openocd/src/target/mips32_pracc.c

1120 lines
38 KiB
C

/***************************************************************************
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by David T.L. Wong *
* *
* Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
* *
* Copyright (C) 2011 by Drasko DRASKOVIC *
* drasko.draskovic@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
/*
* This version has optimized assembly routines for 32 bit operations:
* - read word
* - write word
* - write array of words
*
* One thing to be aware of is that the MIPS32 cpu will execute the
* instruction after a branch instruction (one delay slot).
*
* For example:
* LW $2, ($5 +10)
* B foo
* LW $1, ($2 +100)
*
* The LW $1, ($2 +100) instruction is also executed. If this is
* not wanted a NOP can be inserted:
*
* LW $2, ($5 +10)
* B foo
* NOP
* LW $1, ($2 +100)
*
* or the code can be changed to:
*
* B foo
* LW $2, ($5 +10)
* LW $1, ($2 +100)
*
* The original code contained NOPs. I have removed these and moved
* the branches.
*
* These changes result in a 35% speed increase when programming an
* external flash.
*
* More improvement could be gained if the registers do no need
* to be preserved but in that case the routines should be aware
* OpenOCD is used as a flash programmer or as a debug tool.
*
* Nico Coesel
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/time_support.h>
#include "mips32.h"
#include "mips32_pracc.h"
struct mips32_pracc_context {
uint32_t *local_oparam;
int num_oparam;
const uint32_t *code;
int code_len;
uint32_t stack[32];
int stack_offset;
struct mips_ejtag *ejtag_info;
};
static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
{
uint32_t ejtag_ctrl;
long long then = timeval_ms();
/* wait for the PrAcc to become "1" */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
while (1) {
ejtag_ctrl = ejtag_info->ejtag_ctrl;
int retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
if (ejtag_ctrl & EJTAG_CTRL_PRACC)
break;
int timeout = timeval_ms() - then;
if (timeout > 1000) {
LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
return ERROR_JTAG_DEVICE_ERROR;
}
}
*ctrl = ejtag_ctrl;
return ERROR_OK;
}
/* Shift in control and address for a new processor access, save them in ejtag_info */
static int mips32_pracc_read_ctrl_addr(struct mips_ejtag *ejtag_info)
{
int retval = wait_for_pracc_rw(ejtag_info, &ejtag_info->pa_ctrl);
if (retval != ERROR_OK)
return retval;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
ejtag_info->pa_addr = 0;
retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_info->pa_addr);
return retval;
}
/* Finish processor access */
static int mips32_pracc_finish(struct mips_ejtag *ejtag_info)
{
uint32_t ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
mips_ejtag_drscan_32_out(ejtag_info, ctrl);
return jtag_execute_queue();
}
int mips32_pracc_clean_text_jump(struct mips_ejtag *ejtag_info)
{
uint32_t jt_code = MIPS32_J((0x0FFFFFFF & MIPS32_PRACC_TEXT) >> 2);
int retval;
/* do 3 0/nops to clean pipeline before a jump to pracc text, NOP in delay slot */
for (int i = 0; i != 5; i++) {
/* Wait for pracc */
retval = wait_for_pracc_rw(ejtag_info, &ejtag_info->pa_ctrl);
if (retval != ERROR_OK)
return retval;
/* Data or instruction out */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
uint32_t data = (i == 3) ? jt_code : MIPS32_NOP;
mips_ejtag_drscan_32_out(ejtag_info, data);
/* finish pa */
retval = mips32_pracc_finish(ejtag_info);
if (retval != ERROR_OK)
return retval;
}
if (ejtag_info->mode != 0) /* async mode support only for MIPS ... */
return ERROR_OK;
for (int i = 0; i != 2; i++) {
retval = mips32_pracc_read_ctrl_addr(ejtag_info);
if (retval != ERROR_OK)
return retval;
if (ejtag_info->pa_addr != MIPS32_PRACC_TEXT) { /* LEXRA/BMIPS ?, shift out another NOP, max 2 */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ejtag_info, MIPS32_NOP);
retval = mips32_pracc_finish(ejtag_info);
if (retval != ERROR_OK)
return retval;
} else
break;
