openocd/src/target/arm920t.c
David Brownell 19ad7f828b ARM: don't clone arm_arch_state() code
Have various ARM cores delegate to arm_arch_state() to display
basic information, instead of duplicating that logic.

This shrinks the code, makes them all report when semihosting
is active, and highlights which data are specific to this core.
(Like ARM720 not having separate instruction and data caches.)

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
2009-12-07 14:57:44 -08:00

1476 lines
41 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm920t.h"
#include <helper/time_support.h>
#include "target_type.h"
#include "register.h"
#include "arm_opcodes.h"
/*
* For information about the ARM920T, see ARM DDI 0151C especially
* Chapter 9 about debug support, which shows how to manipulate each
* of the different scan chains:
*
* 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
* 1 ... debugging; watchpoint and breakpoint status, etc; also
* MMU and cache access in conjunction with scan chain 15
* 2 ... EmbeddedICE
* 3 ... external boundary scan (SoC-specific, unused here)
* 4 ... access to cache tag RAM
* 6 ... ETM9
* 15 ... access coprocessor 15, "physical" or "interpreted" modes
* "interpreted" works with a few actual MRC/MCR instructions
* "physical" provides register-like behaviors.
*
* The ARM922T is similar, but with smaller caches (8K each, vs 16K).
*/
#if 0
#define _DEBUG_INSTRUCTION_EXECUTION_
#endif
#define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
static int arm920t_read_cp15_physical(struct target *target,
int reg_addr, uint32_t *value)
{
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 1;
uint8_t reg_addr_buf = reg_addr & 0x3f;
uint8_t nr_w_buf = 0;
jtag_info = &arm920t->arm7_9_common.jtag_info;
jtag_set_end_state(TAP_IDLE);
arm_jtag_scann(jtag_info, 0xf);
arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
fields[0].tap = jtag_info->tap;
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].tap = jtag_info->tap;
fields[1].num_bits = 32;
fields[1].out_value = NULL;
fields[1].in_value = NULL;
fields[2].tap = jtag_info->tap;
fields[2].num_bits = 6;
fields[2].out_value = &reg_addr_buf;
fields[2].in_value = NULL;
fields[3].tap = jtag_info->tap;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(4, fields, jtag_get_end_state());
fields[1].in_value = (uint8_t *)value;
jtag_add_dr_scan(4, fields, jtag_get_end_state());
jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
jtag_execute_queue();
LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
#endif
return ERROR_OK;
}
static int arm920t_write_cp15_physical(struct target *target,
int reg_addr, uint32_t value)
{
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 1;
uint8_t reg_addr_buf = reg_addr & 0x3f;
uint8_t nr_w_buf = 1;
uint8_t value_buf[4];
jtag_info = &arm920t->arm7_9_common.jtag_info;
buf_set_u32(value_buf, 0, 32, value);
jtag_set_end_state(TAP_IDLE);
arm_jtag_scann(jtag_info, 0xf);
arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
fields[0].tap = jtag_info->tap;
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].tap = jtag_info->tap;
fields[1].num_bits = 32;
fields[1].out_value = value_buf;
fields[1].in_value = NULL;
fields[2].tap = jtag_info->tap;
fields[2].num_bits = 6;
fields[2].out_value = &reg_addr_buf;
fields[2].in_value = NULL;
fields[3].tap = jtag_info->tap;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(4, fields, jtag_get_end_state());
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
#endif
return ERROR_OK;
}
static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
uint32_t arm_opcode)
{
int retval;
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 0; /* interpreted access */
uint8_t reg_addr_buf = 0x0;
uint8_t nr_w_buf = 0;
uint8_t cp15_opcode_buf[4];
jtag_info = &arm920t->arm7_9_common.jtag_info;
jtag_set_end_state(TAP_IDLE);
arm_jtag_scann(jtag_info, 0xf);
arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL);
buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
fields[0].tap = jtag_info->tap;
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].tap = jtag_info->tap;
fields[1].num_bits = 32;
fields[1].out_value = cp15_opcode_buf;
fields[1].in_value = NULL;
fields[2].tap = jtag_info->tap;
fields[2].num_bits = 6;
fields[2].out_value = &reg_addr_buf;
fields[2].in_value = NULL;
fields[3].tap = jtag_info->tap;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(4, fields, jtag_get_end_state());
arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
return retval;
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_ERROR("failed executing JTAG queue");
return retval;
}
return ERROR_OK;
}
static int arm920t_read_cp15_interpreted(struct target *target,
uint32_t cp15_opcode, uint32_t address, uint32_t *value)
{
struct arm *armv4_5 = target_to_arm(target);
uint32_t* regs_p[1];
uint32_t regs[2];
uint32_t cp15c15 = 0x0;
struct reg *r = armv4_5->core_cache->reg_list;
/* load address into R1 */
regs[1] = address;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* read-modify-write CP15 test state register
* to enable interpreted access mode */
arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
jtag_execute_queue();
cp15c15 |= 1; /* set interpret mode */
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* execute CP15 instruction and ARM load (reading from coprocessor) */
arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
/* disable interpreted access mode */
cp15c15 &= ~1U; /* clear interpret mode */
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* retrieve value from R0 */
regs_p[0] = value;
arm9tdmi_read_core_regs(target, 0x1, regs_p);
jtag_execute_queue();
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x", cp15_opcode, address, *value);
#endif
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
r[0].dirty = 1;
r[1].dirty = 1;
return ERROR_OK;
}
static
int arm920t_write_cp15_interpreted(struct target *target,
uint32_t cp15_opcode, uint32_t value, uint32_t address)
{
uint32_t cp15c15 = 0x0;
struct arm *armv4_5 = target_to_arm(target);
uint32_t regs[2];
struct reg *r = armv4_5->core_cache->reg_list;
/* load value, address into R0, R1 */
regs[0] = value;
regs[1] = address;
arm9tdmi_write_core_regs(target, 0x3, regs);
/* read-modify-write CP15 test state register
* to enable interpreted access mode */
arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
jtag_execute_queue();
cp15c15 |= 1; /* set interpret mode */
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* execute CP15 instruction and ARM store (writing to coprocessor) */
arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
/* disable interpreted access mode */
cp15c15 &= ~1U; /* set interpret mode */
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x", cp15_opcode, value, address);
#endif
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
r[0].dirty = 1;
r[1].dirty = 1;
return ERROR_OK;
}
// EXPORTED to FA256
uint32_t arm920t_get_ttb(struct target *target)
{
int retval;
uint32_t ttb = 0x0;
if ((retval = arm920t_read_cp15_interpreted(target, 0xeebf0f51, 0x0, &ttb)) != ERROR_OK)
return retval;
return ttb;
}
// EXPORTED to FA256
void arm920t_disable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache)
{
uint32_t cp15_control;
/* read cp15 control register */
arm920t_read_cp15_physical(target, 0x2, &cp15_control);
jtag_execute_queue();
if (mmu)
cp15_control &= ~0x1U;
if (d_u_cache)
cp15_control &= ~0x4U;
if (i_cache)
cp15_control &= ~0x1000U;
arm920t_write_cp15_physical(target, 0x2, cp15_control);
}
// EXPORTED to FA256
void arm920t_enable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache)
{
uint32_t cp15_control;
/* read cp15 control register */
arm920t_read_cp15_physical(target, 0x2, &cp15_control);
jtag_execute_queue();
if (mmu)
cp15_control |= 0x1U;
if (d_u_cache)
cp15_control |= 0x4U;
if (i_cache)
cp15_control |= 0x1000U;
arm920t_write_cp15_physical(target, 0x2, cp15_control);
}
// EXPORTED to FA256
void arm920t_post_debug_entry(struct target *target)
{
uint32_t cp15c15;
struct arm920t_common *arm920t = target_to_arm920(target);
/* examine cp15 control reg */
arm920t_read_cp15_physical(target, 0x2, &arm920t->cp15_control_reg);
jtag_execute_queue();
LOG_DEBUG("cp15_control_reg: %8.8" PRIx32 "", arm920t->cp15_control_reg);
if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1)
{
uint32_t cache_type_reg;
/* identify caches */
arm920t_read_cp15_physical(target, 0x1, &cache_type_reg);
jtag_execute_queue();
armv4_5_identify_cache(cache_type_reg, &arm920t->armv4_5_mmu.armv4_5_cache);
}
arm920t->armv4_5_mmu.mmu_enabled = (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
/* save i/d fault status and address register */
arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32 "",
arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
