openocd/src/jtag/drivers/mpsse.c

872 lines
24 KiB
C

/**************************************************************************
* Copyright (C) 2012 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mpsse.h"
#include "helper/log.h"
#include <libusb.h>
/* Compatibility define for older libusb-1.0 */
#ifndef LIBUSB_CALL
#define LIBUSB_CALL
#endif
#ifdef _DEBUG_JTAG_IO_
#define DEBUG_IO(expr...) LOG_DEBUG(expr)
#define DEBUG_PRINT_BUF(buf, len) \
do { \
char buf_string[32 * 3 + 1]; \
int buf_string_pos = 0; \
for (int i = 0; i < len; i++) { \
buf_string_pos += sprintf(buf_string + buf_string_pos, " %02x", buf[i]); \
if (i % 32 == 32 - 1) { \
LOG_DEBUG("%s", buf_string); \
buf_string_pos = 0; \
} \
} \
if (buf_string_pos > 0) \
LOG_DEBUG("%s", buf_string);\
} while (0)
#else
#define DEBUG_IO(expr...) do {} while (0)
#define DEBUG_PRINT_BUF(buf, len) do {} while (0)
#endif
#define FTDI_DEVICE_OUT_REQTYPE (LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
#define FTDI_DEVICE_IN_REQTYPE (0x80 | LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE)
#define BITMODE_MPSSE 0x02
#define SIO_RESET_REQUEST 0x00
#define SIO_SET_LATENCY_TIMER_REQUEST 0x09
#define SIO_GET_LATENCY_TIMER_REQUEST 0x0A
#define SIO_SET_BITMODE_REQUEST 0x0B
#define SIO_RESET_SIO 0
#define SIO_RESET_PURGE_RX 1
#define SIO_RESET_PURGE_TX 2
struct mpsse_ctx {
libusb_context *usb_ctx;
libusb_device_handle *usb_dev;
unsigned int usb_write_timeout;
unsigned int usb_read_timeout;
uint8_t in_ep;
uint8_t out_ep;
uint16_t max_packet_size;
uint16_t index;
uint8_t interface;
enum ftdi_chip_type type;
uint8_t *write_buffer;
unsigned write_size;
unsigned write_count;
uint8_t *read_buffer;
unsigned read_size;
unsigned read_count;
uint8_t *read_chunk;
unsigned read_chunk_size;
struct bit_copy_queue read_queue;
int retval;
};
/* Returns true if the string descriptor indexed by str_index in device matches string */
static bool string_descriptor_equal(libusb_device_handle *device, uint8_t str_index,
const char *string)
{
int retval;
char desc_string[256]; /* Max size of string descriptor */
retval = libusb_get_string_descriptor_ascii(device, str_index, (unsigned char *)desc_string,
sizeof(desc_string));
if (retval < 0) {
LOG_ERROR("libusb_get_string_descriptor_ascii() failed with %d", retval);
return false;
}
return strncmp(string, desc_string, sizeof(desc_string)) == 0;
}
/* Helper to open a libusb device that matches vid, pid, product string and/or serial string.
* Set any field to 0 as a wildcard. If the device is found true is returned, with ctx containing
* the already opened handle. ctx->interface must be set to the desired interface (channel) number
* prior to calling this function. */
static bool open_matching_device(struct mpsse_ctx *ctx, const uint16_t *vid, const uint16_t *pid,
const char *product, const char *serial)
{
libusb_device **list;
struct libusb_device_descriptor desc;
struct libusb_config_descriptor *config0;
int err;
bool found = false;
ssize_t cnt = libusb_get_device_list(ctx->usb_ctx, &list);
if (cnt < 0)
LOG_ERROR("libusb_get_device_list() failed with %zi", cnt);
for (ssize_t i = 0; i < cnt; i++) {
libusb_device *device = list[i];
err = libusb_get_device_descriptor(device, &desc);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_get_device_descriptor() failed with %d", err);
continue;
}
if (vid && *vid != desc.idVendor)
continue;
if (pid && *pid != desc.idProduct)
continue;
err = libusb_open(device, &ctx->usb_dev);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_open() failed with %s",
libusb_error_name(err));
continue;
}
if (product && !string_descriptor_equal(ctx->usb_dev, desc.iProduct, product)) {
libusb_close(ctx->usb_dev);
continue;
}