}
return ERROR_OK;
}
int mips32_pracc_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *param_out)
{
int code_count = 0;
int store_pending = 0; /* increases with every store instruction at dmseg, decreases with every store pa */
uint32_t max_store_addr = 0; /* for store pa address testing */
bool restart = 0; /* restarting control */
int restart_count = 0;
uint32_t instr = 0;
bool final_check = 0; /* set to 1 if in final checks after function code shifted out */
bool pass = 0; /* to check the pass through pracc text after function code sent */
int retval;
while (1) {
if (restart) {
if (restart_count < 3) { /* max 3 restarts allowed */
retval = mips32_pracc_clean_text_jump(ejtag_info);
if (retval != ERROR_OK)
return retval;
} else
return ERROR_JTAG_DEVICE_ERROR;
restart_count++;
restart = 0;
code_count = 0;
LOG_DEBUG("restarting code");
}
retval = mips32_pracc_read_ctrl_addr(ejtag_info); /* update current pa info: control and address */
if (retval != ERROR_OK)
return retval;
/* Check for read or write access */
if (ejtag_info->pa_ctrl & EJTAG_CTRL_PRNW) { /* write/store access */
/* Check for pending store from a previous store instruction at dmseg */
if (store_pending == 0) {
LOG_DEBUG("unexpected write at address %" PRIx32, ejtag_info->pa_addr);
if (code_count < 2) { /* allow for restart */
restart = 1;
continue;
} else
return ERROR_JTAG_DEVICE_ERROR;
} else {
/* check address */
if (ejtag_info->pa_addr < MIPS32_PRACC_PARAM_OUT || ejtag_info->pa_addr > max_store_addr) {
LOG_DEBUG("writing at unexpected address %" PRIx32, ejtag_info->pa_addr);
return ERROR_JTAG_DEVICE_ERROR;
}
}
/* read data */
uint32_t data = 0;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
retval = mips_ejtag_drscan_32(ejtag_info, &data);
if (retval != ERROR_OK)
return retval;
/* store data at param out, address based offset */
param_out[(ejtag_info->pa_addr - MIPS32_PRACC_PARAM_OUT) / 4] = data;
store_pending--;
} else { /* read/fetch access */
if (!final_check) { /* executing function code */
/* check address */
if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
LOG_DEBUG("reading at unexpected address %" PRIx32 ", expected %x",
ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
/* restart code execution only in some cases */
if (code_count == 1 && ejtag_info->pa_addr == MIPS32_PRACC_TEXT && restart_count == 0) {
LOG_DEBUG("restarting, without clean jump");
restart_count++;
code_count = 0;
continue;
} else if (code_count < 2) {
restart = 1;
continue;
}
return ERROR_JTAG_DEVICE_ERROR;
}
/* check for store instruction at dmseg */
uint32_t store_addr = ctx->pracc_list[ctx->max_code + code_count];
if (store_addr != 0) {
if (store_addr > max_store_addr)
max_store_addr = store_addr;
store_pending++;
}
instr = ctx->pracc_list[code_count++];
if (code_count == ctx->code_count) /* last instruction, start final check */
final_check = 1;
} else { /* final check after function code shifted out */
/* check address */
if (ejtag_info->pa_addr == MIPS32_PRACC_TEXT) {
if (!pass) { /* first pass through pracc text */
if (store_pending == 0) /* done, normal exit */
return ERROR_OK;
pass = 1; /* pracc text passed */
code_count = 0; /* restart code count */
} else {
LOG_DEBUG("unexpected second pass through pracc text");
return ERROR_JTAG_DEVICE_ERROR;
}
} else {
if (ejtag_info->pa_addr != (MIPS32_PRACC_TEXT + code_count * 4)) {
LOG_DEBUG("unexpected read address in final check: %" PRIx32 ", expected: %x",
ejtag_info->pa_addr, MIPS32_PRACC_TEXT + code_count * 4);
return ERROR_JTAG_DEVICE_ERROR;
}
}
if (!pass) {
if ((code_count - ctx->code_count) > 1) { /* allow max 2 instruction delay slot */
LOG_DEBUG("failed to jump back to pracc text");
return ERROR_JTAG_DEVICE_ERROR;
}
} else
if (code_count > 10) { /* enough, abandone */
LOG_DEBUG("execution abandoned, store pending: %d", store_pending);
return ERROR_JTAG_DEVICE_ERROR;
}
instr = MIPS32_NOP; /* shift out NOPs instructions */
code_count++;
}
/* Send instruction out */