if (arm920t->preserve_cache)
{
/* read-modify-write CP15 test state register
* to disable I/D-cache linefills */
arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
jtag_execute_queue();
cp15c15 |= 0x600;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
}
}
// EXPORTED to FA256
void arm920t_pre_restore_context(struct target *target)
{
uint32_t cp15c15;
struct arm920t_common *arm920t = target_to_arm920(target);
/* restore i/d fault status and address register */
arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
/* read-modify-write CP15 test state register
* to reenable I/D-cache linefills */
if (arm920t->preserve_cache)
{
arm920t_read_cp15_physical(target, 0x1e, &cp15c15);
jtag_execute_queue();
cp15c15 &= ~0x600U;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
}
}
static const char arm920_not[] = "target is not an ARM920";
static int arm920t_verify_pointer(struct command_context *cmd_ctx,
struct arm920t_common *arm920t)
{
if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
command_print(cmd_ctx, arm920_not);
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
/** Logs summary of ARM920 state for a halted target. */
int arm920t_arch_state(struct target *target)
{
static const char *state[] =
{
"disabled", "enabled"
};
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm *armv4_5;
if (arm920t->common_magic != ARM920T_COMMON_MAGIC)
{
LOG_ERROR("BUG: %s", arm920_not);
return ERROR_TARGET_INVALID;
}
armv4_5 = &arm920t->arm7_9_common.armv4_5_common;
arm_arch_state(target);
LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
state[arm920t->armv4_5_mmu.mmu_enabled],
state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
return ERROR_OK;
}
static int arm920_mmu(struct target *target, int *enabled)
{
if (target->state != TARGET_HALTED) {
LOG_ERROR("%s: target not halted", __func__);
return ERROR_TARGET_INVALID;
}
*enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
return ERROR_OK;
}
static int arm920_virt2phys(struct target *target,
uint32_t virt, uint32_t *phys)
{
/** @todo Implement this! */
LOG_ERROR("%s: not implemented", __func__);
return ERROR_FAIL;
}
/** Reads a buffer, in the specified word size, with current MMU settings. */
int arm920t_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
int retval;
retval = arm7_9_read_memory(target, address, size, count, buffer);
return retval;
}
static int arm920t_read_phys_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
struct arm920t_common *arm920t = target_to_arm920(target);
return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
address, size, count, buffer);
}
static int arm920t_write_phys_memory(struct target *target,
uint32_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
struct arm920t_common *arm920t = target_to_arm920(target);
return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
address, size, count, buffer);
}
/** Writes a buffer, in the specified word size, with current MMU settings. */
int arm920t_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
int retval;
if ((retval = arm7_9_write_memory(target, address, size, count, buffer)) != ERROR_OK)
return retval;
/* This fn is used to write breakpoints, so we need to make sure
* that the data cache is flushed and the instruction cache is
* invalidated
*/
if (((size == 4) || (size == 2)) && (count == 1))
{
struct arm920t_common *arm920t = target_to_arm920(target);
if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled)
{
LOG_DEBUG("D-Cache enabled, flush and invalidate cache line");
/* MCR p15,0,Rd,c7,c10,2 */
retval = arm920t_write_cp15_interpreted(target, 0xee070f5e, 0x0, address);
if (retval != ERROR_OK)
return retval;
}
if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled)
{
LOG_DEBUG("I-Cache enabled, invalidating affected I-Cache line");
retval = arm920t_write_cp15_interpreted(target, 0xee070f35, 0x0, address);
if (retval != ERROR_OK)
return retval;
}
}
return retval;
}
// EXPORTED to FA256
int arm920t_soft_reset_halt(struct target *target)
{
int retval = ERROR_OK;
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
if ((retval = target_halt(target)) != ERROR_OK)
{
return retval;
}
long long then = timeval_ms();
int timeout;
while (!(timeout = ((timeval_ms()-then) > 1000)))
{
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0)
{
embeddedice_read_reg(dbg_stat);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