if (serial && !string_descriptor_equal(ctx->usb_dev, desc.iSerialNumber, serial)) {
libusb_close(ctx->usb_dev);
continue;
}
found = true;
break;
}
libusb_free_device_list(list, 1);
if (!found) {
LOG_ERROR("no device found");
return false;
}
err = libusb_get_config_descriptor(libusb_get_device(ctx->usb_dev), 0, &config0);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_get_config_descriptor() failed with %d", err);
libusb_close(ctx->usb_dev);
return false;
}
/* Make sure the first configuration is selected */
int cfg;
err = libusb_get_configuration(ctx->usb_dev, &cfg);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_get_configuration() failed with %d", err);
goto error;
}
if (desc.bNumConfigurations > 0 && cfg != config0->bConfigurationValue) {
err = libusb_set_configuration(ctx->usb_dev, config0->bConfigurationValue);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_set_configuration() failed with %d", err);
goto error;
}
}
/* Try to detach ftdi_sio kernel module */
err = libusb_detach_kernel_driver(ctx->usb_dev, ctx->interface);
if (err != LIBUSB_SUCCESS && err != LIBUSB_ERROR_NOT_FOUND
&& err != LIBUSB_ERROR_NOT_SUPPORTED) {
LOG_ERROR("libusb_detach_kernel_driver() failed with %d", err);
goto error;
}
err = libusb_claim_interface(ctx->usb_dev, ctx->interface);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_claim_interface() failed with %d", err);
goto error;
}
/* Reset FTDI device */
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
SIO_RESET_REQUEST, SIO_RESET_SIO,
ctx->index, NULL, 0, ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("failed to reset FTDI device: %d", err);
goto error;
}
switch (desc.bcdDevice) {
case 0x500:
ctx->type = TYPE_FT2232C;
break;
case 0x700:
ctx->type = TYPE_FT2232H;
break;
case 0x800:
ctx->type = TYPE_FT4232H;
break;
case 0x900:
ctx->type = TYPE_FT232H;
break;
default:
LOG_ERROR("unsupported FTDI chip type: 0x%04x", desc.bcdDevice);
goto error;
}
/* Determine maximum packet size and endpoint addresses */
if (!(desc.bNumConfigurations > 0 && ctx->interface < config0->bNumInterfaces
&& config0->interface[ctx->interface].num_altsetting > 0))
goto desc_error;
const struct libusb_interface_descriptor *descriptor;
descriptor = &config0->interface[ctx->interface].altsetting[0];
if (descriptor->bNumEndpoints != 2)
goto desc_error;
ctx->in_ep = 0;
ctx->out_ep = 0;
for (int i = 0; i < descriptor->bNumEndpoints; i++) {
if (descriptor->endpoint[i].bEndpointAddress & 0x80) {
ctx->in_ep = descriptor->endpoint[i].bEndpointAddress;
ctx->max_packet_size =
descriptor->endpoint[i].wMaxPacketSize;
} else {
ctx->out_ep = descriptor->endpoint[i].bEndpointAddress;
}
}
if (ctx->in_ep == 0 || ctx->out_ep == 0)
goto desc_error;
libusb_free_config_descriptor(config0);
return true;
desc_error:
LOG_ERROR("unrecognized USB device descriptor");
error:
libusb_free_config_descriptor(config0);
libusb_close(ctx->usb_dev);
return false;
}
struct mpsse_ctx *mpsse_open(const uint16_t *vid, const uint16_t *pid, const char *description,
const char *serial, int channel)
{
struct mpsse_ctx *ctx = calloc(1, sizeof(*ctx));
int err;
if (!ctx)
return 0;
bit_copy_queue_init(&ctx->read_queue);
ctx->read_chunk_size = 16384;
ctx->read_size = 16384;
ctx->write_size = 16384;
ctx->read_chunk = malloc(ctx->read_chunk_size);
ctx->read_buffer = malloc(ctx->read_size);
ctx->write_buffer = malloc(ctx->write_size);
if (!ctx->read_chunk || !ctx->read_buffer || !ctx->write_buffer)
goto error;
ctx->interface = channel;
ctx->index = channel + 1;
ctx->usb_read_timeout = 5000;
ctx->usb_write_timeout = 5000;
err = libusb_init(&ctx->usb_ctx);
if (err != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_init() failed with %d", err);