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ejtag_info, instr);
}
/* finish processor access, let the processor eat! */
retval = mips32_pracc_finish(ejtag_info);
if (retval != ERROR_OK)
return retval;
if (instr == MIPS32_DRET) /* after leaving debug mode nothing to do */
return ERROR_OK;
if (store_pending == 0 && pass) { /* store access done, but after passing pracc text */
LOG_DEBUG("warning: store access pass pracc text");
return ERROR_OK;
}
}
}
inline void pracc_queue_init(struct pracc_queue_info *ctx)
{
ctx->retval = ERROR_OK;
ctx->code_count = 0;
ctx->store_count = 0;
ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t));
if (ctx->pracc_list == NULL) {
LOG_ERROR("Out of memory");
ctx->retval = ERROR_FAIL;
}
}
inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr)
{
ctx->pracc_list[ctx->max_code + ctx->code_count] = addr;
ctx->pracc_list[ctx->code_count++] = instr;
if (addr)
ctx->store_count++;
}
inline void pracc_queue_free(struct pracc_queue_info *ctx)
{
if (ctx->code_count > ctx->max_code) /* Only for internal check, will be erased */
LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code);
if (ctx->pracc_list != NULL)
free(ctx->pracc_list);
}
int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf)
{
if (ejtag_info->mode == 0)
return mips32_pracc_exec(ejtag_info, ctx, buf);
union scan_in {
uint8_t scan_96[12];
struct {
uint8_t ctrl[4];
uint8_t data[4];
uint8_t addr[4];
} scan_32;
} *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count));
if (scan_in == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
unsigned num_clocks =
((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL);
int scan_count = 0;
for (int i = 0; i != 2 * ctx->code_count; i++) {
uint32_t data = 0;
if (i & 1u) { /* Check store address from previous instruction, if not the first */
if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1])
continue;
} else
data = ctx->pracc_list[i / 2];
jtag_add_clocks(num_clocks);
mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96);
}
int retval = jtag_execute_queue(); /* execute queued scans */
if (retval != ERROR_OK)
goto exit;
uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */
scan_count = 0;
for (int i = 0; i != 2 * ctx->code_count; i++) { /* verify every pracc access */
uint32_t store_addr = 0;
if (i & 1u) { /* Read store addres from previous instruction, if not the first */
store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1];
if (i < 2 || 0 == store_addr)
continue;
}
ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32);
if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) {
LOG_ERROR("Error: access not pending count: %d", scan_count);
retval = ERROR_FAIL;
goto exit;
}
uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32);
if (store_addr != 0) {
if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) {
LOG_ERROR("Not a store/write access, count: %d", scan_count);
retval = ERROR_FAIL;
goto exit;
}
if (addr != store_addr) {
LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
addr, store_addr, scan_count);
retval = ERROR_FAIL;
goto exit;
}
int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4;
buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32);
} else {
if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
LOG_ERROR("Not a fetch/read access, count: %d", scan_count);
retval = ERROR_FAIL;
goto exit;
}
if (addr != fetch_addr) {
LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d",
addr, fetch_addr, scan_count);
retval = ERROR_FAIL;
goto exit;
}
fetch_addr += 4;
}
scan_count++;
}
exit:
free(scan_in);
return retval;
}
int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
{
struct pracc_queue_info ctx = {.max_code = 8};
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper address */
pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 of $8 */
pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 of $8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf);
exit:
pracc_queue_free(&ctx);
return ctx.retval;
}
int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
{
if (count == 1 && size == 4)
return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
uint32_t *data = NULL;
struct pracc_queue_info ctx = {.max_code = 256 * 3 + 8 + 1}; /* alloc memory for the worst case */
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
if (size != 4) {
data = malloc(256 * sizeof(uint32_t));
if (data == NULL) {
LOG_ERROR("Out of memory");
goto exit;
}
}
uint32_t *buf32 = buf;
uint16_t *buf16 = buf;
uint8_t *buf8 = buf;
while (count) {
ctx.code_count = 0;
ctx.store_count = 0;
int this_round_count = (count > 256) ? 256 : count;
uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr)); /* load the upper memory address in $9 */
for (int i = 0; i != this_round_count; i++) { /* Main code loop */
uint32_t upper_base_addr = UPPER16((addr + 0x8000));
if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $9 */
pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr));
last_upper_base_addr = upper_base_addr;
}
if (size == 4)
pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9)); /* load from memory to $8 */
else if (size == 2)
pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9));
else
pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9));
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4,
MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15)); /* store $8 at param out */
addr += size;
}
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
pracc_add(&ctx, 0, MIPS32_LUI(9, UPPER16(ejtag_info->reg9))); /* restore upper 16 bits of reg 9 */
pracc_add(&ctx, 0, MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg9))); /* restore lower 16 bits of reg 9 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
if (size == 4) {
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32);
if (ctx.retval != ERROR_OK)
goto exit;
buf32 += this_round_count;
} else {
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data);
if (ctx.retval != ERROR_OK)
goto exit;
uint32_t *data_p = data;
for (int i = 0; i != this_round_count; i++) {
if (size == 2)
*buf16++ = *data_p++;
else
*buf8++ = *data_p++;
}
}
count -= this_round_count;
}
exit:
pracc_queue_free(&ctx);
if (data != NULL)
free(data);
return ctx.retval;
}
int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
{
struct pracc_queue_info ctx = {.max_code = 7};
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_MFC0(8, 0, 0) | (cp0_reg << 11) | cp0_sel); /* move COP0 [cp0_reg select] to $8 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val);
exit:
pracc_queue_free(&ctx);
return ctx.retval;
/**
* Note that our input parametes cp0_reg and cp0_sel
* are numbers (not gprs) which make part of mfc0 instruction opcode.
*
* These are not fix, but can be different for each mips32_cp0_read() function call,
* and that is why we must insert them directly into opcode,
* i.e. we can not pass it on EJTAG microprogram stack (via param_in),
* and put them into the gprs later from MIPS32_PRACC_STACK
* because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
* but plain (immediate) number.
*
* MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
* In order to insert our parameters, we must change rd and funct fields.
*
* code[2] |= (cp0_reg << 11) | cp0_sel; change rd and funct of MIPS32_R_INST macro
**/
}
int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
{
struct pracc_queue_info ctx = {.max_code = 6};
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
pracc_add(&ctx, 0, MIPS32_LUI(15, UPPER16(val))); /* Load val to $15 */
pracc_add(&ctx, 0, MIPS32_ORI(15, 15, LOWER16(val)));
pracc_add(&ctx, 0, MIPS32_MTC0(15, 0, 0) | (cp0_reg << 11) | cp0_sel); /* write cp0 reg / sel */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
exit:
pracc_queue_free(&ctx);
return ctx.retval;
/**
* Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
* In order to insert our parameters, we must change rd and funct fields.
