openocd/src/target/arm_adi_v5.c

1656 lines
51 KiB
C

/***************************************************************************
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2009-2010 by Oyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2009-2010 by David Brownell *
* *
* Copyright (C) 2013 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
/**
* @file
* This file implements support for the ARM Debug Interface version 5 (ADIv5)
* debugging architecture. Compared with previous versions, this includes
* a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
* transport, and focusses on memory mapped resources as defined by the
* CoreSight architecture.
*
* A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
* basic components: a Debug Port (DP) transporting messages to and from a
* debugger, and an Access Port (AP) accessing resources. Three types of DP
* are defined. One uses only JTAG for communication, and is called JTAG-DP.
* One uses only SWD for communication, and is called SW-DP. The third can
* use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
* is used to access memory mapped resources and is called a MEM-AP. Also a
* JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
*
* This programming interface allows DAP pipelined operations through a
* transaction queue. This primarily affects AP operations (such as using
* a MEM-AP to access memory or registers). If the current transaction has
* not finished by the time the next one must begin, and the ORUNDETECT bit
* is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
* further AP operations will fail. There are two basic methods to avoid
* such overrun errors. One involves polling for status instead of using
* transaction piplining. The other involves adding delays to ensure the
* AP has enough time to complete one operation before starting the next
* one. (For JTAG these delays are controlled by memaccess_tck.)
*/
/*
* Relevant specifications from ARM include:
*
* ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
* CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
*
* CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
* Cortex-M3(tm) TRM, ARM DDI 0337G
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/interface.h"
#include "arm.h"
#include "arm_adi_v5.h"
#include <helper/jep106.h>
#include <helper/time_support.h>
#include <helper/list.h>
/* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
/*
uint32_t tar_block_size(uint32_t address)
Return the largest block starting at address that does not cross a tar block size alignment boundary
*/
static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
{
return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
}
/***************************************************************************
* *
* DP and MEM-AP register access through APACC and DPACC *
* *
***************************************************************************/
static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
{
csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
ap->csw_default;
if (csw != ap->csw_value) {
/* LOG_DEBUG("DAP: Set CSW %x",csw); */
int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
if (retval != ERROR_OK)
return retval;
ap->csw_value = csw;
}
return ERROR_OK;
}
static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar)
{
if (tar != ap->tar_value ||
(ap->csw_value & CSW_ADDRINC_MASK)) {
/* LOG_DEBUG("DAP: Set TAR %x",tar); */
int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar);
if (retval != ERROR_OK)
return retval;
ap->tar_value = tar;
}
return ERROR_OK;
}
/**
* Queue transactions setting up transfer parameters for the
* currently selected MEM-AP.
*
* Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
* initiate data reads or writes using memory or peripheral addresses.
* If the CSW is configured for it, the TAR may be automatically
* incremented after each transfer.
*
* @param ap The MEM-AP.
* @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
* matches the cached value, the register is not changed.
* @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
* matches the cached address, the register is not changed.
*
* @return ERROR_OK if the transaction was properly queued, else a fault code.
*/
static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar)
{
int retval;
retval = mem_ap_setup_csw(ap, csw);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_setup_tar(ap, tar);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
/**
* Asynchronous (queued) read of a word from memory or a system register.
*
* @param ap The MEM-AP to access.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the word will be stored when the
* transaction queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address,
uint32_t *value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when reading several consecutive addresses.
*/
retval = mem_ap_setup_transfer(ap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
}
/**
* Synchronous read of a word from memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param ap The MEM-AP to access.
* @param address Address of the 32-bit word to read; it must be
* readable by the currently selected MEM-AP.
* @param value points to where the result will be stored.
*
* @return ERROR_OK for success; *value holds the result.
* Otherwise a fault code.
*/
int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address,
uint32_t *value)
{
int retval;
retval = mem_ap_read_u32(ap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(ap->dap);
}
/**
* Asynchronous (queued) write of a word to memory or a system register.
*
* @param ap The MEM-AP to access.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written to the address when transaction
* queue is flushed (assuming no errors).
