openocd/src/jtag/core.c

1731 lines
45 KiB
C

/***************************************************************************
* Copyright (C) 2009 Zachary T Welch *
* zw@superlucidity.net *
* *
* Copyright (C) 2007,2008,2009 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2009 SoftPLC Corporation *
* http://softplc.com *
* dick@softplc.com *
* *
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag.h"
#include "interface.h"
#ifdef HAVE_STRINGS_H
#include <strings.h>
#endif
/// The number of JTAG queue flushes (for profiling and debugging purposes).
static int jtag_flush_queue_count;
static void jtag_add_scan_check(struct jtag_tap *active,
void (*jtag_add_scan)(struct jtag_tap *active, int in_num_fields, const struct scan_field *in_fields, tap_state_t state),
int in_num_fields, struct scan_field *in_fields, tap_state_t state);
/**
* The jtag_error variable is set when an error occurs while executing
* the queue. Application code may set this using jtag_set_error(),
* when an error occurs during processing that should be reported during
* jtag_execute_queue().
*
* Tts value may be checked with jtag_get_error() and cleared with
* jtag_error_clear(). This value is returned (and cleared) by
* jtag_execute_queue().
*/
static int jtag_error = ERROR_OK;
static const char *jtag_event_strings[] =
{
[JTAG_TRST_ASSERTED] = "TAP reset",
[JTAG_TAP_EVENT_SETUP] = "TAP setup",
[JTAG_TAP_EVENT_ENABLE] = "TAP enabled",
[JTAG_TAP_EVENT_DISABLE] = "TAP disabled",
};
/*
* JTAG adapters must initialize with TRST and SRST de-asserted
* (they're negative logic, so that means *high*). But some
* hardware doesn't necessarily work that way ... so set things
* up so that jtag_init() always forces that state.
*/
static int jtag_trst = -1;
static int jtag_srst = -1;
/**
* List all TAPs that have been created.
*/
static struct jtag_tap *__jtag_all_taps = NULL;
/**
* The number of TAPs in the __jtag_all_taps list, used to track the
* assigned chain position to new TAPs
*/
static unsigned jtag_num_taps = 0;
static enum reset_types jtag_reset_config = RESET_NONE;
static tap_state_t cmd_queue_end_state = TAP_RESET;
tap_state_t cmd_queue_cur_state = TAP_RESET;
static bool jtag_verify_capture_ir = true;
static int jtag_verify = 1;
/* how long the OpenOCD should wait before attempting JTAG communication after reset lines deasserted (in ms) */
static int adapter_nsrst_delay = 0; /* default to no nSRST delay */
static int jtag_ntrst_delay = 0; /* default to no nTRST delay */
static int adapter_nsrst_assert_width = 0; /* width of assertion */
static int jtag_ntrst_assert_width = 0; /* width of assertion */
/**
* Contains a single callback along with a pointer that will be passed
* when an event occurs.
*/
struct jtag_event_callback {
/// a event callback
jtag_event_handler_t callback;
/// the private data to pass to the callback
void* priv;
/// the next callback
struct jtag_event_callback* next;
};
/* callbacks to inform high-level handlers about JTAG state changes */
static struct jtag_event_callback *jtag_event_callbacks;
/* speed in kHz*/
static int speed_khz = 0;
/* speed to fallback to when RCLK is requested but not supported */
static int rclk_fallback_speed_khz = 0;
static enum {CLOCK_MODE_SPEED, CLOCK_MODE_KHZ, CLOCK_MODE_RCLK} clock_mode;
static int jtag_speed = 0;
static struct jtag_interface *jtag = NULL;
/* configuration */
struct jtag_interface *jtag_interface = NULL;
void jtag_set_error(int error)
{
if ((error == ERROR_OK) || (jtag_error != ERROR_OK))
return;
jtag_error = error;
}
int jtag_get_error(void)
{
return jtag_error;
}
int jtag_error_clear(void)
{
int temp = jtag_error;
jtag_error = ERROR_OK;
return temp;
}
/************/
static bool jtag_poll = 1;
bool is_jtag_poll_safe(void)
{
/* Polling can be disabled explicitly with set_enabled(false).
* It is also implicitly disabled while TRST is active and
* while SRST is gating the JTAG clock.
*/
if (!jtag_poll || jtag_trst != 0)
return false;
return jtag_srst == 0 || (jtag_reset_config & RESET_SRST_NO_GATING);
}
bool jtag_poll_get_enabled(void)
{
return jtag_poll;
}
void jtag_poll_set_enabled(bool value)
{
jtag_poll = value;
}
/************/
struct jtag_tap *jtag_all_taps(void)
{
return __jtag_all_taps;
};
unsigned jtag_tap_count(void)
{
return jtag_num_taps;
}
unsigned jtag_tap_count_enabled(void)
{
struct jtag_tap *t = jtag_all_taps();
unsigned n = 0;
while (t)
{
if (t->enabled)
n++;
t = t->next_tap;
}
return n;
}
/// Append a new TAP to the chain of all taps.