* code[3] |= (cp0_reg << 11) | cp0_sel; change rd and funct fields of MIPS32_R_INST macro
**/
}
/**
* \b mips32_pracc_sync_cache
*
* Synchronize Caches to Make Instruction Writes Effective
* (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
* Document Number: MD00086, Revision 2.00, June 9, 2003)
*
* When the instruction stream is written, the SYNCI instruction should be used
* in conjunction with other instructions to make the newly-written instructions effective.
*
* Explanation :
* A program that loads another program into memory is actually writing the D- side cache.
* The instructions it has loaded can't be executed until they reach the I-cache.
*
* After the instructions have been written, the loader should arrange
* to write back any containing D-cache line and invalidate any locations
* already in the I-cache.
*
* If the cache coherency attribute (CCA) is set to zero, it's a write through cache, there is no need
* to write back.
*
* In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
* which does the whole job for a cache-line-sized chunk of the memory you just loaded:
* That is, it arranges a D-cache write-back (if CCA = 3) and an I-cache invalidate.
*
* The line size is obtained with the rdhwr SYNCI_Step in release 2 or from cp0 config 1 register in release 1.
*/
static int mips32_pracc_synchronize_cache(struct mips_ejtag *ejtag_info,
uint32_t start_addr, uint32_t end_addr, int cached, int rel)
{
struct pracc_queue_info ctx = {.max_code = 256 * 2 + 5};
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
/** Find cache line size in bytes */
uint32_t clsiz;
if (rel) { /* Release 2 (rel = 1) */
pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */
pracc_add(&ctx, 0, MIPS32_RDHWR(8, MIPS32_SYNCI_STEP)); /* load synci_step value to $8 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT,
MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */
pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, &clsiz);
if (ctx.retval != ERROR_OK)
goto exit;
} else { /* Release 1 (rel = 0) */
uint32_t conf;
ctx.retval = mips32_cp0_read(ejtag_info, &conf, 16, 1);
if (ctx.retval != ERROR_OK)
goto exit;
uint32_t dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
/* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... max dl=6 => 128 bytes cache line size */
clsiz = 0x2 << dl;
if (dl == 0)
clsiz = 0;
}
if (clsiz == 0)
goto exit; /* Nothing to do */
/* make sure clsiz is power of 2 */
if (clsiz & (clsiz - 1)) {
LOG_DEBUG("clsiz must be power of 2");
ctx.retval = ERROR_FAIL;
goto exit;
}
/* make sure start_addr and end_addr have the same offset inside de cache line */
start_addr |= clsiz - 1;
end_addr |= clsiz - 1;
ctx.code_count = 0;
int count = 0;
uint32_t last_upper_base_addr = UPPER16((start_addr + 0x8000));
pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load upper memory base address to $15 */
while (start_addr <= end_addr) { /* main loop */
uint32_t upper_base_addr = UPPER16((start_addr + 0x8000));
if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $15 */
pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr));
last_upper_base_addr = upper_base_addr;
}
if (rel)
pracc_add(&ctx, 0, MIPS32_SYNCI(LOWER16(start_addr), 15)); /* synci instruction, offset($15) */
else {
if (cached == 3)
pracc_add(&ctx, 0, MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK,
LOWER16(start_addr), 15)); /* cache Hit_Writeback_D, offset($15) */
pracc_add(&ctx, 0, MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE,
LOWER16(start_addr), 15)); /* cache Hit_Invalidate_I, offset($15) */
}
start_addr += clsiz;
count++;
if (count == 256 && start_addr <= end_addr) { /* more ?, then execute code list */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_NOP); /* nop in delay slot */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
if (ctx.retval != ERROR_OK)
goto exit;
ctx.code_count = 0;
count = 0;
}
}
pracc_add(&ctx, 0, MIPS32_SYNC);
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave*/
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
exit:
pracc_queue_free(&ctx);
return ctx.retval;
}
static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info,
uint32_t addr, int size, int count, const void *buf)
{
struct pracc_queue_info ctx = {.max_code = 128 * 3 + 5 + 1}; /* alloc memory for the worst case */
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
const uint32_t *buf32 = buf;
const uint16_t *buf16 = buf;
const uint8_t *buf8 = buf;
while (count) {
ctx.code_count = 0;
ctx.store_count = 0;
int this_round_count = (count > 128) ? 128 : count;
uint32_t last_upper_base_addr = UPPER16((addr + 0x8000));
pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load $15 with memory base address */