*
* @return ERROR_OK for success. Otherwise a fault code.
*/
int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address,
uint32_t value)
{
int retval;
/* Use banked addressing (REG_BDx) to avoid some link traffic
* (updating TAR) when writing several consecutive addresses.
*/
retval = mem_ap_setup_transfer(ap, CSW_32BIT | CSW_ADDRINC_OFF,
address & 0xFFFFFFF0);
if (retval != ERROR_OK)
return retval;
return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
value);
}
/**
* Synchronous write of a word to memory or a system register.
* As a side effect, this flushes any queued transactions.
*
* @param ap The MEM-AP to access.
* @param address Address to be written; it must be writable by
* the currently selected MEM-AP.
* @param value Word that will be written.
*
* @return ERROR_OK for success; the data was written. Otherwise a fault code.
*/
int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address,
uint32_t value)
{
int retval = mem_ap_write_u32(ap, address, value);
if (retval != ERROR_OK)
return retval;
return dap_run(ap->dap);
}
/**
* Synchronous write of a block of memory, using a specific access size.
*
* @param ap The MEM-AP to access.
* @param buffer The data buffer to write. No particular alignment is assumed.
* @param size Which access size to use, in bytes. 1, 2 or 4.
* @param count The number of writes to do (in size units, not bytes).
* @param address Address to be written; it must be writable by the currently selected MEM-AP.
* @param addrinc Whether the target address should be increased for each write or not. This
* should normally be true, except when writing to e.g. a FIFO.
* @return ERROR_OK on success, otherwise an error code.
*/
static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
uint32_t address, bool addrinc)
{
struct adiv5_dap *dap = ap->dap;
size_t nbytes = size * count;
const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
uint32_t csw_size;
uint32_t addr_xor;
int retval;
/* TI BE-32 Quirks mode:
* Writes on big-endian TMS570 behave very strangely. Observed behavior:
* size write address bytes written in order
* 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
* 2 TAR ^ 2 (val >> 8), (val)
* 1 TAR ^ 3 (val)
* For example, if you attempt to write a single byte to address 0, the processor
* will actually write a byte to address 3.
*
* To make writes of size < 4 work as expected, we xor a value with the address before
* setting the TAP, and we set the TAP after every transfer rather then relying on
* address increment. */
if (size == 4) {
csw_size = CSW_32BIT;
addr_xor = 0;
} else if (size == 2) {
csw_size = CSW_16BIT;
addr_xor = dap->ti_be_32_quirks ? 2 : 0;
} else if (size == 1) {
csw_size = CSW_8BIT;
addr_xor = dap->ti_be_32_quirks ? 3 : 0;
} else {
return ERROR_TARGET_UNALIGNED_ACCESS;
}
if (ap->unaligned_access_bad && (address % size != 0))
return ERROR_TARGET_UNALIGNED_ACCESS;
retval = mem_ap_setup_tar(ap, address ^ addr_xor);
if (retval != ERROR_OK)
return retval;
while (nbytes > 0) {
uint32_t this_size = size;
/* Select packed transfer if possible */
if (addrinc && ap->packed_transfers && nbytes >= 4
&& max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
this_size = 4;
retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
} else {
retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
}
if (retval != ERROR_OK)
break;
/* How many source bytes each transfer will consume, and their location in the DRW,
* depends on the type of transfer and alignment. See ARM document IHI0031C. */
uint32_t outvalue = 0;
if (dap->ti_be_32_quirks) {
switch (this_size) {
case 4:
outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
break;
case 2:
outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
break;
case 1:
outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
break;
}
} else {
switch (this_size) {
case 4:
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
case 2:
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
case 1:
outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
}
}
nbytes -= this_size;
retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
if (retval != ERROR_OK)
break;
/* Rewrite TAR if it wrapped or we're xoring addresses */
if (addrinc && (addr_xor || (address % ap->tar_autoincr_block < size && nbytes > 0))) {
retval = mem_ap_setup_tar(ap, address ^ addr_xor);
if (retval != ERROR_OK)
break;
}
}
/* REVISIT: Might want to have a queued version of this function that does not run. */
if (retval == ERROR_OK)
retval = dap_run(dap);
if (retval != ERROR_OK) {
uint32_t tar;
if (dap_queue_ap_read(ap, MEM_AP_REG_TAR, &tar) == ERROR_OK
&& dap_run(dap) == ERROR_OK)
LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
else
LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
}
return retval;
}
/**
* Synchronous read of a block of memory, using a specific access size.