void jtag_tap_add(struct jtag_tap *t)
{
t->abs_chain_position = jtag_num_taps++;
struct jtag_tap **tap = &__jtag_all_taps;
while (*tap != NULL)
tap = &(*tap)->next_tap;
*tap = t;
}
/* returns a pointer to the n-th device in the scan chain */
static inline struct jtag_tap *jtag_tap_by_position(unsigned n)
{
struct jtag_tap *t = jtag_all_taps();
while (t && n-- > 0)
t = t->next_tap;
return t;
}
struct jtag_tap *jtag_tap_by_string(const char *s)
{
/* try by name first */
struct jtag_tap *t = jtag_all_taps();
while (t)
{
if (0 == strcmp(t->dotted_name, s))
return t;
t = t->next_tap;
}
/* no tap found by name, so try to parse the name as a number */
unsigned n;
if (parse_uint(s, &n) != ERROR_OK)
return NULL;
/* FIXME remove this numeric fallback code late June 2010, along
* with all info in the User's Guide that TAPs have numeric IDs.
* Also update "scan_chain" output to not display the numbers.
*/
t = jtag_tap_by_position(n);
if (t)
LOG_WARNING("Specify TAP '%s' by name, not number %u",
t->dotted_name, n);
return t;
}
struct jtag_tap* jtag_tap_next_enabled(struct jtag_tap* p)
{
p = p ? p->next_tap : jtag_all_taps();
while (p)
{
if (p->enabled)
return p;
p = p->next_tap;
}
return NULL;
}
const char *jtag_tap_name(const struct jtag_tap *tap)
{
return (tap == NULL) ? "(unknown)" : tap->dotted_name;
}
int jtag_register_event_callback(jtag_event_handler_t callback, void *priv)
{
struct jtag_event_callback **callbacks_p = &jtag_event_callbacks;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
(*callbacks_p) = malloc(sizeof(struct jtag_event_callback));
(*callbacks_p)->callback = callback;
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
return ERROR_OK;
}
int jtag_unregister_event_callback(jtag_event_handler_t callback, void *priv)
{
struct jtag_event_callback **callbacks_p;
struct jtag_event_callback **next;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
for (callbacks_p = &jtag_event_callbacks;
*callbacks_p != NULL;
callbacks_p = next)
{
next = &((*callbacks_p)->next);
if ((*callbacks_p)->priv != priv)
continue;
if ((*callbacks_p)->callback == callback)
{
free(*callbacks_p);
*callbacks_p = *next;
}
}
return ERROR_OK;
}
int jtag_call_event_callbacks(enum jtag_event event)
{
struct jtag_event_callback *callback = jtag_event_callbacks;
LOG_DEBUG("jtag event: %s", jtag_event_strings[event]);
while (callback)
{
struct jtag_event_callback *next;
/* callback may remove itself */
next = callback->next;
callback->callback(event, callback->priv);
callback = next;
}
return ERROR_OK;
}
static void jtag_checks(void)
{
assert(jtag_trst == 0);
}
static void jtag_prelude(tap_state_t state)
{
jtag_checks();
assert(state != TAP_INVALID);
cmd_queue_cur_state = state;
}
void jtag_alloc_in_value32(struct scan_field *field)
{
interface_jtag_alloc_in_value32(field);
}
void jtag_add_ir_scan_noverify(struct jtag_tap *active, const struct scan_field *in_fields,
tap_state_t state)
{
jtag_prelude(state);
int retval = interface_jtag_add_ir_scan(active, in_fields, state);
jtag_set_error(retval);
}
static void jtag_add_ir_scan_noverify_callback(struct jtag_tap *active, int dummy, const struct scan_field *in_fields,
tap_state_t state)
{
jtag_add_ir_scan_noverify(active, in_fields, state);
}
void jtag_add_ir_scan(struct jtag_tap *active, struct scan_field *in_fields, tap_state_t state)
{
assert(state != TAP_RESET);
if (jtag_verify && jtag_verify_capture_ir)
{
/* 8 x 32 bit id's is enough for all invocations */
/* if we are to run a verification of the ir scan, we need to get the input back.
* We may have to allocate space if the caller didn't ask for the input back.
