openocd/src/jtag/drivers/ftdi.c
Andreas Fritiofson c979a08144 mpsse: Defer errors until flush
Simplify the API by making all MPSSE command functions return void instead
of an error code. If there is an error during an implicit flush in a
command call, further commands are ignored until an explicit flush is
performed. The flush function returns and clears any error code set.

The only command functions that still return an error code are those that
can fail directly based on the type of the FTDI chip, i.e. when trying to
enable RCLK or divide-by-5 on a non-high-speed chip.

Adapt the ftdi adapter driver to the new API.

Change-Id: I12979c723c81f7fd022c25821b029112f02b3f95
Signed-off-by: Andreas Fritiofson <andreas.fritiofson@gmail.com>
Reviewed-on: http://openocd.zylin.com/1499
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
2013-08-01 10:31:08 +00:00

839 lines
22 KiB
C

/**************************************************************************
* Copyright (C) 2012 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
/**
* @file
* JTAG adapters based on the FT2232 full and high speed USB parts are
* popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
* are discrete, but development boards may integrate them as alternatives
* to more capable (and expensive) third party JTAG pods.
*
* JTAG uses only one of the two communications channels ("MPSSE engines")
* on these devices. Adapters based on FT4232 parts have four ports/channels
* (A/B/C/D), instead of just two (A/B).
*
* Especially on development boards integrating one of these chips (as
* opposed to discrete pods/dongles), the additional channels can be used
* for a variety of purposes, but OpenOCD only uses one channel at a time.
*
* - As a USB-to-serial adapter for the target's console UART ...
* which may be able to support ROM boot loaders that load initial
* firmware images to flash (or SRAM).
*
* - On systems which support ARM's SWD in addition to JTAG, or instead
* of it, that second port can be used for reading SWV/SWO trace data.
*
* - Additional JTAG links, e.g. to a CPLD or * FPGA.
*
* FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
* request/response interactions involve round trips over the USB link.
* A "smart" JTAG adapter has intelligence close to the scan chain, so it
* can for example poll quickly for a status change (usually taking on the
* order of microseconds not milliseconds) before beginning a queued
* transaction which require the previous one to have completed.
*
* There are dozens of adapters of this type, differing in details which
* this driver needs to understand. Those "layout" details are required
* as part of FT2232 driver configuration.
*
* This code uses information contained in the MPSSE specification which was
* found here:
* http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
* Hereafter this is called the "MPSSE Spec".
*
* The datasheet for the ftdichip.com's FT2232D part is here:
* http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
*
* Also note the issue with code 0x4b (clock data to TMS) noted in
* http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
* which can affect longer JTAG state paths.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
/* project specific includes */
#include <jtag/interface.h>
#include <transport/transport.h>
#include <helper/time_support.h>
#if IS_CYGWIN == 1
#include <windows.h>
#endif
#include <assert.h>
/* FTDI access library includes */
#include "mpsse.h"
#define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
static char *ftdi_device_desc;
static char *ftdi_serial;
static uint8_t ftdi_channel;
#define MAX_USB_IDS 8
/* vid = pid = 0 marks the end of the list */
static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
static struct mpsse_ctx *mpsse_ctx;
struct signal {
const char *name;
uint16_t data_mask;
uint16_t oe_mask;
bool invert_data;
bool invert_oe;
struct signal *next;
};
static struct signal *signals;
static uint16_t output;
static uint16_t direction;
static struct signal *find_signal_by_name(const char *name)
{
for (struct signal *sig = signals; sig; sig = sig->next) {
if (strcmp(name, sig->name) == 0)
return sig;
}
return NULL;
}
static struct signal *create_signal(const char *name)
{
struct signal **psig = &signals;
while (*psig)
psig = &(*psig)->next;
*psig = calloc(1, sizeof(**psig));
if (*psig == NULL)
return NULL;
(*psig)->name = strdup(name);
if ((*psig)->name == NULL) {
free(*psig);
*psig = NULL;
}
return *psig;
}
static int ftdi_set_signal(const struct signal *s, char value)
{
bool data;
bool oe;
if (s->data_mask == 0 && s->oe_mask == 0) {
LOG_ERROR("interface doesn't provide signal '%s'", s->name);
return ERROR_FAIL;
}
switch (value) {
case '0':
data = s->invert_data;
oe = !s->invert_oe;
break;
case '1':
if (s->data_mask == 0) {
LOG_ERROR("interface can't drive '%s' high", s->name);
return ERROR_FAIL;
}
data = !s->invert_data;
oe = !s->invert_oe;
break;
case 'z':
case 'Z':
if (s->oe_mask == 0) {
LOG_ERROR("interface can't tri-state '%s'", s->name);
return ERROR_FAIL;
}
data = s->invert_data;
oe = s->invert_oe;
break;
default:
assert(0 && "invalid signal level specifier");
return ERROR_FAIL;
}
output = data ? output | s->data_mask : output & ~s->data_mask;
if (s->oe_mask == s->data_mask)
direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
else
output = oe ? output | s->oe_mask : output & ~s->oe_mask;
mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
return ERROR_OK;
}
/**
* Function move_to_state
* moves the TAP controller from the current state to a
* \a goal_state through a path given by tap_get_tms_path(). State transition
* logging is performed by delegation to clock_tms().