*
* @param ap The MEM-AP to access.
* @param buffer The data buffer to receive the data. No particular alignment is assumed.
* @param size Which access size to use, in bytes. 1, 2 or 4.
* @param count The number of reads to do (in size units, not bytes).
* @param address Address to be read; it must be readable by the currently selected MEM-AP.
* @param addrinc Whether the target address should be increased after each read or not. This
* should normally be true, except when reading from e.g. a FIFO.
* @return ERROR_OK on success, otherwise an error code.
*/
static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
uint32_t adr, bool addrinc)
{
struct adiv5_dap *dap = ap->dap;
size_t nbytes = size * count;
const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
uint32_t csw_size;
uint32_t address = adr;
int retval;
/* TI BE-32 Quirks mode:
* Reads on big-endian TMS570 behave strangely differently than writes.
* They read from the physical address requested, but with DRW byte-reversed.
* For example, a byte read from address 0 will place the result in the high bytes of DRW.
* Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
* so avoid them. */
if (size == 4)
csw_size = CSW_32BIT;
else if (size == 2)
csw_size = CSW_16BIT;
else if (size == 1)
csw_size = CSW_8BIT;
else
return ERROR_TARGET_UNALIGNED_ACCESS;
if (ap->unaligned_access_bad && (adr % size != 0))
return ERROR_TARGET_UNALIGNED_ACCESS;
/* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
* over-allocation if packed transfers are going to be used, but determining the real need at
* this point would be messy. */
uint32_t *read_buf = malloc(count * sizeof(uint32_t));
uint32_t *read_ptr = read_buf;
if (read_buf == NULL) {
LOG_ERROR("Failed to allocate read buffer");
return ERROR_FAIL;
}
retval = mem_ap_setup_tar(ap, address);
if (retval != ERROR_OK) {
free(read_buf);
return retval;
}
/* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
* useful bytes it contains, and their location in the word, depends on the type of transfer
* and alignment. */
while (nbytes > 0) {
uint32_t this_size = size;
/* Select packed transfer if possible */
if (addrinc && ap->packed_transfers && nbytes >= 4
&& max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
this_size = 4;
retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
} else {
retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
}
if (retval != ERROR_OK)
break;
retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
if (retval != ERROR_OK)
break;
nbytes -= this_size;
address += this_size;
/* Rewrite TAR if it wrapped */
if (addrinc && address % ap->tar_autoincr_block < size && nbytes > 0) {
retval = mem_ap_setup_tar(ap, address);
if (retval != ERROR_OK)
break;
}
}
if (retval == ERROR_OK)
retval = dap_run(dap);
/* Restore state */
address = adr;
nbytes = size * count;
read_ptr = read_buf;
/* If something failed, read TAR to find out how much data was successfully read, so we can
* at least give the caller what we have. */
if (retval != ERROR_OK) {
uint32_t tar;
if (dap_queue_ap_read(ap, MEM_AP_REG_TAR, &tar) == ERROR_OK
&& dap_run(dap) == ERROR_OK) {
LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
if (nbytes > tar - address)
nbytes = tar - address;
} else {
LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
nbytes = 0;
}
}
/* Replay loop to populate caller's buffer from the correct word and byte lane */
while (nbytes > 0) {
uint32_t this_size = size;
if (addrinc && ap->packed_transfers && nbytes >= 4
&& max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
this_size = 4;
}
if (dap->ti_be_32_quirks) {
switch (this_size) {
case 4:
*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
case 2:
*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
case 1:
*buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
}
} else {
switch (this_size) {
case 4:
*buffer++ = *read_ptr >> 8 * (address++ & 3);
*buffer++ = *read_ptr >> 8 * (address++ & 3);
case 2:
*buffer++ = *read_ptr >> 8 * (address++ & 3);
case 1:
*buffer++ = *read_ptr >> 8 * (address++ & 3);
}
}
read_ptr++;
nbytes -= this_size;
}
free(read_buf);
return retval;
}
int mem_ap_read_buf(struct adiv5_ap *ap,
uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
return mem_ap_read(ap, buffer, size, count, address, true);
}
int mem_ap_write_buf(struct adiv5_ap *ap,
const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
return mem_ap_write(ap, buffer, size, count, address, true);
}
int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
return mem_ap_read(ap, buffer, size, count, address, false);
}
int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
{
return mem_ap_write(ap, buffer, size, count, address, false);
}
/*--------------------------------------------------------------------------*/
#define DAP_POWER_DOMAIN_TIMEOUT (10)
/* FIXME don't import ... just initialize as
* part of DAP transport setup
*/
extern const struct dap_ops jtag_dp_ops;
/*--------------------------------------------------------------------------*/
/**
* Create a new DAP
*/
struct adiv5_dap *dap_init(void)
{
struct adiv5_dap *dap = calloc(1, sizeof(struct adiv5_dap));
int i;
/* Set up with safe defaults */
for (i = 0; i <= 255; i++) {
dap->ap[i].dap = dap;
dap->ap[i].ap_num = i;
/* memaccess_tck max is 255 */
dap->ap[i].memaccess_tck = 255;
/* Number of bits for tar autoincrement, impl. dep. at least 10 */
dap->ap[i].tar_autoincr_block = (1<<10);
}
INIT_LIST_HEAD(&dap->cmd_journal);
return dap;
}
/**
* Initialize a DAP. This sets up the power domains, prepares the DP
* for further use and activates overrun checking.
*
* @param dap The DAP being initialized.
*/
int dap_dp_init(struct adiv5_dap *dap)
{
int retval;
LOG_DEBUG(" ");
/* JTAG-DP or SWJ-DP, in JTAG mode
* ... for SWD mode this is patched as part
* of link switchover
* FIXME: This should already be setup by the respective transport specific DAP creation.
*/
if (!dap->ops)
dap->ops = &jtag_dp_ops;
dap->select = DP_SELECT_INVALID;
dap->last_read = NULL;
for (size_t i = 0; i < 10; i++) {
/* DP initialization */
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
continue;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
if (retval != ERROR_OK)
continue;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
continue;
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
continue;
/* Check that we have debug power domains activated */
LOG_DEBUG("DAP: wait CDBGPWRUPACK");
retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
CDBGPWRUPACK, CDBGPWRUPACK,
DAP_POWER_DOMAIN_TIMEOUT);
if (retval != ERROR_OK)
continue;
LOG_DEBUG("DAP: wait CSYSPWRUPACK");
retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
CSYSPWRUPACK, CSYSPWRUPACK,
DAP_POWER_DOMAIN_TIMEOUT);
if (retval != ERROR_OK)
continue;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
continue;
/* With debug power on we can activate OVERRUN checking */
dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
if (retval != ERROR_OK)
continue;
retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
if (retval != ERROR_OK)
continue;
retval = dap_run(dap);
if (retval != ERROR_OK)
continue;
break;
}
return retval;
}
/**
* Initialize a DAP. This sets up the power domains, prepares the DP
* for further use, and arranges to use AP #0 for all AP operations
* until dap_ap-select() changes that policy.
*
* @param ap The MEM-AP being initialized.
*/
int mem_ap_init(struct adiv5_ap *ap)
{
/* check that we support packed transfers */
uint32_t csw, cfg;
int retval;
struct adiv5_dap *dap = ap->dap;
retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
if (csw & CSW_ADDRINC_PACKED)
ap->packed_transfers = true;
else
ap->packed_transfers = false;
/* Packed transfers on TI BE-32 processors do not work correctly in
* many cases. */
if (dap->ti_be_32_quirks)
ap->packed_transfers = false;
LOG_DEBUG("MEM_AP Packed Transfers: %s",
ap->packed_transfers ? "enabled" : "disabled");
/* The ARM ADI spec leaves implementation-defined whether unaligned
* memory accesses work, only work partially, or cause a sticky error.