*/
in_fields->check_value = active->expected;
in_fields->check_mask = active->expected_mask;
jtag_add_scan_check(active, jtag_add_ir_scan_noverify_callback, 1, in_fields, state);
} else
{
jtag_add_ir_scan_noverify(active, in_fields, state);
}
}
void jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits,
tap_state_t state)
{
assert(out_bits != NULL);
assert(state != TAP_RESET);
jtag_prelude(state);
int retval = interface_jtag_add_plain_ir_scan(
num_bits, out_bits, in_bits, state);
jtag_set_error(retval);
}
static int jtag_check_value_inner(uint8_t *captured, uint8_t *in_check_value,
uint8_t *in_check_mask, int num_bits);
static int jtag_check_value_mask_callback(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
{
return jtag_check_value_inner((uint8_t *)data0, (uint8_t *)data1, (uint8_t *)data2, (int)data3);
}
static void jtag_add_scan_check(struct jtag_tap *active, void (*jtag_add_scan)(struct jtag_tap *active, int in_num_fields, const struct scan_field *in_fields, tap_state_t state),
int in_num_fields, struct scan_field *in_fields, tap_state_t state)
{
for (int i = 0; i < in_num_fields; i++)
{
struct scan_field *field = &in_fields[i];
field->allocated = 0;
field->modified = 0;
if (field->check_value || field->in_value)
continue;
interface_jtag_add_scan_check_alloc(field);
field->modified = 1;
}
jtag_add_scan(active, in_num_fields, in_fields, state);
for (int i = 0; i < in_num_fields; i++)
{
if ((in_fields[i].check_value != NULL) && (in_fields[i].in_value != NULL))
{
/* this is synchronous for a minidriver */
jtag_add_callback4(jtag_check_value_mask_callback, (jtag_callback_data_t)in_fields[i].in_value,
(jtag_callback_data_t)in_fields[i].check_value,
(jtag_callback_data_t)in_fields[i].check_mask,
(jtag_callback_data_t)in_fields[i].num_bits);
}
if (in_fields[i].allocated)
{
free(in_fields[i].in_value);
}
if (in_fields[i].modified)
{
in_fields[i].in_value = NULL;
}
}
}
void jtag_add_dr_scan_check(struct jtag_tap *active, int in_num_fields, struct scan_field *in_fields, tap_state_t state)
{
if (jtag_verify)
{
jtag_add_scan_check(active, jtag_add_dr_scan, in_num_fields, in_fields, state);
} else
{
jtag_add_dr_scan(active, in_num_fields, in_fields, state);
}
}
void jtag_add_dr_scan(struct jtag_tap *active, int in_num_fields, const struct scan_field *in_fields,
tap_state_t state)
{
assert(state != TAP_RESET);
jtag_prelude(state);
int retval;
retval = interface_jtag_add_dr_scan(active, in_num_fields, in_fields, state);
jtag_set_error(retval);
}
void jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits,
tap_state_t state)
{
assert(out_bits != NULL);
assert(state != TAP_RESET);
jtag_prelude(state);
int retval;
retval = interface_jtag_add_plain_dr_scan(num_bits, out_bits, in_bits, state);
jtag_set_error(retval);
}
void jtag_add_tlr(void)
{
jtag_prelude(TAP_RESET);
jtag_set_error(interface_jtag_add_tlr());
/* NOTE: order here matches TRST path in jtag_add_reset() */
jtag_call_event_callbacks(JTAG_TRST_ASSERTED);
jtag_notify_event(JTAG_TRST_ASSERTED);
}
/**
* If supported by the underlying adapter, this clocks a raw bit sequence
* onto TMS for switching betwen JTAG and SWD modes.
*
* DO NOT use this to bypass the integrity checks and logging provided
* by the jtag_add_pathmove() and jtag_add_statemove() calls.
*
* @param nbits How many bits to clock out.
* @param seq The bit sequence. The LSB is bit 0 of seq[0].
* @param state The JTAG tap state to record on completion. Use
* TAP_INVALID to represent being in in SWD mode.
*
* @todo Update naming conventions to stop assuming everything is JTAG.
*/
int jtag_add_tms_seq(unsigned nbits, const uint8_t *seq, enum tap_state state)
{
int retval;
if (!(jtag->supported & DEBUG_CAP_TMS_SEQ))
return ERROR_JTAG_NOT_IMPLEMENTED;
jtag_checks();
cmd_queue_cur_state = state;
retval = interface_add_tms_seq(nbits, seq, state);
jtag_set_error(retval);
return retval;
}
void jtag_add_pathmove(int num_states, const tap_state_t *path)
{
tap_state_t cur_state = cmd_queue_cur_state;
/* the last state has to be a stable state */
if (!tap_is_state_stable(path[num_states - 1]))
{
LOG_ERROR("BUG: TAP path doesn't finish in a stable state");
jtag_set_error(ERROR_JTAG_NOT_STABLE_STATE);
return;
}
for (int i = 0; i < num_states; i++)
{
if (path[i] == TAP_RESET)
{
LOG_ERROR("BUG: TAP_RESET is not a valid state for pathmove sequences");
jtag_set_error(ERROR_JTAG_STATE_INVALID);
return;
}
if (tap_state_transition(cur_state, true) != path[i]
&& tap_state_transition(cur_state, false) != path[i])
{
LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition",
tap_state_name(cur_state), tap_state_name(path[i]));
jtag_set_error(ERROR_JTAG_TRANSITION_INVALID);
return;
}
cur_state = path[i];
}
jtag_checks();
jtag_set_error(interface_jtag_add_pathmove(num_states, path));
cmd_queue_cur_state = path[num_states - 1];
}
int jtag_add_statemove(tap_state_t goal_state)
{
tap_state_t cur_state = cmd_queue_cur_state;
if (goal_state != cur_state)
{
LOG_DEBUG("cur_state=%s goal_state=%s",
tap_state_name(cur_state),
tap_state_name(goal_state));
}
/* If goal is RESET, be paranoid and force that that transition
* (e.g. five TCK cycles, TMS high). Else trust "cur_state".