goto error;
}
if (!open_matching_device(ctx, vid, pid, description, serial)) {
/* Four hex digits plus terminating zero each */
char vidstr[5];
char pidstr[5];
LOG_ERROR("unable to open ftdi device with vid %s, pid %s, description '%s' and "
"serial '%s'",
vid ? sprintf(vidstr, "%04x", *vid), vidstr : "*",
pid ? sprintf(pidstr, "%04x", *pid), pidstr : "*",
description ? description : "*",
serial ? serial : "*");
ctx->usb_dev = 0;
goto error;
}
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE,
SIO_SET_LATENCY_TIMER_REQUEST, 255, ctx->index, NULL, 0,
ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to set latency timer: %d", err);
goto error;
}
err = libusb_control_transfer(ctx->usb_dev,
FTDI_DEVICE_OUT_REQTYPE,
SIO_SET_BITMODE_REQUEST,
0x0b | (BITMODE_MPSSE << 8),
ctx->index,
NULL,
0,
ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to set MPSSE bitmode: %d", err);
goto error;
}
mpsse_purge(ctx);
return ctx;
error:
mpsse_close(ctx);
return 0;
}
void mpsse_close(struct mpsse_ctx *ctx)
{
if (ctx->usb_dev)
libusb_close(ctx->usb_dev);
if (ctx->usb_ctx)
libusb_exit(ctx->usb_ctx);
bit_copy_discard(&ctx->read_queue);
if (ctx->write_buffer)
free(ctx->write_buffer);
if (ctx->read_buffer)
free(ctx->read_buffer);
if (ctx->read_chunk)
free(ctx->read_chunk);
free(ctx);
}
bool mpsse_is_high_speed(struct mpsse_ctx *ctx)
{
return ctx->type != TYPE_FT2232C;
}
void mpsse_purge(struct mpsse_ctx *ctx)
{
int err;
LOG_DEBUG("-");
ctx->write_count = 0;
ctx->read_count = 0;
ctx->retval = ERROR_OK;
bit_copy_discard(&ctx->read_queue);
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_RESET_REQUEST,
SIO_RESET_PURGE_RX, ctx->index, NULL, 0, ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to purge ftdi rx buffers: %d", err);
return;
}
err = libusb_control_transfer(ctx->usb_dev, FTDI_DEVICE_OUT_REQTYPE, SIO_RESET_REQUEST,
SIO_RESET_PURGE_TX, ctx->index, NULL, 0, ctx->usb_write_timeout);
if (err < 0) {
LOG_ERROR("unable to purge ftdi tx buffers: %d", err);
return;
}
}
static unsigned buffer_write_space(struct mpsse_ctx *ctx)
{
/* Reserve one byte for SEND_IMMEDIATE */
return ctx->write_size - ctx->write_count - 1;
}
static unsigned buffer_read_space(struct mpsse_ctx *ctx)
{
return ctx->read_size - ctx->read_count;
}
static void buffer_write_byte(struct mpsse_ctx *ctx, uint8_t data)
{
DEBUG_IO("%02x", data);
assert(ctx->write_count < ctx->write_size);
ctx->write_buffer[ctx->write_count++] = data;
}
static unsigned buffer_write(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset,
unsigned bit_count)
{
DEBUG_IO("%d bits", bit_count);
assert(ctx->write_count + DIV_ROUND_UP(bit_count, 8) <= ctx->write_size);
bit_copy(ctx->write_buffer + ctx->write_count, 0, out, out_offset, bit_count);
ctx->write_count += DIV_ROUND_UP(bit_count, 8);
return bit_count;
}
static unsigned buffer_add_read(struct mpsse_ctx *ctx, uint8_t *in, unsigned in_offset,
unsigned bit_count, unsigned offset)
{
DEBUG_IO("%d bits, offset %d", bit_count, offset);
assert(ctx->read_count + DIV_ROUND_UP(bit_count, 8) <= ctx->read_size);
bit_copy_queued(&ctx->read_queue, in, in_offset, ctx->read_buffer + ctx->read_count, offset,
bit_count);
ctx->read_count += DIV_ROUND_UP(bit_count, 8);
return bit_count;
}
void mpsse_clock_data_out(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset,
unsigned length, uint8_t mode)
{
mpsse_clock_data(ctx, out, out_offset, 0, 0, length, mode);
}
void mpsse_clock_data_in(struct mpsse_ctx *ctx, uint8_t *in, unsigned in_offset, unsigned length,
uint8_t mode)
{
mpsse_clock_data(ctx, 0, 0, in, in_offset, length, mode);
}
void mpsse_clock_data(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset, uint8_t *in,
unsigned in_offset, unsigned length, uint8_t mode)