* On TI BE-32 processors, reads seem to return garbage in some bytes
* and unaligned writes seem to cause a sticky error.
* TODO: it would be nice to have a way to detect whether unaligned
* operations are supported on other processors. */
ap->unaligned_access_bad = dap->ti_be_32_quirks;
LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
!!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
return ERROR_OK;
}
/* CID interpretation -- see ARM IHI 0029B section 3
* and ARM IHI 0031A table 13-3.
*/
static const char *class_description[16] = {
"Reserved", "ROM table", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
"Reserved", "OptimoDE DESS",
"Generic IP component", "PrimeCell or System component"
};
static bool is_dap_cid_ok(uint32_t cid)
{
return (cid & 0xffff0fff) == 0xb105000d;
}
/*
* This function checks the ID for each access port to find the requested Access Port type
*/
int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
{
int ap_num;
/* Maximum AP number is 255 since the SELECT register is 8 bits */
for (ap_num = 0; ap_num <= 255; ap_num++) {
/* read the IDR register of the Access Port */
uint32_t id_val = 0;
int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
/* IDR bits:
* 31-28 : Revision
* 27-24 : JEDEC bank (0x4 for ARM)
* 23-17 : JEDEC code (0x3B for ARM)
* 16-13 : Class (0b1000=Mem-AP)
* 12-8 : Reserved
* 7-4 : AP Variant (non-zero for JTAG-AP)
* 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
*/
/* Reading register for a non-existant AP should not cause an error,
* but just to be sure, try to continue searching if an error does happen.
*/
if ((retval == ERROR_OK) && /* Register read success */
((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
(type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
(type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
(type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
(type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
ap_num, id_val);
*ap_out = &dap->ap[ap_num];
return ERROR_OK;
}
}
LOG_DEBUG("No %s found",
(type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
(type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
(type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
(type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
return ERROR_FAIL;
}
int dap_get_debugbase(struct adiv5_ap *ap,
uint32_t *dbgbase, uint32_t *apid)
{
struct adiv5_dap *dap = ap->dap;
int retval;
retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase);
if (retval != ERROR_OK)
return retval;
retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
int dap_lookup_cs_component(struct adiv5_ap *ap,
uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
{
uint32_t romentry, entry_offset = 0, component_base, devtype;
int retval;
*addr = 0;
do {
retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) |
entry_offset, &romentry);
if (retval != ERROR_OK)
return retval;
component_base = (dbgbase & 0xFFFFF000)
+ (romentry & 0xFFFFF000);
if (romentry & 0x1) {
uint32_t c_cid1;
retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
if (retval != ERROR_OK) {
LOG_ERROR("Can't read component with base address 0x%" PRIx32
", the corresponding core might be turned off", component_base);
return retval;
}
if (((c_cid1 >> 4) & 0x0f) == 1) {
retval = dap_lookup_cs_component(ap, component_base,
type, addr, idx);
if (retval == ERROR_OK)
break;
if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
return retval;
}
retval = mem_ap_read_atomic_u32(ap,
(component_base & 0xfffff000) | 0xfcc,
&devtype);
if (retval != ERROR_OK)
return retval;
if ((devtype & 0xff) == type) {
if (!*idx) {
*addr = component_base;
break;
} else
(*idx)--;
}
}
entry_offset += 4;
} while (romentry > 0);
if (!*addr)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
return ERROR_OK;
}
static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid)
{
assert((component_base & 0xFFF) == 0);
assert(ap != NULL && cid != NULL && pid != NULL);
uint32_t cid0, cid1, cid2, cid3;
uint32_t pid0, pid1, pid2, pid3, pid4;
int retval;
/* IDs are in last 4K section */
retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
if (retval != ERROR_OK)
return retval;
retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
if (retval != ERROR_OK)
return retval;
retval = dap_run(ap->dap);
if (retval != ERROR_OK)
return retval;
*cid = (cid3 & 0xff) << 24
| (cid2 & 0xff) << 16
| (cid1 & 0xff) << 8
| (cid0 & 0xff);
*pid = (uint64_t)(pid4 & 0xff) << 32
| (pid3 & 0xff) << 24
| (pid2 & 0xff) << 16
| (pid1 & 0xff) << 8
| (pid0 & 0xff);
return ERROR_OK;
}
/* The designer identity code is encoded as:
* bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
* bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
* a legacy ASCII Identity Code.
* bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
* JEP106 is a standard available from jedec.org
*/
/* Part number interpretations are from Cortex
* core specs, the CoreSight components TRM
* (ARM DDI 0314H), CoreSight System Design
* Guide (ARM DGI 0012D) and ETM specs; also
* from chip observation (e.g. TI SDTI).
*/
/* The legacy code only used the part number field to identify CoreSight peripherals.
* This meant that the same part number from two different manufacturers looked the same.
* It is desirable for all future additions to identify with both part number and JEP106.
* "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
*/
#define ANY_ID 0x1000
#define ARM_ID 0x4BB
static const struct {
uint16_t designer_id;
uint16_t part_num;
const char *type;
const char *full;
} dap_partnums[] = {
{ ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
{ ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
{ ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
{ ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
{ ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
{ ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
{ ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
{ ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
{ ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
{ ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
{ ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
{ ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
{ ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
{ ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
{ ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
{ ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
{ ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
{ ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
{ ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
{ ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
{ ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
{ ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
{ ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
{ ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
{ ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
{ ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
{ ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
{ ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
{ ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
{ ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
{ ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
{ ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
{ ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
{ ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
{ ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
{ ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
{ ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
{ ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
{ ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
{ ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
{ ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
{ ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
{ ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
{ ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
{ ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
{ ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
{ ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
{ ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
{ ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
{ ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
{ ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
{ ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
{ ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitoring Unit)", },
{ ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
{ ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
{ ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
{ ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
{ ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
{ ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
{ ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
{ ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
{ 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" },
{ 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
{ 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" },
{ 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
{ 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
{ 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
{ 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
/* legacy comment: 0x113: what? */
{ ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
{ ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
};
static int dap_rom_display(struct command_context *cmd_ctx,
struct adiv5_ap *ap, uint32_t dbgbase, int depth)
{
int retval;
uint64_t pid;
uint32_t cid;
char tabs[7] = "";
if (depth > 16) {
command_print(cmd_ctx, "\tTables too deep");
return ERROR_FAIL;
}
if (depth)
snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
uint32_t base_addr = dbgbase & 0xFFFFF000;
command_print(cmd_ctx, "\t\tComponent base address 0x%08" PRIx32, base_addr);