*/
if (goal_state == TAP_RESET)
jtag_add_tlr();
else if (goal_state == cur_state)
/* nothing to do */ ;
else if (tap_is_state_stable(cur_state) && tap_is_state_stable(goal_state))
{
unsigned tms_bits = tap_get_tms_path(cur_state, goal_state);
unsigned tms_count = tap_get_tms_path_len(cur_state, goal_state);
tap_state_t moves[8];
assert(tms_count < ARRAY_SIZE(moves));
for (unsigned i = 0; i < tms_count; i++, tms_bits >>= 1)
{
bool bit = tms_bits & 1;
cur_state = tap_state_transition(cur_state, bit);
moves[i] = cur_state;
}
jtag_add_pathmove(tms_count, moves);
}
else if (tap_state_transition(cur_state, true) == goal_state
|| tap_state_transition(cur_state, false) == goal_state)
{
jtag_add_pathmove(1, &goal_state);
}
else
return ERROR_FAIL;
return ERROR_OK;
}
void jtag_add_runtest(int num_cycles, tap_state_t state)
{
jtag_prelude(state);
jtag_set_error(interface_jtag_add_runtest(num_cycles, state));
}
void jtag_add_clocks(int num_cycles)
{
if (!tap_is_state_stable(cmd_queue_cur_state))
{
LOG_ERROR("jtag_add_clocks() called with TAP in unstable state \"%s\"",
tap_state_name(cmd_queue_cur_state));
jtag_set_error(ERROR_JTAG_NOT_STABLE_STATE);
return;
}
if (num_cycles > 0)
{
jtag_checks();
jtag_set_error(interface_jtag_add_clocks(num_cycles));
}
}
void jtag_add_reset(int req_tlr_or_trst, int req_srst)
{
int trst_with_tlr = 0;
int new_srst = 0;
int new_trst = 0;
/* Without SRST, we must use target-specific JTAG operations
* on each target; callers should not be requesting SRST when
* that signal doesn't exist.
*
* RESET_SRST_PULLS_TRST is a board or chip level quirk, which
* can kick in even if the JTAG adapter can't drive TRST.
*/
if (req_srst) {
if (!(jtag_reset_config & RESET_HAS_SRST)) {
LOG_ERROR("BUG: can't assert SRST");
jtag_set_error(ERROR_FAIL);
return;
}
if ((jtag_reset_config & RESET_SRST_PULLS_TRST) != 0
&& !req_tlr_or_trst) {
LOG_ERROR("BUG: can't assert only SRST");
jtag_set_error(ERROR_FAIL);
return;
}
new_srst = 1;
}
/* JTAG reset (entry to TAP_RESET state) can always be achieved
* using TCK and TMS; that may go through a TAP_{IR,DR}UPDATE
* state first. TRST accelerates it, and bypasses those states.
*
* RESET_TRST_PULLS_SRST is a board or chip level quirk, which
* can kick in even if the JTAG adapter can't drive SRST.
*/
if (req_tlr_or_trst) {
if (!(jtag_reset_config & RESET_HAS_TRST))
trst_with_tlr = 1;
else if ((jtag_reset_config & RESET_TRST_PULLS_SRST) != 0
&& !req_srst)
trst_with_tlr = 1;
else
new_trst = 1;
}
/* Maybe change TRST and/or SRST signal state */
if (jtag_srst != new_srst || jtag_trst != new_trst) {
int retval;
retval = interface_jtag_add_reset(new_trst, new_srst);
if (retval != ERROR_OK)
jtag_set_error(retval);
else
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("TRST/SRST error %d", retval);
return;
}
}
/* SRST resets everything hooked up to that signal */
if (jtag_srst != new_srst) {
jtag_srst = new_srst;
if (jtag_srst)
{
LOG_DEBUG("SRST line asserted");
if (adapter_nsrst_assert_width)
jtag_add_sleep(adapter_nsrst_assert_width * 1000);
}
else {
LOG_DEBUG("SRST line released");
if (adapter_nsrst_delay)
jtag_add_sleep(adapter_nsrst_delay * 1000);
}
}
/* Maybe enter the JTAG TAP_RESET state ...
* - using only TMS, TCK, and the JTAG state machine
* - or else more directly, using TRST
*
* TAP_RESET should be invisible to non-debug parts of the system.
*/
if (trst_with_tlr) {
LOG_DEBUG("JTAG reset with TLR instead of TRST");
jtag_set_end_state(TAP_RESET);
jtag_add_tlr();
} else if (jtag_trst != new_trst) {
jtag_trst = new_trst;
if (jtag_trst) {
LOG_DEBUG("TRST line asserted");
tap_set_state(TAP_RESET);
if (jtag_ntrst_assert_width)
jtag_add_sleep(jtag_ntrst_assert_width * 1000);
} else {
LOG_DEBUG("TRST line released");
if (jtag_ntrst_delay)
jtag_add_sleep(jtag_ntrst_delay * 1000);
/* We just asserted nTRST, so we're now in TAP_RESET.
* Inform possible listeners about this, now that
* JTAG instructions and data can be shifted. This
* sequence must match jtag_add_tlr().