{
/* TODO: Fix MSB first modes */
DEBUG_IO("%s%s %d bits", in ? "in" : "", out ? "out" : "", length);
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
/* TODO: On H chips, use command 0x8E/0x8F if in and out are both 0 */
if (out || (!out && !in))
mode |= 0x10;
if (in)
mode |= 0x20;
while (length > 0) {
/* Guarantee buffer space enough for a minimum size transfer */
if (buffer_write_space(ctx) + (length < 8) < (out || (!out && !in) ? 4 : 3)
|| (in && buffer_read_space(ctx) < 1))
ctx->retval = mpsse_flush(ctx);
if (length < 8) {
/* Transfer remaining bits in bit mode */
buffer_write_byte(ctx, 0x02 | mode);
buffer_write_byte(ctx, length - 1);
if (out)
out_offset += buffer_write(ctx, out, out_offset, length);
if (in)
in_offset += buffer_add_read(ctx, in, in_offset, length, 8 - length);
if (!out && !in)
buffer_write_byte(ctx, 0x00);
length = 0;
} else {
/* Byte transfer */
unsigned this_bytes = length / 8;
/* MPSSE command limit */
if (this_bytes > 65536)
this_bytes = 65536;
/* Buffer space limit. We already made sure there's space for the minimum
* transfer. */
if ((out || (!out && !in)) && this_bytes + 3 > buffer_write_space(ctx))
this_bytes = buffer_write_space(ctx) - 3;
if (in && this_bytes > buffer_read_space(ctx))
this_bytes = buffer_read_space(ctx);
if (this_bytes > 0) {
buffer_write_byte(ctx, mode);
buffer_write_byte(ctx, (this_bytes - 1) & 0xff);
buffer_write_byte(ctx, (this_bytes - 1) >> 8);
if (out)
out_offset += buffer_write(ctx,
out,
out_offset,
this_bytes * 8);
if (in)
in_offset += buffer_add_read(ctx,
in,
in_offset,
this_bytes * 8,
0);
if (!out && !in)
for (unsigned n = 0; n < this_bytes; n++)
buffer_write_byte(ctx, 0x00);
length -= this_bytes * 8;
}
}
}
}
void mpsse_clock_tms_cs_out(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset,
unsigned length, bool tdi, uint8_t mode)
{
mpsse_clock_tms_cs(ctx, out, out_offset, 0, 0, length, tdi, mode);
}
void mpsse_clock_tms_cs(struct mpsse_ctx *ctx, const uint8_t *out, unsigned out_offset, uint8_t *in,
unsigned in_offset, unsigned length, bool tdi, uint8_t mode)
{
DEBUG_IO("%sout %d bits, tdi=%d", in ? "in" : "", length, tdi);
assert(out);
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
mode |= 0x42;
if (in)
mode |= 0x20;
while (length > 0) {
/* Guarantee buffer space enough for a minimum size transfer */
if (buffer_write_space(ctx) < 3 || (in && buffer_read_space(ctx) < 1))
ctx->retval = mpsse_flush(ctx);
/* Byte transfer */
unsigned this_bits = length;
/* MPSSE command limit */
/* NOTE: there's a report of an FT2232 bug in this area, where shifting
* exactly 7 bits can make problems with TMS signaling for the last
* clock cycle:
*
* http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
*/
if (this_bits > 7)
this_bits = 7;
if (this_bits > 0) {
buffer_write_byte(ctx, mode);
buffer_write_byte(ctx, this_bits - 1);
uint8_t data = 0;
/* TODO: Fix MSB first, if allowed in MPSSE */
bit_copy(&data, 0, out, out_offset, this_bits);
out_offset += this_bits;
buffer_write_byte(ctx, data | (tdi ? 0x80 : 0x00));
if (in)
in_offset += buffer_add_read(ctx,
in,
in_offset,
this_bits,
8 - this_bits);
length -= this_bits;
}
}
}
void mpsse_set_data_bits_low_byte(struct mpsse_ctx *ctx, uint8_t data, uint8_t dir)
{
DEBUG_IO("-");
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
if (buffer_write_space(ctx) < 3)
ctx->retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x80);
buffer_write_byte(ctx, data);
buffer_write_byte(ctx, dir);
}
void mpsse_set_data_bits_high_byte(struct mpsse_ctx *ctx, uint8_t data, uint8_t dir)
{
DEBUG_IO("-");
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
if (buffer_write_space(ctx) < 3)
ctx->retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x82);