*
* @param goal_state is the destination state for the move.
*/
static void move_to_state(tap_state_t goal_state)
{
tap_state_t start_state = tap_get_state();
/* goal_state is 1/2 of a tuple/pair of states which allow convenient
lookup of the required TMS pattern to move to this state from the
start state.
*/
/* do the 2 lookups */
int tms_bits = tap_get_tms_path(start_state, goal_state);
int tms_count = tap_get_tms_path_len(start_state, goal_state);
DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
/* Track state transitions step by step */
for (int i = 0; i < tms_count; i++)
tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
mpsse_clock_tms_cs_out(mpsse_ctx,
(uint8_t *)&tms_bits,
0,
tms_count,
false,
JTAG_MODE);
}
static int ftdi_speed(int speed)
{
int retval;
retval = mpsse_set_frequency(mpsse_ctx, speed);
if (retval < 0) {
LOG_ERROR("couldn't set FTDI TCK speed");
return retval;
}
return ERROR_OK;
}
static int ftdi_speed_div(int speed, int *khz)
{
*khz = speed / 1000;
return ERROR_OK;
}
static int ftdi_khz(int khz, int *jtag_speed)
{
if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
LOG_DEBUG("RCLK not supported");
return ERROR_FAIL;
}
*jtag_speed = khz * 1000;
return ERROR_OK;
}
static void ftdi_end_state(tap_state_t state)
{
if (tap_is_state_stable(state))
tap_set_end_state(state);
else {
LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
exit(-1);
}
}
static void ftdi_execute_runtest(struct jtag_command *cmd)
{
int i;
uint8_t zero = 0;
DEBUG_JTAG_IO("runtest %i cycles, end in %s",
cmd->cmd.runtest->num_cycles,
tap_state_name(cmd->cmd.runtest->end_state));
if (tap_get_state() != TAP_IDLE)
move_to_state(TAP_IDLE);
/* TODO: Reuse ftdi_execute_stableclocks */
i = cmd->cmd.runtest->num_cycles;
while (i > 0) {
/* there are no state transitions in this code, so omit state tracking */
unsigned this_len = i > 7 ? 7 : i;
mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, JTAG_MODE);
i -= this_len;
}
ftdi_end_state(cmd->cmd.runtest->end_state);
if (tap_get_state() != tap_get_end_state())
move_to_state(tap_get_end_state());
DEBUG_JTAG_IO("runtest: %i, end in %s",
cmd->cmd.runtest->num_cycles,
tap_state_name(tap_get_end_state()));
}
static void ftdi_execute_statemove(struct jtag_command *cmd)
{
DEBUG_JTAG_IO("statemove end in %s",
tap_state_name(cmd->cmd.statemove->end_state));
ftdi_end_state(cmd->cmd.statemove->end_state);
/* shortest-path move to desired end state */
if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
move_to_state(tap_get_end_state());
}
/**
* Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
* (or SWD) state machine. REVISIT: Not the best method, perhaps.