} else
{
break;
}
if (debug_level >= 3)
{
/* do not eat all CPU, time out after 1 se*/
alive_sleep(100);
} else
{
keep_alive();
}
}
if (timeout)
{
LOG_ERROR("Failed to halt CPU after 1 sec");
return ERROR_TARGET_TIMEOUT;
}
target->state = TARGET_HALTED;
/* SVC, ARM state, IRQ and FIQ disabled */
uint32_t cpsr;
cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
cpsr &= ~0xff;
cpsr |= 0xd3;
arm_set_cpsr(armv4_5, cpsr);
armv4_5->cpsr->dirty = 1;
/* start fetching from 0x0 */
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
armv4_5->core_cache->reg_list[15].dirty = 1;
armv4_5->core_cache->reg_list[15].valid = 1;
arm920t_disable_mmu_caches(target, 1, 1, 1);
arm920t->armv4_5_mmu.mmu_enabled = 0;
arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
{
return retval;
}
return ERROR_OK;
}
/* FIXME remove forward decls */
static int arm920t_mrc(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t *value);
static int arm920t_mcr(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t value);
int arm920t_init_arch_info(struct target *target, struct arm920t_common *arm920t, struct jtag_tap *tap)
{
struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
arm7_9->armv4_5_common.mrc = arm920t_mrc;
arm7_9->armv4_5_common.mcr = arm920t_mcr;
/* initialize arm7/arm9 specific info (including armv4_5) */
arm9tdmi_init_arch_info(target, arm7_9, tap);
arm920t->common_magic = ARM920T_COMMON_MAGIC;
arm7_9->post_debug_entry = arm920t_post_debug_entry;
arm7_9->pre_restore_context = arm920t_pre_restore_context;
arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
arm920t->armv4_5_mmu.has_tiny_pages = 1;
arm920t->armv4_5_mmu.mmu_enabled = 0;
/* disabling linefills leads to lockups, so keep them enabled for now
* this doesn't affect correctness, but might affect timing issues, if
* important data is evicted from the cache during the debug session
* */
arm920t->preserve_cache = 0;
/* override hw single-step capability from ARM9TDMI */
arm7_9->has_single_step = 1;
return ERROR_OK;
}
static int arm920t_target_create(struct target *target, Jim_Interp *interp)
{
struct arm920t_common *arm920t = calloc(1,sizeof(struct arm920t_common));
return arm920t_init_arch_info(target, arm920t, target->tap);
}
COMMAND_HANDLER(arm920t_handle_read_cache_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
uint32_t cp15c15;
uint32_t cp15_ctrl, cp15_ctrl_saved;
uint32_t regs[16];
uint32_t *regs_p[16];
uint32_t C15_C_D_Ind, C15_C_I_Ind;
int i;
FILE *output;
struct arm920t_cache_line d_cache[8][64], i_cache[8][64];
int segment, index;
struct reg *r;
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC != 1)
{
command_print(CMD_CTX, "usage: arm920t read_cache <filename>");
return ERROR_OK;
}
if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
{
LOG_DEBUG("error opening cache content file");
return ERROR_OK;
}
for (i = 0; i < 16; i++)
regs_p[i] = &regs[i];
/* disable MMU and Caches */
arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), &cp15_ctrl);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
cp15_ctrl_saved = cp15_ctrl;
cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl);
/* read CP15 test state register */
arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), &cp15c15);
jtag_execute_queue();
/* read DCache content */
fprintf(output, "DCache:\n");
/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++)
{
fprintf(output, "\nsegment: %i\n----------", segment);
/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* D CAM Read, loads current victim into C15.C.D.Ind */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0));
/* read current victim */
arm920t_read_cp15_physical(target, 0x3d, &C15_C_D_Ind);
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
for (index = 0; index < 64; index++)
{
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (index << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write DCache victim */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
/* Read D RAM */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,10,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
/* Read D CAM */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(9, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read D RAM and CAM content */
arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
d_cache[segment][index].cam = regs[9];
/* mask LFSR[6] */