buffer_write_byte(ctx, data);
buffer_write_byte(ctx, dir);
}
void mpsse_read_data_bits_low_byte(struct mpsse_ctx *ctx, uint8_t *data)
{
DEBUG_IO("-");
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
if (buffer_write_space(ctx) < 1 || buffer_read_space(ctx) < 1)
ctx->retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x81);
buffer_add_read(ctx, data, 0, 8, 0);
}
void mpsse_read_data_bits_high_byte(struct mpsse_ctx *ctx, uint8_t *data)
{
DEBUG_IO("-");
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
if (buffer_write_space(ctx) < 1 || buffer_read_space(ctx) < 1)
ctx->retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x83);
buffer_add_read(ctx, data, 0, 8, 0);
}
static void single_byte_boolean_helper(struct mpsse_ctx *ctx, bool var, uint8_t val_if_true,
uint8_t val_if_false)
{
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
if (buffer_write_space(ctx) < 1)
ctx->retval = mpsse_flush(ctx);
buffer_write_byte(ctx, var ? val_if_true : val_if_false);
}
void mpsse_loopback_config(struct mpsse_ctx *ctx, bool enable)
{
LOG_DEBUG("%s", enable ? "on" : "off");
single_byte_boolean_helper(ctx, enable, 0x84, 0x85);
}
void mpsse_set_divisor(struct mpsse_ctx *ctx, uint16_t divisor)
{
LOG_DEBUG("%d", divisor);
if (ctx->retval != ERROR_OK) {
DEBUG_IO("Ignoring command due to previous error");
return;
}
if (buffer_write_space(ctx) < 3)
ctx->retval = mpsse_flush(ctx);
buffer_write_byte(ctx, 0x86);
buffer_write_byte(ctx, divisor & 0xff);
buffer_write_byte(ctx, divisor >> 8);
}
int mpsse_divide_by_5_config(struct mpsse_ctx *ctx, bool enable)
{
if (!mpsse_is_high_speed(ctx))
return ERROR_FAIL;
LOG_DEBUG("%s", enable ? "on" : "off");
single_byte_boolean_helper(ctx, enable, 0x8b, 0x8a);
return ERROR_OK;
}
int mpsse_rtck_config(struct mpsse_ctx *ctx, bool enable)
{
if (!mpsse_is_high_speed(ctx))
return ERROR_FAIL;
LOG_DEBUG("%s", enable ? "on" : "off");
single_byte_boolean_helper(ctx, enable, 0x96, 0x97);
return ERROR_OK;
}
int mpsse_set_frequency(struct mpsse_ctx *ctx, int frequency)
{
LOG_DEBUG("target %d Hz", frequency);
assert(frequency >= 0);
int base_clock;
if (frequency == 0)
return mpsse_rtck_config(ctx, true);
mpsse_rtck_config(ctx, false); /* just try */
if (frequency > 60000000 / 2 / 65536 && mpsse_divide_by_5_config(ctx, false) == ERROR_OK) {
base_clock = 60000000;
} else {
mpsse_divide_by_5_config(ctx, true); /* just try */
base_clock = 12000000;
}
int divisor = (base_clock / 2 + frequency - 1) / frequency - 1;
if (divisor > 65535)
divisor = 65535;
assert(divisor >= 0);
mpsse_set_divisor(ctx, divisor);
frequency = base_clock / 2 / (1 + divisor);
LOG_DEBUG("actually %d Hz", frequency);
return frequency;
}
/* Context needed by the callbacks */
struct transfer_result {
struct mpsse_ctx *ctx;
bool done;
unsigned transferred;
};
static LIBUSB_CALL void read_cb(struct libusb_transfer *transfer)
{
struct transfer_result *res = (struct transfer_result *)transfer->user_data;
struct mpsse_ctx *ctx = res->ctx;
unsigned packet_size = ctx->max_packet_size;
DEBUG_PRINT_BUF(transfer->buffer, transfer->actual_length);
/* Strip the two status bytes sent at the beginning of each USB packet
* while copying the chunk buffer to the read buffer */
unsigned num_packets = DIV_ROUND_UP(transfer->actual_length, packet_size);
unsigned chunk_remains = transfer->actual_length;
for (unsigned i = 0; i < num_packets && chunk_remains > 2; i++) {
unsigned this_size = packet_size - 2;
if (this_size > chunk_remains - 2)
this_size = chunk_remains - 2;
if (this_size > ctx->read_count - res->transferred)
this_size = ctx->read_count - res->transferred;
memcpy(ctx->read_buffer + res->transferred,
ctx->read_chunk + packet_size * i + 2,