*/
static void ftdi_execute_tms(struct jtag_command *cmd)
{
DEBUG_JTAG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
/* TODO: Missing tap state tracking, also missing from ft2232.c! */
mpsse_clock_tms_cs_out(mpsse_ctx,
cmd->cmd.tms->bits,
0,
cmd->cmd.tms->num_bits,
false,
JTAG_MODE);
}
static void ftdi_execute_pathmove(struct jtag_command *cmd)
{
tap_state_t *path = cmd->cmd.pathmove->path;
int num_states = cmd->cmd.pathmove->num_states;
DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states,
tap_state_name(tap_get_state()),
tap_state_name(path[num_states-1]));
int state_count = 0;
unsigned bit_count = 0;
uint8_t tms_byte = 0;
DEBUG_JTAG_IO("-");
/* this loop verifies that the path is legal and logs each state in the path */
while (num_states--) {
/* either TMS=0 or TMS=1 must work ... */
if (tap_state_transition(tap_get_state(), false)
== path[state_count])
buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
else if (tap_state_transition(tap_get_state(), true)
== path[state_count]) {
buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
/* ... or else the caller goofed BADLY */
} else {
LOG_ERROR("BUG: %s -> %s isn't a valid "
"TAP state transition",
tap_state_name(tap_get_state()),
tap_state_name(path[state_count]));
exit(-1);
}
tap_set_state(path[state_count]);
state_count++;
if (bit_count == 7 || num_states == 0) {
mpsse_clock_tms_cs_out(mpsse_ctx,
&tms_byte,
0,
bit_count,
false,
JTAG_MODE);
bit_count = 0;
}
}
tap_set_end_state(tap_get_state());
}
static void ftdi_execute_scan(struct jtag_command *cmd)
{
DEBUG_JTAG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
jtag_scan_type(cmd->cmd.scan));
/* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
while (cmd->cmd.scan->num_fields > 0
&& cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
cmd->cmd.scan->num_fields--;
LOG_DEBUG("discarding trailing empty field");
}
if (cmd->cmd.scan->num_fields == 0) {
LOG_DEBUG("empty scan, doing nothing");
return;
}
if (cmd->cmd.scan->ir_scan) {
if (tap_get_state() != TAP_IRSHIFT)
move_to_state(TAP_IRSHIFT);
} else {
if (tap_get_state() != TAP_DRSHIFT)
move_to_state(TAP_DRSHIFT);
}
ftdi_end_state(cmd->cmd.scan->end_state);
struct scan_field *field = cmd->cmd.scan->fields;
unsigned scan_size = 0;
for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
scan_size += field->num_bits;
DEBUG_JTAG_IO("%s%s field %d/%d %d bits",
field->in_value ? "in" : "",
field->out_value ? "out" : "",
i,
cmd->cmd.scan->num_fields,
field->num_bits);
if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
/* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
* movement. This last field can't have length zero, it was checked above. */
mpsse_clock_data(mpsse_ctx,
field->out_value,
0,
field->in_value,
0,
field->num_bits - 1,
JTAG_MODE);
uint8_t last_bit = 0;
if (field->out_value)
bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
uint8_t tms_bits = 0x01;
mpsse_clock_tms_cs(mpsse_ctx,
&tms_bits,
0,
field->in_value,
field->num_bits - 1,
1,
last_bit,
JTAG_MODE);
tap_set_state(tap_state_transition(tap_get_state(), 1));
mpsse_clock_tms_cs_out(mpsse_ctx,
&tms_bits,
1,
1,
last_bit,
JTAG_MODE);
tap_set_state(tap_state_transition(tap_get_state(), 0));
} else
mpsse_clock_data(mpsse_ctx,
field->out_value,
0,
field->in_value,
0,
field->num_bits,
JTAG_MODE);
}
if (tap_get_state() != tap_get_end_state())
move_to_state(tap_get_end_state());
DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
(cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
tap_state_name(tap_get_end_state()));
}
static void ftdi_execute_reset(struct jtag_command *cmd)
{
DEBUG_JTAG_IO("reset trst: %i srst %i",
cmd->cmd.reset->trst, cmd->cmd.reset->srst);
if (cmd->cmd.reset->trst == 1
|| (cmd->cmd.reset->srst
&& (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
tap_set_state(TAP_RESET);
struct signal *trst = find_signal_by_name("nTRST");
if (trst && cmd->cmd.reset->trst == 1) {
ftdi_set_signal(trst, '0');