*/
jtag_call_event_callbacks(JTAG_TRST_ASSERTED);
jtag_notify_event(JTAG_TRST_ASSERTED);
}
}
}
tap_state_t jtag_set_end_state(tap_state_t state)
{
if ((state == TAP_DRSHIFT)||(state == TAP_IRSHIFT))
{
LOG_ERROR("BUG: TAP_DRSHIFT/IRSHIFT can't be end state. Calling code should use a larger scan field");
}
if (state != TAP_INVALID)
cmd_queue_end_state = state;
return cmd_queue_end_state;
}
tap_state_t jtag_get_end_state(void)
{
return cmd_queue_end_state;
}
void jtag_add_sleep(uint32_t us)
{
/// @todo Here, keep_alive() appears to be a layering violation!!!
keep_alive();
jtag_set_error(interface_jtag_add_sleep(us));
}
static int jtag_check_value_inner(uint8_t *captured, uint8_t *in_check_value,
uint8_t *in_check_mask, int num_bits)
{
int retval = ERROR_OK;
int compare_failed;
if (in_check_mask)
compare_failed = buf_cmp_mask(captured, in_check_value, in_check_mask, num_bits);
else
compare_failed = buf_cmp(captured, in_check_value, num_bits);
if (compare_failed) {
char *captured_str, *in_check_value_str;
int bits = (num_bits > DEBUG_JTAG_IOZ)
? DEBUG_JTAG_IOZ
: num_bits;
/* NOTE: we've lost diagnostic context here -- 'which tap' */
captured_str = buf_to_str(captured, bits, 16);
in_check_value_str = buf_to_str(in_check_value, bits, 16);
LOG_WARNING("Bad value '%s' captured during DR or IR scan:",
captured_str);
LOG_WARNING(" check_value: 0x%s", in_check_value_str);
free(captured_str);
free(in_check_value_str);
if (in_check_mask) {
char *in_check_mask_str;
in_check_mask_str = buf_to_str(in_check_mask, bits, 16);
LOG_WARNING(" check_mask: 0x%s", in_check_mask_str);
free(in_check_mask_str);
}
retval = ERROR_JTAG_QUEUE_FAILED;
}
return retval;
}
void jtag_check_value_mask(struct scan_field *field, uint8_t *value, uint8_t *mask)
{
assert(field->in_value != NULL);
if (value == NULL)
{
/* no checking to do */
return;
}
jtag_execute_queue_noclear();
int retval = jtag_check_value_inner(field->in_value, value, mask, field->num_bits);
jtag_set_error(retval);
}
int default_interface_jtag_execute_queue(void)
{
if (NULL == jtag)
{
LOG_ERROR("No JTAG interface configured yet. "
"Issue 'init' command in startup scripts "
"before communicating with targets.");
return ERROR_FAIL;
}
return jtag->execute_queue();
}
void jtag_execute_queue_noclear(void)
{
jtag_flush_queue_count++;
jtag_set_error(interface_jtag_execute_queue());
}
int jtag_get_flush_queue_count(void)
{
return jtag_flush_queue_count;
}
int jtag_execute_queue(void)
{
jtag_execute_queue_noclear();
return jtag_error_clear();
}
static int jtag_reset_callback(enum jtag_event event, void *priv)
{
struct jtag_tap *tap = priv;
if (event == JTAG_TRST_ASSERTED)
{
tap->enabled = !tap->disabled_after_reset;
/* current instruction is either BYPASS or IDCODE */
buf_set_ones(tap->cur_instr, tap->ir_length);
tap->bypass = 1;
}
return ERROR_OK;
}
void jtag_sleep(uint32_t us)
{
alive_sleep(us/1000);
}
/* Maximum number of enabled JTAG devices we expect in the scan chain,
* plus one (to detect garbage at the end). Devices that don't support
* IDCODE take up fewer bits, possibly allowing a few more devices.
*/
#define JTAG_MAX_CHAIN_SIZE 20
#define EXTRACT_MFG(X) (((X) & 0xffe) >> 1)
#define EXTRACT_PART(X) (((X) & 0xffff000) >> 12)
#define EXTRACT_VER(X) (((X) & 0xf0000000) >> 28)
/* A reserved manufacturer ID is used in END_OF_CHAIN_FLAG, so we
* know that no valid TAP will have it as an IDCODE value.