regs[9] &= 0xfffffffe;
fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index, regs[9], (regs[9] & 0x10) ? "valid" : "invalid");
for (i = 1; i < 9; i++)
{
d_cache[segment][index].data[i] = regs[i];
fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]);
}
}
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write DCache victim */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
}
/* read ICache content */
fprintf(output, "ICache:\n");
/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++)
{
fprintf(output, "segment: %i\n----------", segment);
/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* I CAM Read, loads current victim into C15.C.I.Ind */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0));
/* read current victim */
arm920t_read_cp15_physical(target, 0x3b, &C15_C_I_Ind);
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
for (index = 0; index < 64; index++)
{
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (index << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write ICache victim */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
/* Read I RAM */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,9,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
/* Read I CAM */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(9, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read I RAM and CAM content */
arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
i_cache[segment][index].cam = regs[9];
/* mask LFSR[6] */
regs[9] &= 0xfffffffe;
fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index, regs[9], (regs[9] & 0x10) ? "valid" : "invalid");
for (i = 1; i < 9; i++)
{
i_cache[segment][index].data[i] = regs[i];
fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]);
}
}
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write ICache victim */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
}
/* restore CP15 MMU and Cache settings */
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl_saved);
command_print(CMD_CTX, "cache content successfully output to %s", CMD_ARGV[0]);
fclose(output);
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
/* force writeback of the valid data */
r = armv4_5->core_cache->reg_list;
r[0].dirty = r[0].valid;
r[1].dirty = r[1].valid;
r[2].dirty = r[2].valid;
r[3].dirty = r[3].valid;
r[4].dirty = r[4].valid;
r[5].dirty = r[5].valid;
r[6].dirty = r[6].valid;
r[7].dirty = r[7].valid;
r = arm_reg_current(armv4_5, 8);
r->dirty = r->valid;
r = arm_reg_current(armv4_5, 9);
r->dirty = r->valid;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_read_mmu_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *armv4_5 = &arm7_9->armv4_5_common;
uint32_t cp15c15;
uint32_t cp15_ctrl, cp15_ctrl_saved;
uint32_t regs[16];
uint32_t *regs_p[16];
int i;
FILE *output;
uint32_t Dlockdown, Ilockdown;
struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
int victim;
struct reg *r;
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC != 1)
{
command_print(CMD_CTX, "usage: arm920t read_mmu <filename>");
return ERROR_OK;
}
if ((output = fopen(CMD_ARGV[0], "w")) == NULL)
{
LOG_DEBUG("error opening mmu content file");
return ERROR_OK;
}
for (i = 0; i < 16; i++)
regs_p[i] = &regs[i];
/* disable MMU and Caches */
arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), &cp15_ctrl);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
cp15_ctrl_saved = cp15_ctrl;
cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl);
/* read CP15 test state register */
arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), &cp15c15);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
/* prepare reading D TLB content
* */
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Read D TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read D TLB lockdown stored to r1 */
arm9tdmi_read_core_regs(target, 0x2, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
Dlockdown = regs[1];
for (victim = 0; victim < 64; victim += 8)
{
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63 */
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write D TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
/* Read D TLB CAM */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,6,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read D TLB CAM content stored to r2-r9 */
arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