} else if (trst && cmd->cmd.reset->trst == 0) {
if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
ftdi_set_signal(trst, 'z');
else
ftdi_set_signal(trst, '1');
}
struct signal *srst = find_signal_by_name("nSRST");
if (srst && cmd->cmd.reset->srst == 1) {
ftdi_set_signal(srst, '0');
} else if (srst && cmd->cmd.reset->srst == 0) {
if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
ftdi_set_signal(srst, '1');
else
ftdi_set_signal(srst, 'z');
}
DEBUG_JTAG_IO("trst: %i, srst: %i",
cmd->cmd.reset->trst, cmd->cmd.reset->srst);
}
static void ftdi_execute_sleep(struct jtag_command *cmd)
{
DEBUG_JTAG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
mpsse_flush(mpsse_ctx);
jtag_sleep(cmd->cmd.sleep->us);
DEBUG_JTAG_IO("sleep %" PRIi32 " usec while in %s",
cmd->cmd.sleep->us,
tap_state_name(tap_get_state()));
}
static void ftdi_execute_stableclocks(struct jtag_command *cmd)
{
/* this is only allowed while in a stable state. A check for a stable
* state was done in jtag_add_clocks()
*/
int num_cycles = cmd->cmd.stableclocks->num_cycles;
/* 7 bits of either ones or zeros. */
uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
/* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
* the correct level and remain there during the scan */
while (num_cycles > 0) {
/* there are no state transitions in this code, so omit state tracking */
unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, JTAG_MODE);
num_cycles -= this_len;
}
DEBUG_JTAG_IO("clocks %i while in %s",
cmd->cmd.stableclocks->num_cycles,
tap_state_name(tap_get_state()));
}
static void ftdi_execute_command(struct jtag_command *cmd)
{
switch (cmd->type) {
case JTAG_RESET:
ftdi_execute_reset(cmd);
break;
case JTAG_RUNTEST:
ftdi_execute_runtest(cmd);
break;
case JTAG_TLR_RESET:
ftdi_execute_statemove(cmd);
break;
case JTAG_PATHMOVE:
ftdi_execute_pathmove(cmd);
break;
case JTAG_SCAN:
ftdi_execute_scan(cmd);
break;
case JTAG_SLEEP:
ftdi_execute_sleep(cmd);
break;
case JTAG_STABLECLOCKS:
ftdi_execute_stableclocks(cmd);
break;
case JTAG_TMS:
ftdi_execute_tms(cmd);
break;
default:
LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
break;
}
}
static int ftdi_execute_queue(void)
{
/* blink, if the current layout has that feature */
struct signal *led = find_signal_by_name("LED");
if (led)
ftdi_set_signal(led, '1');
for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
/* fill the write buffer with the desired command */
ftdi_execute_command(cmd);
}
if (led)
ftdi_set_signal(led, '0');
int retval = mpsse_flush(mpsse_ctx);
if (retval != ERROR_OK)
LOG_ERROR("error while flushing MPSSE queue: %d", retval);
return retval;
}
static int ftdi_initialize(void)
{
if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
else
LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
ftdi_serial, ftdi_channel);
if (mpsse_ctx)
break;
}
if (!mpsse_ctx)
return ERROR_JTAG_INIT_FAILED;
mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
mpsse_loopback_config(mpsse_ctx, false);
return mpsse_flush(mpsse_ctx);
}
static int ftdi_quit(void)
{
mpsse_close(mpsse_ctx);
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_device_desc_command)
{
if (CMD_ARGC == 1) {
if (ftdi_device_desc)
free(ftdi_device_desc);
ftdi_device_desc = strdup(CMD_ARGV[0]);
} else {
LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
}
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_serial_command)
{
if (CMD_ARGC == 1) {
if (ftdi_serial)
free(ftdi_serial);
ftdi_serial = strdup(CMD_ARGV[0]);
} else {
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_channel_command)
{
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
else
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_layout_init_command)
{
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], output);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], direction);
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_layout_signal_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
