_sz + psoc4_info->row_size);
if (sysrq_buffer == NULL) {
LOG_ERROR("no memory for row buffer");
return ERROR_FAIL;
}
uint8_t *row_buffer = (uint8_t *)sysrq_buffer + param_sz;
uint32_t row_num = offset / psoc4_info->row_size;
uint32_t row_offset = offset - row_num * psoc4_info->row_size;
if (row_offset)
memset(row_buffer, 0, row_offset);
bool save_poll = jtag_poll_get_enabled();
jtag_poll_set_enabled(false);
while (count) {
uint32_t chunk_size = psoc4_info->row_size - row_offset;
if (chunk_size > count) {
chunk_size = count;
memset(row_buffer + chunk_size, 0, psoc4_info->row_size - chunk_size);
}
memcpy(row_buffer + row_offset, buffer, chunk_size);
LOG_DEBUG("offset / row: 0x%08" PRIx32 " / %" PRIu32 ", size %" PRIu32 "",
offset, row_offset, chunk_size);
/* Call "Load Latch" system ROM API */
sysrq_buffer[1] = psoc4_info->row_size - 1;
retval = psoc4_sysreq(target, PSOC4_CMD_LOAD_LATCH,
0, /* Byte number in latch from what to write */
sysrq_buffer, param_sz + psoc4_info->row_size);
if (retval != ERROR_OK)
goto cleanup;
/* Call "Program Row" or "Write Row" system ROM API */
uint32_t sysrq_param;
retval = psoc4_sysreq(target, psoc4_info->cmd_program_row,
row_num & 0xffff,
&sysrq_param, sizeof(sysrq_param));
if (retval != ERROR_OK)
goto cleanup;
buffer += chunk_size;
row_num++;
row_offset = 0;
count -= chunk_size;
}
cleanup:
jtag_poll_set_enabled(save_poll);
if (sysrq_buffer)
free(sysrq_buffer);
return retval;
}
static int psoc4_probe(struct flash_bank *bank)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t flash_size_in_kb = 0;
uint32_t max_flash_size_in_kb;
uint32_t cpu_id;
uint32_t silicon_id;
uint32_t row_size;
uint32_t base_address = 0x00000000;
uint8_t protection;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
psoc4_info->probed = 0;
psoc4_info->cmd_program_row = PSOC4_CMD_PROGRAM_ROW;
/* Get the CPUID from the ARM Core
* http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
int retval = target_read_u32(target, 0xE000ED00, &cpu_id);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("cpu id = 0x%08" PRIx32 "", cpu_id);
/* set page size, protection granularity and max flash size depending on family */
switch ((cpu_id >> 4) & 0xFFF) {
case 0xc20: /* M0 -> PSoC4 */
row_size = 128;
max_flash_size_in_kb = 32;
break;
default:
LOG_WARNING("Cannot identify target as a PSoC 4 family.");
return ERROR_FAIL;
}
uint32_t spcif_geometry;
retval = target_read_u32(target, PSOC4_SPCIF_GEOMETRY, &spcif_geometry);
if (retval == ERROR_OK) {
row_size = 128 * ((spcif_geometry >> 22) & 3);
flash_size_in_kb = (spcif_geometry & 0xffff) * 256 / 1024;
LOG_INFO("SPCIF geometry: %" PRIu32 " kb flash, row %" PRIu32 " bytes.",
flash_size_in_kb, row_size);
}
/* Early revisions of ST-Link v2 have some problem reading PSOC4_SPCIF_GEOMETRY
and an error is reported late. Dummy read gets this error. */
uint32_t dummy;
target_read_u32(target, PSOC4_CPUSS_SYSREQ, &dummy);
/* get silicon ID from target. */
retval = psoc4_get_silicon_id(target, &silicon_id, &protection);
if (retval != ERROR_OK)
return retval;
const struct psoc4_chip_details *details = psoc4_details_by_id(silicon_id);
if (details) {
LOG_INFO("%s device detected.", details->type);
if (flash_size_in_kb == 0)
flash_size_in_kb = details->flash_size_in_kb;
else if (flash_size_in_kb != details->flash_size_in_kb)
LOG_ERROR("Flash size mismatch");
}
psoc4_info->row_size = row_size;
psoc4_info->silicon_id = silicon_id;
psoc4_info->chip_protection = protection;
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("PSoC 4 flash size failed, probe inaccurate - assuming %" PRIu32 " k flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (psoc4_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = psoc4_info->user_bank_size / 1024;
}
LOG_INFO("flash size = %" PRIu32 " kbytes", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* calculate numbers of pages */
uint32_t num_rows = flash_size_in_kb * 1024 / row_size;
/* check that calculation result makes sense */
assert(num_rows > 0);
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->base = base_address;
bank->size = num_rows * row_size;
bank->num_sectors = num_rows;
bank->sectors = malloc(sizeof(struct flash_sector) * num_rows);
uint32_t i;
for (i = 0; i < num_rows; i++) {
bank->sectors[i].offset = i * row_size;
bank->sectors[i].size = row_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
LOG_INFO("flash bank set %" PRIu32 " rows", num_rows);
psoc4_info->probed = 1;
return ERROR_OK;
}
static int psoc4_auto_probe(struct flash_bank *bank)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
if (psoc4_info->probed)
return ERROR_OK;
return psoc4_probe(bank);
}
static int get_psoc4_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct psoc4_flash_bank *psoc4_info = bank->driver_priv;
int printed = 0;
if (psoc4_info->probed == 0)
return ERROR_FAIL;
const struct psoc4_chip_details *details = psoc4_details_by_id(psoc4_info->silicon_id);
if (details) {
uint32_t chip_revision = psoc4_info->silicon_id & 0xffff;
printed = snprintf(buf, buf_size, "PSoC 4 %s rev 0x%04" PRIx32 " package %s",
details->type, chip_revision, details->package);
} else
printed = snprintf(buf, buf_size, "PSoC 4 silicon id 0x%08" PRIx32 "",
psoc4_info->silicon_id);
buf += printed;
buf_size -= printed;
const char *prot_txt = psoc4_decode_chip_protection(psoc4_info->chip_protection);
uint32_t size_in_kb = bank->size / 1024;
snprintf(buf, buf_size, " flash %" PRIu32 " kb %s", size_in_kb, prot_txt);
return ERROR_OK;
}
COMMAND_HANDLER(psoc4_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = psoc4_mass_erase(bank);
if (retval == ERROR_OK)
command_print(CMD_CTX, "psoc mass erase complete");
else
command_print(CMD_CTX, "psoc mass erase failed");
return retval;
}
static const struct command_registration psoc4_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = psoc4_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "flash_autoerase",
.handler = psoc4_handle_flash_autoerase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id on|off",
.help = "Set autoerase mode for flash bank.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration psoc4_command_handlers[] = {
{
.name = "psoc4",
.mode = COMMAND_ANY,
.help = "PSoC 4 flash command group",
.usage = "",
.chain = psoc4_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver psoc4_flash = {
.name = "psoc4",
.commands = psoc4_command_handlers,
.flash_bank_command = psoc4_flash_bank_command,
.erase = psoc4_erase,
.protect = psoc4_protect,
.write = psoc4_write,
.read = default_flash_read,
.probe = psoc4_probe,
.auto_probe = psoc4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = psoc4_protect_check,
.info = get_psoc4_info,
};