retval = dap_read_part_id(ap, base_addr, &cid, &pid);
if (retval != ERROR_OK) {
command_print(cmd_ctx, "\t\tCan't read component, the corresponding core might be turned off");
return ERROR_OK; /* Don't abort recursion */
}
if (!is_dap_cid_ok(cid)) {
command_print(cmd_ctx, "\t\tInvalid CID 0x%08" PRIx32, cid);
return ERROR_OK; /* Don't abort recursion */
}
/* component may take multiple 4K pages */
uint32_t size = (pid >> 36) & 0xf;
if (size > 0)
command_print(cmd_ctx, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size));
command_print(cmd_ctx, "\t\tPeripheral ID 0x%010" PRIx64, pid);
uint8_t class = (cid >> 12) & 0xf;
uint16_t part_num = pid & 0xfff;
uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
if (designer_id & 0x80) {
/* JEP106 code */
command_print(cmd_ctx, "\t\tDesigner is 0x%03" PRIx16 ", %s",
designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
} else {
/* Legacy ASCII ID, clear invalid bits */
designer_id &= 0x7f;
command_print(cmd_ctx, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
}
/* default values to be overwritten upon finding a match */
const char *type = "Unrecognized";
const char *full = "";
/* search dap_partnums[] array for a match */
for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
continue;
if (dap_partnums[entry].part_num != part_num)
continue;
type = dap_partnums[entry].type;
full = dap_partnums[entry].full;
break;
}
command_print(cmd_ctx, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
if (class == 1) { /* ROM Table */
uint32_t memtype;
retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
if (retval != ERROR_OK)
return retval;
if (memtype & 0x01)
command_print(cmd_ctx, "\t\tMEMTYPE system memory present on bus");
else
command_print(cmd_ctx, "\t\tMEMTYPE system memory not present: dedicated debug bus");
/* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
uint32_t romentry;
retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
if (retval != ERROR_OK)
return retval;
command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
tabs, entry_offset, romentry);
if (romentry & 0x01) {
/* Recurse */
retval = dap_rom_display(cmd_ctx, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
if (retval != ERROR_OK)
return retval;
} else if (romentry != 0) {
command_print(cmd_ctx, "\t\tComponent not present");
} else {
command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
break;
}
}
} else if (class == 9) { /* CoreSight component */
const char *major = "Reserved", *subtype = "Reserved";
uint32_t devtype;
retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
if (retval != ERROR_OK)
return retval;
unsigned minor = (devtype >> 4) & 0x0f;
switch (devtype & 0x0f) {
case 0:
major = "Miscellaneous";
switch (minor) {
case 0:
subtype = "other";
break;
case 4:
subtype = "Validation component";
break;
}
break;
case 1:
major = "Trace Sink";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Port";
break;
case 2:
subtype = "Buffer";
break;
case 3:
subtype = "Router";
break;
}
break;
case 2:
major = "Trace Link";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Funnel, router";
break;
case 2:
subtype = "Filter";
break;
case 3:
subtype = "FIFO, buffer";
break;
}
break;
case 3:
major = "Trace Source";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
case 6:
subtype = "Software";
break;
}
break;
case 4:
major = "Debug Control";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Trigger Matrix";
break;
case 2:
subtype = "Debug Auth";
break;
case 3:
subtype = "Power Requestor";
break;
}
break;
case 5:
major = "Debug Logic";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
case 5:
subtype = "Memory";
break;
}
break;
case 6:
major = "Perfomance Monitor";
switch (minor) {
case 0:
subtype = "other";
break;
case 1:
subtype = "Processor";
break;
case 2:
subtype = "DSP";
break;
case 3:
subtype = "Engine/Coprocessor";
break;
case 4:
subtype = "Bus";
break;
case 5:
subtype = "Memory";
break;
}
break;
}
command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
(uint8_t)(devtype & 0xff),
major, subtype);
/* REVISIT also show 0xfc8 DevId */
}
return ERROR_OK;
}
static int dap_info_command(struct command_context *cmd_ctx,
struct adiv5_ap *ap)
{
int retval;
uint32_t dbgbase, apid;
uint8_t mem_ap;
/* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
retval = dap_get_debugbase(ap, &dbgbase, &apid);
if (retval != ERROR_OK)
return retval;
command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
if (apid == 0) {
command_print(cmd_ctx, "No AP found at this ap 0x%x", ap->ap_num);
return ERROR_FAIL;
}
switch (apid & (IDR_JEP106 | IDR_TYPE)) {
case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
command_print(cmd_ctx, "\tType is JTAG-AP");
break;
case IDR_JEP106_ARM | AP_TYPE_AHB_AP:
command_print(cmd_ctx, "\tType is MEM-AP AHB");
break;
case IDR_JEP106_ARM | AP_TYPE_APB_AP:
command_print(cmd_ctx, "\tType is MEM-AP APB");
break;
case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
command_print(cmd_ctx, "\tType is MEM-AP AXI");
break;
default:
command_print(cmd_ctx, "\tUnknown AP type");
break;
}
/* NOTE: a MEM-AP may have a single CoreSight component that's
* not a ROM table ... or have no such components at all.