bool invert_data = false;
uint16_t data_mask = 0;
bool invert_oe = false;
uint16_t oe_mask = 0;
for (unsigned i = 1; i < CMD_ARGC; i += 2) {
if (strcmp("-data", CMD_ARGV[i]) == 0) {
invert_data = false;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
} else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
invert_data = true;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
} else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
invert_oe = false;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
} else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
invert_oe = true;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
} else {
LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
}
struct signal *sig;
sig = find_signal_by_name(CMD_ARGV[0]);
if (!sig)
sig = create_signal(CMD_ARGV[0]);
if (!sig) {
LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
return ERROR_FAIL;
}
sig->invert_data = invert_data;
sig->data_mask = data_mask;
sig->invert_oe = invert_oe;
sig->oe_mask = oe_mask;
return ERROR_OK;
}
COMMAND_HANDLER(ftdi_handle_set_signal_command)
{
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct signal *sig;
sig = find_signal_by_name(CMD_ARGV[0]);
if (!sig) {
LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
return ERROR_FAIL;
}
switch (*CMD_ARGV[1]) {
case '0':
case '1':
case 'z':
case 'Z':
/* single character level specifier only */
if (CMD_ARGV[1][1] == '\0') {
ftdi_set_signal(sig, *CMD_ARGV[1]);
break;
}
default:
LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
return mpsse_flush(mpsse_ctx);
}
COMMAND_HANDLER(ftdi_handle_vid_pid_command)
{
if (CMD_ARGC > MAX_USB_IDS * 2) {
LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
"(maximum is %d pairs)", MAX_USB_IDS);
CMD_ARGC = MAX_USB_IDS * 2;
}
if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
/* remove the incomplete trailing id */
CMD_ARGC -= 1;
}
unsigned i;
for (i = 0; i < CMD_ARGC; i += 2) {
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
}
/*
* Explicitly terminate, in case there are multiples instances of
* ftdi_vid_pid.
*/
ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
return ERROR_OK;
}
static const struct command_registration ftdi_command_handlers[] = {
{
.name = "ftdi_device_desc",
.handler = &ftdi_handle_device_desc_command,
.mode = COMMAND_CONFIG,
.help = "set the USB device description of the FTDI device",
.usage = "description_string",
},
{
.name = "ftdi_serial",
.handler = &ftdi_handle_serial_command,
.mode = COMMAND_CONFIG,
.help = "set the serial number of the FTDI device",
.usage = "serial_string",
},
{
.name = "ftdi_channel",
.handler = &ftdi_handle_channel_command,
.mode = COMMAND_CONFIG,
.help = "set the channel of the FTDI device that is used as JTAG",
.usage = "(0-3)",
},
{
.name = "ftdi_layout_init",
.handler = &ftdi_handle_layout_init_command,
.mode = COMMAND_CONFIG,
.help = "initialize the FTDI GPIO signals used "
"to control output-enables and reset signals",
.usage = "data direction",
},
{
.name = "ftdi_layout_signal",
.handler = &ftdi_handle_layout_signal_command,
.mode = COMMAND_ANY,
.help = "define a signal controlled by one or more FTDI GPIO as data "
"and/or output enable",
.usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask]",
},
{
.name = "ftdi_set_signal",
.handler = &ftdi_handle_set_signal_command,
.mode = COMMAND_EXEC,
.help = "control a layout-specific signal",
.usage = "name (1|0|z)",
},
{
.name = "ftdi_vid_pid",
.handler = &ftdi_handle_vid_pid_command,
.mode = COMMAND_CONFIG,
.help = "the vendor ID and product ID of the FTDI device",
.usage = "(vid pid)* ",
},
COMMAND_REGISTRATION_DONE
};
struct jtag_interface ftdi_interface = {
.name = "ftdi",
.supported = DEBUG_CAP_TMS_SEQ,
.commands = ftdi_command_handlers,
.transports = jtag_only,
.init = ftdi_initialize,
.quit = ftdi_quit,
.speed = ftdi_speed,
.speed_div = ftdi_speed_div,
.khz = ftdi_khz,
.execute_queue = ftdi_execute_queue,
};