*/
#define END_OF_CHAIN_FLAG 0x000000ff
/* a larger IR length than we ever expect to autoprobe */
#define JTAG_IRLEN_MAX 60
static int jtag_examine_chain_execute(uint8_t *idcode_buffer, unsigned num_idcode)
{
struct scan_field field = {
.num_bits = num_idcode * 32,
.out_value = idcode_buffer,
.in_value = idcode_buffer,
};
// initialize to the end of chain ID value
for (unsigned i = 0; i < JTAG_MAX_CHAIN_SIZE; i++)
buf_set_u32(idcode_buffer, i * 32, 32, END_OF_CHAIN_FLAG);
jtag_add_plain_dr_scan(field.num_bits, field.out_value, field.in_value, TAP_DRPAUSE);
jtag_add_tlr();
return jtag_execute_queue();
}
static bool jtag_examine_chain_check(uint8_t *idcodes, unsigned count)
{
uint8_t zero_check = 0x0;
uint8_t one_check = 0xff;
for (unsigned i = 0; i < count * 4; i++)
{
zero_check |= idcodes[i];
one_check &= idcodes[i];
}
/* if there wasn't a single non-zero bit or if all bits were one,
* the scan is not valid. We wrote a mix of both values; either
*
* - There's a hardware issue (almost certainly):
* + all-zeroes can mean a target stuck in JTAG reset
* + all-ones tends to mean no target
* - The scan chain is WAY longer than we can handle, *AND* either
* + there are several hundreds of TAPs in bypass, or
* + at least a few dozen TAPs all have an all-ones IDCODE
*/
if (zero_check == 0x00 || one_check == 0xff)
{
LOG_ERROR("JTAG scan chain interrogation failed: all %s",
(zero_check == 0x00) ? "zeroes" : "ones");
LOG_ERROR("Check JTAG interface, timings, target power, etc.");
return false;
}
return true;
}
static void jtag_examine_chain_display(enum log_levels level, const char *msg,
const char *name, uint32_t idcode)
{
log_printf_lf(level, __FILE__, __LINE__, __FUNCTION__,
"JTAG tap: %s %16.16s: 0x%08x "
"(mfg: 0x%3.3x, part: 0x%4.4x, ver: 0x%1.1x)",
name, msg,
(unsigned int)idcode,
(unsigned int)EXTRACT_MFG(idcode),
(unsigned int)EXTRACT_PART(idcode),
(unsigned int)EXTRACT_VER(idcode));
}
static bool jtag_idcode_is_final(uint32_t idcode)
{
/*
* Some devices, such as AVR8, will output all 1's instead
* of TDI input value at end of chain. Allow those values
* instead of failing.
*/
return idcode == END_OF_CHAIN_FLAG || idcode == 0xFFFFFFFF;
}
/**
* This helper checks that remaining bits in the examined chain data are
* all as expected, but a single JTAG device requires only 64 bits to be
* read back correctly. This can help identify and diagnose problems
* with the JTAG chain earlier, gives more helpful/explicit error messages.
* Returns TRUE iff garbage was found.
*/
static bool jtag_examine_chain_end(uint8_t *idcodes, unsigned count, unsigned max)
{
bool triggered = false;
for (; count < max - 31; count += 32)
{
uint32_t idcode = buf_get_u32(idcodes, count, 32);
/* do not trigger the warning if the data looks good */
if (jtag_idcode_is_final(idcode))
continue;
LOG_WARNING("Unexpected idcode after end of chain: %d 0x%08x",
count, (unsigned int)idcode);
triggered = true;
}
return triggered;
}
static bool jtag_examine_chain_match_tap(const struct jtag_tap *tap)
{
uint32_t idcode = tap->idcode;
/* ignore expected BYPASS codes; warn otherwise */
if (0 == tap->expected_ids_cnt && !idcode)
return true;
/* optionally ignore the JTAG version field */
uint32_t mask = tap->ignore_version ? ~(0xff << 24) : ~0;
idcode &= mask;
/* Loop over the expected identification codes and test for a match */
unsigned ii, limit = tap->expected_ids_cnt;
for (ii = 0; ii < limit; ii++)
{
uint32_t expected = tap->expected_ids[ii] & mask;
if (idcode == expected)
return true;
/* treat "-expected-id 0" as a "don't-warn" wildcard */
if (0 == tap->expected_ids[ii])
return true;
}
/* If none of the expected ids matched, warn */
jtag_examine_chain_display(LOG_LVL_WARNING, "UNEXPECTED",
tap->dotted_name, tap->idcode);
for (ii = 0; ii < limit; ii++)
{
char msg[32];
snprintf(msg, sizeof(msg), "expected %u of %u", ii + 1, limit);
jtag_examine_chain_display(LOG_LVL_ERROR, msg,
tap->dotted_name, tap->expected_ids[ii]);
}
return false;
}
/* Try to examine chain layout according to IEEE 1149.1 §12
* This is called a "blind interrogation" of the scan chain.
*/
static int jtag_examine_chain(void)
{
uint8_t idcode_buffer[JTAG_MAX_CHAIN_SIZE * 4];
unsigned bit_count;
int retval;
int tapcount = 0;
bool autoprobe = false;
/* DR scan to collect BYPASS or IDCODE register contents.
* Then make sure the scan data has both ones and zeroes.