for (i = 0; i < 8; i++)
d_tlb[victim + i].cam = regs[i + 2];
}
for (victim = 0; victim < 64; victim++)
{
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63 */
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write D TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
/* Read D TLB RAM1 */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0));
/* Read D TLB RAM2 */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read D TLB RAM content stored to r2 and r3 */
arm9tdmi_read_core_regs(target, 0xc, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
d_tlb[victim].ram1 = regs[2];
d_tlb[victim].ram2 = regs[3];
}
/* restore D TLB lockdown */
regs[1] = Dlockdown;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* Write D TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0));
/* prepare reading I TLB content
* */
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Read I TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read I TLB lockdown stored to r1 */
arm9tdmi_read_core_regs(target, 0x2, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
Ilockdown = regs[1];
for (victim = 0; victim < 64; victim += 8)
{
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63 */
regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write I TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
/* Read I TLB CAM */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,5,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read I TLB CAM content stored to r2-r9 */
arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
for (i = 0; i < 8; i++)
i_tlb[i + victim].cam = regs[i + 2];
}
for (victim = 0; victim < 64; victim++)
{
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63 */
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15);
/* Write I TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
/* Read I TLB RAM1 */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0));
/* Read I TLB RAM2 */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, 0x1e, cp15c15);
/* read I TLB RAM content stored to r2 and r3 */
arm9tdmi_read_core_regs(target, 0xc, regs_p);
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
i_tlb[victim].ram1 = regs[2];
i_tlb[victim].ram2 = regs[3];
}
/* restore I TLB lockdown */
regs[1] = Ilockdown;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* Write I TLB lockdown */
arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0));
/* restore CP15 MMU and Cache settings */
arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl_saved);
/* output data to file */
fprintf(output, "D TLB content:\n");
for (i = 0; i < 64; i++)
{
fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2, (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
}
fprintf(output, "\n\nI TLB content:\n");
for (i = 0; i < 64; i++)
{
fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2, (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
}
command_print(CMD_CTX, "mmu content successfully output to %s", CMD_ARGV[0]);
fclose(output);
if (!is_arm_mode(armv4_5->core_mode))
return ERROR_FAIL;
/* force writeback of the valid data */
r = armv4_5->core_cache->reg_list;
r[0].dirty = r[0].valid;
r[1].dirty = r[1].valid;
r[2].dirty = r[2].valid;
r[3].dirty = r[3].valid;
r[4].dirty = r[4].valid;
r[5].dirty = r[5].valid;
r[6].dirty = r[6].valid;
r[7].dirty = r[7].valid;
r = arm_reg_current(armv4_5, 8);
r->dirty = r->valid;
r = arm_reg_current(armv4_5, 9);
r->dirty = r->valid;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cp15_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED)
{
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
/* one or more argument, access a single register (write if second argument is given */
if (CMD_ARGC >= 1)
{
int address;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
if (CMD_ARGC == 1)
{
uint32_t value;
if ((retval = arm920t_read_cp15_physical(target, address, &value)) != ERROR_OK)
{
command_print(CMD_CTX, "couldn't access reg %i", address);
return ERROR_OK;
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
return retval;
}
command_print(CMD_CTX, "%i: %8.8" PRIx32 "", address, value);
}
else if (CMD_ARGC == 2)
{
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
if ((retval = arm920t_write_cp15_physical(target, address, value)) != ERROR_OK)
{
command_print(CMD_CTX, "couldn't access reg %i", address);
return ERROR_OK;
}