for (int i = 0; i != this_round_count; i++) {
uint32_t upper_base_addr = UPPER16((addr + 0x8000));
if (last_upper_base_addr != upper_base_addr) {
pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr)); /* if needed, change upper address in $15*/
last_upper_base_addr = upper_base_addr;
}
if (size == 4) { /* for word writes check if one half word is 0 and load it accordingly */
if (LOWER16(*buf32) == 0)
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load only upper value */
else if (UPPER16(*buf32) == 0)
pracc_add(&ctx, 0, MIPS32_ORI(8, 0, LOWER16(*buf32))); /* load only lower */
else {
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load upper and lower */
pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(*buf32)));
}
pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15)); /* store word to memory */
buf32++;
} else if (size == 2) {
pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16)); /* load lower value */
pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15)); /* store half word to memory */
buf16++;
} else {
pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8)); /* load lower value */
pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15)); /* store byte to memory */
buf8++;
}
addr += size;
}
pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */
pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
if (ctx.retval != ERROR_OK)
goto exit;
count -= this_round_count;
}
exit:
pracc_queue_free(&ctx);
return ctx.retval;
}
int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf)
{
int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
if (retval != ERROR_OK)
return retval;
/**
* If we are in the cacheable region and cache is activated,
* we must clean D$ (if Cache Coherency Attribute is set to 3) + invalidate I$ after we did the write,
* so that changes do not continue to live only in D$ (if CCA = 3), but to be
* replicated in I$ also (maybe we wrote the istructions)
*/
uint32_t conf = 0;
int cached = 0;
if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
return retval; /*Nothing to do*/
mips32_cp0_read(ejtag_info, &conf, 16, 0);
switch (KSEGX(addr)) {
case KUSEG:
cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
break;
case KSEG0:
cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
break;
case KSEG2:
case KSEG3:
cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
break;
default:
/* what ? */
break;
}
/**
* Check cachablitiy bits coherency algorithm
* is the region cacheable or uncached.
* If cacheable we have to synchronize the cache
*/
if (cached == 3 || cached == 0) { /* Write back cache or write through cache */
uint32_t start_addr = addr;
uint32_t end_addr = addr + count * size;
uint32_t rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
if (rel > 1) {
LOG_DEBUG("Unknown release in cache code");
return ERROR_FAIL;
}
retval = mips32_pracc_synchronize_cache(ejtag_info, start_addr, end_addr, cached, rel);
}
return retval;
}
int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
static const uint32_t cp0_write_code[] = {
MIPS32_MTC0(1, 12, 0), /* move $1 to status */
MIPS32_MTLO(1), /* move $1 to lo */
MIPS32_MTHI(1), /* move $1 to hi */
MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
};
struct pracc_queue_info ctx = {.max_code = 37 * 2 + 7 + 1};
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
/* load registers 2 to 31 with lui and ori instructions, check if some instructions can be saved */
for (int i = 2; i < 32; i++) {
if (LOWER16((regs[i])) == 0) /* if lower half word is 0, lui instruction only */
pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
else if (UPPER16((regs[i])) == 0) /* if upper half word is 0, ori with $0 only*/
pracc_add(&ctx, 0, MIPS32_ORI(i, 0, LOWER16((regs[i]))));
else { /* default, load with lui and ori instructions */
pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i]))));
pracc_add(&ctx, 0, MIPS32_ORI(i, i, LOWER16((regs[i]))));
}
}
for (int i = 0; i != 6; i++) {
pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[i + 32])))); /* load CPO value in $1, with lui and ori */
pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[i + 32]))));
pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */
}
pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* load $15 in DeSave */
pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1])))); /* load upper half word in $1 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL);
ejtag_info->reg8 = regs[8];
ejtag_info->reg9 = regs[9];
exit:
pracc_queue_free(&ctx);
return ctx.retval;
}
int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
{
static int cp0_read_code[] = {
MIPS32_MFC0(8, 12, 0), /* move status to $8 */