*/
LOG_DEBUG("DR scan interrogation for IDCODE/BYPASS");
retval = jtag_examine_chain_execute(idcode_buffer, JTAG_MAX_CHAIN_SIZE);
if (retval != ERROR_OK)
return retval;
if (!jtag_examine_chain_check(idcode_buffer, JTAG_MAX_CHAIN_SIZE))
return ERROR_JTAG_INIT_FAILED;
/* point at the 1st tap */
struct jtag_tap *tap = jtag_tap_next_enabled(NULL);
if (!tap)
autoprobe = true;
for (bit_count = 0;
tap && bit_count < (JTAG_MAX_CHAIN_SIZE * 32) - 31;
tap = jtag_tap_next_enabled(tap))
{
uint32_t idcode = buf_get_u32(idcode_buffer, bit_count, 32);
if ((idcode & 1) == 0)
{
/* Zero for LSB indicates a device in bypass */
LOG_INFO("TAP %s does not have IDCODE",
tap->dotted_name);
idcode = 0;
tap->hasidcode = false;
bit_count += 1;
}
else
{
/* Friendly devices support IDCODE */
tap->hasidcode = true;
jtag_examine_chain_display(LOG_LVL_INFO,
"tap/device found",
tap->dotted_name, idcode);
bit_count += 32;
}
tap->idcode = idcode;
/* ensure the TAP ID matches what was expected */
if (!jtag_examine_chain_match_tap(tap))
retval = ERROR_JTAG_INIT_SOFT_FAIL;
}
/* Fail if too many TAPs were enabled for us to verify them all. */
if (tap) {
LOG_ERROR("Too many TAPs enabled; '%s' ignored.",
tap->dotted_name);
return ERROR_JTAG_INIT_FAILED;
}
/* if autoprobing, the tap list is still empty ... populate it! */
while (autoprobe && bit_count < (JTAG_MAX_CHAIN_SIZE * 32) - 31) {
uint32_t idcode;
char buf[12];
/* Is there another TAP? */
idcode = buf_get_u32(idcode_buffer, bit_count, 32);
if (jtag_idcode_is_final(idcode))
break;
/* Default everything in this TAP except IR length.
*
* REVISIT create a jtag_alloc(chip, tap) routine, and
* share it with jim_newtap_cmd().
*/
tap = calloc(1, sizeof *tap);
if (!tap)
return ERROR_FAIL;
sprintf(buf, "auto%d", tapcount++);
tap->chip = strdup(buf);
tap->tapname = strdup("tap");
sprintf(buf, "%s.%s", tap->chip, tap->tapname);
tap->dotted_name = strdup(buf);
/* tap->ir_length == 0 ... signifying irlen autoprobe */
tap->ir_capture_mask = 0x03;
tap->ir_capture_value = 0x01;
tap->enabled = true;
if ((idcode & 1) == 0) {
bit_count += 1;
tap->hasidcode = false;
} else {
bit_count += 32;
tap->hasidcode = true;
tap->idcode = idcode;
tap->expected_ids_cnt = 1;
tap->expected_ids = malloc(sizeof(uint32_t));
tap->expected_ids[0] = idcode;
}
LOG_WARNING("AUTO %s - use \"jtag newtap "
"%s %s -expected-id 0x%8.8" PRIx32 " ...\"",
tap->dotted_name, tap->chip, tap->tapname,
tap->idcode);
jtag_tap_init(tap);
}
/* After those IDCODE or BYPASS register values should be
* only the data we fed into the scan chain.
*/
if (jtag_examine_chain_end(idcode_buffer, bit_count,
8 * sizeof(idcode_buffer))) {
LOG_ERROR("double-check your JTAG setup (interface, "
"speed, missing TAPs, ...)");
return ERROR_JTAG_INIT_FAILED;
}
/* Return success or, for backwards compatibility if only
* some IDCODE values mismatched, a soft/continuable fault.
*/
return retval;
}
/*
* Validate the date loaded by entry to the Capture-IR state, to help
* find errors related to scan chain configuration (wrong IR lengths)
* or communication.
*
* Entry state can be anything. On non-error exit, all TAPs are in
* bypass mode. On error exits, the scan chain is reset.
*/
static int jtag_validate_ircapture(void)
{
struct jtag_tap *tap;
int total_ir_length = 0;
uint8_t *ir_test = NULL;
struct scan_field field;
int val;
int chain_pos = 0;
int retval;
/* when autoprobing, accomodate huge IR lengths */
for (tap = NULL, total_ir_length = 0;
(tap = jtag_tap_next_enabled(tap)) != NULL;
total_ir_length += tap->ir_length) {
if (tap->ir_length == 0)
total_ir_length += JTAG_IRLEN_MAX;
}
/* increase length to add 2 bit sentinel after scan */
total_ir_length += 2;
ir_test = malloc(DIV_ROUND_UP(total_ir_length, 8));
if (ir_test == NULL)
return ERROR_FAIL;
/* after this scan, all TAPs will capture BYPASS instructions */
buf_set_ones(ir_test, total_ir_length);
field.num_bits = total_ir_length;
field.out_value = ir_test;
field.in_value = ir_test;
jtag_add_plain_ir_scan(field.num_bits, field.out_value, field.in_value, TAP_IDLE);
LOG_DEBUG("IR capture validation scan");
retval = jtag_execute_queue();
if (retval != ERROR_OK)
goto done;
tap = NULL;
chain_pos = 0;
for (;;) {
tap = jtag_tap_next_enabled(tap);
if (tap == NULL) {
break;
}
/* If we're autoprobing, guess IR lengths. They must be at
* least two bits. Guessing will fail if (a) any TAP does
* not conform to the JTAG spec; or (b) when the upper bits
* captured from some conforming TAP are nonzero. Or if
* (c) an IR length is longer than 32 bits -- which is only
* an implementation limit, which could someday be raised.