*/
mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
if (mem_ap) {
command_print(cmd_ctx, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase);
if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) {
command_print(cmd_ctx, "\tNo ROM table present");
} else {
if (dbgbase & 0x01)
command_print(cmd_ctx, "\tValid ROM table present");
else
command_print(cmd_ctx, "\tROM table in legacy format");
dap_rom_display(cmd_ctx, ap, dbgbase & 0xFFFFF000, 0);
}
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_dap_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return dap_info_command(CMD_CTX, &dap->ap[apsel]);
}
COMMAND_HANDLER(dap_baseaddr_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, baseaddr;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* NOTE: assumes we're talking to a MEM-AP, which
* has a base address. There are other kinds of AP,
* though they're not common for now. This should
* use the ID register to verify it's a MEM-AP.
*/
retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
return retval;
}
COMMAND_HANDLER(dap_memaccess_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t memaccess_tck;
switch (CMD_ARGC) {
case 0:
memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
dap->ap[dap->apsel].memaccess_tck);
return ERROR_OK;
}
COMMAND_HANDLER(dap_apsel_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apid;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->apsel = apsel;
retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
apsel, apid);
return retval;
}
COMMAND_HANDLER(dap_apcsw_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apcsw = dap->ap[dap->apsel].csw_default, sprot = 0;
switch (CMD_ARGC) {
case 0:
command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
(dap->apsel), apcsw);
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
/* AP address is in bits 31:24 of DP_SELECT */
if (sprot > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (sprot)
apcsw |= CSW_SPROT;
else
apcsw &= ~CSW_SPROT;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->ap[dap->apsel].csw_default = apcsw;
return 0;
}
COMMAND_HANDLER(dap_apid_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t apsel, apid;
int retval;
switch (CMD_ARGC) {
case 0:
apsel = dap->apsel;
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
/* AP address is in bits 31:24 of DP_SELECT */
if (apsel >= 256)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
if (retval != ERROR_OK)
return retval;
retval = dap_run(dap);
if (retval != ERROR_OK)
return retval;
command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
return retval;
}
COMMAND_HANDLER(dap_ti_be_32_quirks_command)
{
struct target *target = get_current_target(CMD_CTX);
struct arm *arm = target_to_arm(target);
struct adiv5_dap *dap = arm->dap;
uint32_t enable = dap->ti_be_32_quirks;
switch (CMD_ARGC) {
case 0:
break;
case 1:
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
if (enable > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
dap->ti_be_32_quirks = enable;
command_print(CMD_CTX, "TI BE-32 quirks mode %s",
enable ? "enabled" : "disabled");
return 0;
}
static const struct command_registration dap_commands[] = {
{
.name = "info",
.handler = handle_dap_info_command,
.mode = COMMAND_EXEC,
.help = "display ROM table for MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "apsel",
.handler = dap_apsel_command,
.mode = COMMAND_EXEC,
.help = "Set the currently selected AP (default 0) "
"and display the result",
.usage = "[ap_num]",
},
{
.name = "apcsw",
.handler = dap_apcsw_command,
.mode = COMMAND_EXEC,
.help = "Set csw access bit ",
.usage = "[sprot]",
},
{
.name = "apid",
.handler = dap_apid_command,
.mode = COMMAND_EXEC,
.help = "return ID register from AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "baseaddr",
.handler = dap_baseaddr_command,
.mode = COMMAND_EXEC,
.help = "return debug base address from MEM-AP "
"(default currently selected AP)",
.usage = "[ap_num]",
},
{
.name = "memaccess",
.handler = dap_memaccess_command,
.mode = COMMAND_EXEC,
.help = "set/get number of extra tck for MEM-AP memory "
"bus access [0-255]",
.usage = "[cycles]",
},
{
.name = "ti_be_32_quirks",
.handler = dap_ti_be_32_quirks_command,
.mode = COMMAND_CONFIG,
.help = "set/get quirks mode for TI TMS450/TMS570 processors",
.usage = "[enable]",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration dap_command_handlers[] = {
{
.name = "dap",
.mode = COMMAND_EXEC,
.help = "DAP command group",
.usage = "",
.chain = dap_commands,
},
COMMAND_REGISTRATION_DONE
};