command_print(CMD_CTX, "%i: %8.8" PRIx32 "", address, value);
}
}
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cp15i_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED)
{
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
/* one or more argument, access a single register (write if second argument is given */
if (CMD_ARGC >= 1)
{
uint32_t opcode;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
if (CMD_ARGC == 1)
{
uint32_t value;
if ((retval = arm920t_read_cp15_interpreted(target, opcode, 0x0, &value)) != ERROR_OK)
{
command_print(CMD_CTX, "couldn't execute %8.8" PRIx32 "", opcode);
return ERROR_OK;
}
command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32 "", opcode, value);
}
else if (CMD_ARGC == 2)
{
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, 0)) != ERROR_OK)
{
command_print(CMD_CTX, "couldn't execute %8.8" PRIx32 "", opcode);
return ERROR_OK;
}
command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32 "", opcode, value);
}
else if (CMD_ARGC == 3)
{
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
uint32_t address;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, address)) != ERROR_OK)
{
command_print(CMD_CTX, "couldn't execute %8.8" PRIx32 "", opcode);
return ERROR_OK;
}
command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32 " %8.8" PRIx32 "", opcode, value, address);
}
}
else
{
command_print(CMD_CTX, "usage: arm920t cp15i <opcode> [value] [address]");
}
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cache_info_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD_CTX, arm920t);
if (retval != ERROR_OK)
return retval;
return armv4_5_handle_cache_info_command(CMD_CTX, &arm920t->armv4_5_mmu.armv4_5_cache);
}
static int arm920t_mrc(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t *value)
{
if (cpnum!=15)
{
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
/* read "to" r0 */
return arm920t_read_cp15_interpreted(target,
ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
0, value);
}
static int arm920t_mcr(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t value)
{
if (cpnum!=15)
{
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
/* write "from" r0 */
return arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
0, value);
}
static const struct command_registration arm920t_exec_command_handlers[] = {
{
.name = "cp15",
.handler = &arm920t_handle_cp15_command,
.mode = COMMAND_EXEC,
.help = "display/modify cp15 register",
.usage = "<num> [value]",
},
{
.name = "cp15i",
.handler = &arm920t_handle_cp15i_command,
.mode = COMMAND_EXEC,
.help = "display/modify cp15 (interpreted access)",
.usage = "<opcode> [value] [address]",
},
{
.name = "cache_info",
.handler = &arm920t_handle_cache_info_command,
.mode = COMMAND_EXEC,
.help = "display information about target caches",
},
{
.name = "read_cache",
.handler = &arm920t_handle_read_cache_command,
.mode = COMMAND_EXEC,
.help = "display I/D cache content",
},
{
.name = "read_mmu",
.handler = &arm920t_handle_read_mmu_command,
.mode = COMMAND_EXEC,
.help = "display I/D mmu content",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration arm920t_command_handlers[] = {
{
.chain = arm9tdmi_command_handlers,
},
{
.name = "arm920t",
.mode = COMMAND_ANY,
.help = "arm920t command group",
.chain = arm920t_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
/** Holds methods for ARM920 targets. */
struct target_type arm920t_target =
{
.name = "arm920t",
.poll = arm7_9_poll,
.arch_state = arm920t_arch_state,
.target_request_data = arm7_9_target_request_data,
.halt = arm7_9_halt,
.resume = arm7_9_resume,
.step = arm7_9_step,
.assert_reset = arm7_9_assert_reset,
.deassert_reset = arm7_9_deassert_reset,
.soft_reset_halt = arm920t_soft_reset_halt,
.get_gdb_reg_list = arm_get_gdb_reg_list,
.read_memory = arm920t_read_memory,
.write_memory = arm920t_write_memory,
.read_phys_memory = arm920t_read_phys_memory,
.write_phys_memory = arm920t_write_phys_memory,
.mmu = arm920_mmu,
.virt2phys = arm920_virt2phys,
.bulk_write_memory = arm7_9_bulk_write_memory,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = arm7_9_add_breakpoint,
.remove_breakpoint = arm7_9_remove_breakpoint,
.add_watchpoint = arm7_9_add_watchpoint,
.remove_watchpoint = arm7_9_remove_watchpoint,
.commands = arm920t_command_handlers,
.target_create = arm920t_target_create,
.init_target = arm9tdmi_init_target,
.examine = arm7_9_examine,
};