this_size);
res->transferred += this_size;
chunk_remains -= this_size + 2;
if (res->transferred == ctx->read_count) {
res->done = true;
break;
}
}
DEBUG_IO("raw chunk %d, transferred %d of %d", transfer->actual_length, res->transferred,
ctx->read_count);
if (!res->done)
if (libusb_submit_transfer(transfer) != LIBUSB_SUCCESS)
res->done = true;
}
static LIBUSB_CALL void write_cb(struct libusb_transfer *transfer)
{
struct transfer_result *res = (struct transfer_result *)transfer->user_data;
struct mpsse_ctx *ctx = res->ctx;
res->transferred += transfer->actual_length;
DEBUG_IO("transferred %d of %d", res->transferred, ctx->write_count);
DEBUG_PRINT_BUF(transfer->buffer, transfer->actual_length);
if (res->transferred == ctx->write_count)
res->done = true;
else {
transfer->length = ctx->write_count - res->transferred;
transfer->buffer = ctx->write_buffer + res->transferred;
if (libusb_submit_transfer(transfer) != LIBUSB_SUCCESS)
res->done = true;
}
}
int mpsse_flush(struct mpsse_ctx *ctx)
{
int retval = ctx->retval;
if (retval != ERROR_OK) {
DEBUG_IO("Ignoring flush due to previous error");
assert(ctx->write_count == 0 && ctx->read_count == 0);
ctx->retval = ERROR_OK;
return retval;
}
DEBUG_IO("write %d%s, read %d", ctx->write_count, ctx->read_count ? "+1" : "",
ctx->read_count);
assert(ctx->write_count > 0 || ctx->read_count == 0); /* No read data without write data */
if (ctx->write_count == 0)
return retval;
struct libusb_transfer *read_transfer = 0;
struct transfer_result read_result = { .ctx = ctx, .done = true };
if (ctx->read_count) {
buffer_write_byte(ctx, 0x87); /* SEND_IMMEDIATE */
read_result.done = false;
/* delay read transaction to ensure the FTDI chip can support us with data
immediately after processing the MPSSE commands in the write transaction */
}
struct transfer_result write_result = { .ctx = ctx, .done = false };
struct libusb_transfer *write_transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(write_transfer, ctx->usb_dev, ctx->out_ep, ctx->write_buffer,
ctx->write_count, write_cb, &write_result, ctx->usb_write_timeout);
retval = libusb_submit_transfer(write_transfer);
if (ctx->read_count) {
read_transfer = libusb_alloc_transfer(0);
libusb_fill_bulk_transfer(read_transfer, ctx->usb_dev, ctx->in_ep, ctx->read_chunk,
ctx->read_chunk_size, read_cb, &read_result,
ctx->usb_read_timeout);
retval = libusb_submit_transfer(read_transfer);
}
/* Polling loop, more or less taken from libftdi */
while (!write_result.done || !read_result.done) {
retval = libusb_handle_events(ctx->usb_ctx);
keep_alive();
if (retval != LIBUSB_SUCCESS && retval != LIBUSB_ERROR_INTERRUPTED) {
libusb_cancel_transfer(write_transfer);
if (read_transfer)
libusb_cancel_transfer(read_transfer);
while (!write_result.done || !read_result.done)
if (libusb_handle_events(ctx->usb_ctx) != LIBUSB_SUCCESS)
break;
}
}
if (retval != LIBUSB_SUCCESS) {
LOG_ERROR("libusb_handle_events() failed with %d", retval);
retval = ERROR_FAIL;
} else if (write_result.transferred < ctx->write_count) {
LOG_ERROR("ftdi device did not accept all data: %d, tried %d",
write_result.transferred,
ctx->write_count);
retval = ERROR_FAIL;
} else if (read_result.transferred < ctx->read_count) {
LOG_ERROR("ftdi device did not return all data: %d, expected %d",
read_result.transferred,
ctx->read_count);
retval = ERROR_FAIL;
} else if (ctx->read_count) {
ctx->write_count = 0;
ctx->read_count = 0;
bit_copy_execute(&ctx->read_queue);
retval = ERROR_OK;
} else {
ctx->write_count = 0;
bit_copy_discard(&ctx->read_queue);
retval = ERROR_OK;
}
libusb_free_transfer(write_transfer);
if (read_transfer)
libusb_free_transfer(read_transfer);
if (retval != ERROR_OK)
mpsse_purge(ctx);
return retval;
}