MIPS32_MFLO(8), /* move lo to $8 */
MIPS32_MFHI(8), /* move hi to $8 */
MIPS32_MFC0(8, 8, 0), /* move badvaddr to $8 */
MIPS32_MFC0(8, 13, 0), /* move cause to $8 */
MIPS32_MFC0(8, 24, 0), /* move depc (pc) to $8 */
};
struct pracc_queue_info ctx = {.max_code = 49};
pracc_queue_init(&ctx);
if (ctx.retval != ERROR_OK)
goto exit;
pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0)); /* move $1 to COP0 DeSave */
pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */
for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4),
MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1));
for (int i = 0; i != 6; i++) {
pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */
MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1));
}
pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0)); /* move DeSave to $8, reg1 value */
pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */
MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1));
pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */
pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */
pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* load $15 in DeSave */
if (ejtag_info->mode == 0)
ctx.store_count++; /* Needed by legacy code, due to offset from reg0 */
ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs);
ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */
ejtag_info->reg9 = regs[9];
exit:
pracc_queue_free(&ctx);
return ctx.retval;
}
/* fastdata upload/download requires an initialized working area
* to load the download code; it should not be called otherwise
* fetch order from the fastdata area
* 1. start addr
* 2. end addr
* 3. data ...
*/
int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
int write_t, uint32_t addr, int count, uint32_t *buf)
{
uint32_t handler_code[] = {
/* caution when editing, table is modified below */
/* r15 points to the start of this code */
MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
/* start of fastdata area in t0 */
MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
MIPS32_LW(9, 0, 8), /* start addr in t1 */
MIPS32_LW(10, 0, 8), /* end addr to t2 */
/* loop: */
/* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
/* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
MIPS32_JR(15), /* jr start */
MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
};
uint32_t jmp_code[] = {
/* 0 */ MIPS32_LUI(15, 0), /* addr of working area added below */
/* 1 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
MIPS32_JR(15), /* jump to ram program */
MIPS32_NOP,
};
int retval, i;
uint32_t val, ejtag_ctrl, address;
if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
if (write_t) {
handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
} else {
handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
}
/* write program into RAM */
if (write_t != ejtag_info->fast_access_save) {
mips32_pracc_write_mem(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
/* save previous operation to speed to any consecutive read/writes */
ejtag_info->fast_access_save = write_t;
}
LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
jmp_code[0] |= UPPER16(source->address);
jmp_code[1] |= LOWER16(source->address);
for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
/* Clear the access pending bit (let the processor eat!) */
ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
}
/* wait PrAcc pending bit for FASTDATA write */
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
/* next fetch to dmseg should be in FASTDATA_AREA, check */
address = 0;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
retval = mips_ejtag_drscan_32(ejtag_info, &address);
if (retval != ERROR_OK)
return retval;
if (address != MIPS32_PRACC_FASTDATA_AREA)
return ERROR_FAIL;
/* Send the load start address */
val = addr;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
/* Send the load end address */
val = addr + (count - 1) * 4;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
unsigned num_clocks = 0; /* like in legacy code */
if (ejtag_info->mode != 0)
num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000;
for (i = 0; i < count; i++) {
jtag_add_clocks(num_clocks);
retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
if (retval != ERROR_OK)
return retval;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("fastdata load failed");
return retval;
}
retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
if (retval != ERROR_OK)
return retval;
address = 0;
mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
retval = mips_ejtag_drscan_32(ejtag_info, &address);
if (retval != ERROR_OK)
return retval;
if (address != MIPS32_PRACC_TEXT)
LOG_ERROR("mini program did not return to start");
return retval;
}