*
* REVISIT optimization: if there's a *single* TAP we can
* lift restrictions (a) and (b) by scanning a recognizable
* pattern before the all-ones BYPASS. Check for where the
* pattern starts in the result, instead of an 0...01 value.
*
* REVISIT alternative approach: escape to some tcl code
* which could provide more knowledge, based on IDCODE; and
* only guess when that has no success.
*/
if (tap->ir_length == 0) {
tap->ir_length = 2;
while ((val = buf_get_u32(ir_test, chain_pos,
tap->ir_length + 1)) == 1
&& tap->ir_length <= 32) {
tap->ir_length++;
}
LOG_WARNING("AUTO %s - use \"... -irlen %d\"",
jtag_tap_name(tap), tap->ir_length);
}
/* Validate the two LSBs, which must be 01 per JTAG spec.
*
* Or ... more bits could be provided by TAP declaration.
* Plus, some taps (notably in i.MX series chips) violate
* this part of the JTAG spec, so their capture mask/value
* attributes might disable this test.
*/
val = buf_get_u32(ir_test, chain_pos, tap->ir_length);
if ((val & tap->ir_capture_mask) != tap->ir_capture_value) {
LOG_ERROR("%s: IR capture error; saw 0x%0*x not 0x%0*x",
jtag_tap_name(tap),
(tap->ir_length + 7) / tap->ir_length,
val,
(tap->ir_length + 7) / tap->ir_length,
(unsigned) tap->ir_capture_value);
retval = ERROR_JTAG_INIT_FAILED;
goto done;
}
LOG_DEBUG("%s: IR capture 0x%0*x", jtag_tap_name(tap),
(tap->ir_length + 7) / tap->ir_length, val);
chain_pos += tap->ir_length;
}
/* verify the '11' sentinel we wrote is returned at the end */
val = buf_get_u32(ir_test, chain_pos, 2);
if (val != 0x3)
{
char *cbuf = buf_to_str(ir_test, total_ir_length, 16);
LOG_ERROR("IR capture error at bit %d, saw 0x%s not 0x...3",
chain_pos, cbuf);
free(cbuf);
retval = ERROR_JTAG_INIT_FAILED;
}
done:
free(ir_test);
if (retval != ERROR_OK) {
jtag_add_tlr();
jtag_execute_queue();
}
return retval;
}
void jtag_tap_init(struct jtag_tap *tap)
{
unsigned ir_len_bits;
unsigned ir_len_bytes;
/* if we're autoprobing, cope with potentially huge ir_length */
ir_len_bits = tap->ir_length ? : JTAG_IRLEN_MAX;
ir_len_bytes = DIV_ROUND_UP(ir_len_bits, 8);
tap->expected = calloc(1, ir_len_bytes);
tap->expected_mask = calloc(1, ir_len_bytes);
tap->cur_instr = malloc(ir_len_bytes);
/// @todo cope better with ir_length bigger than 32 bits
if (ir_len_bits > 32)
ir_len_bits = 32;
buf_set_u32(tap->expected, 0, ir_len_bits, tap->ir_capture_value);
buf_set_u32(tap->expected_mask, 0, ir_len_bits, tap->ir_capture_mask);
// TAP will be in bypass mode after jtag_validate_ircapture()
tap->bypass = 1;
buf_set_ones(tap->cur_instr, tap->ir_length);
// register the reset callback for the TAP
jtag_register_event_callback(&jtag_reset_callback, tap);
LOG_DEBUG("Created Tap: %s @ abs position %d, "
"irlen %d, capture: 0x%x mask: 0x%x", tap->dotted_name,
tap->abs_chain_position, tap->ir_length,
(unsigned) tap->ir_capture_value,
(unsigned) tap->ir_capture_mask);
jtag_tap_add(tap);
}
void jtag_tap_free(struct jtag_tap *tap)
{
jtag_unregister_event_callback(&jtag_reset_callback, tap);
/// @todo is anything missing? no memory leaks please
free((void *)tap->expected);
free((void *)tap->expected_ids);
free((void *)tap->chip);
free((void *)tap->tapname);
free((void *)tap->dotted_name);
free(tap);
}
/**
* Do low-level setup like initializing registers, output signals,
* and clocking.
*/
int adapter_init(struct command_context *cmd_ctx)
{
if (jtag)
return ERROR_OK;
if (!jtag_interface)
{
/* nothing was previously specified by "interface" command */
LOG_ERROR("Debug Adapter has to be specified, "
"see \"interface\" command");
return ERROR_JTAG_INVALID_INTERFACE;
}
jtag = jtag_interface;
if (jtag_interface->init() != ERROR_OK)
{
jtag = NULL;
return ERROR_JTAG_INIT_FAILED;
}
int requested_khz = jtag_get_speed_khz();
int actual_khz = requested_khz;
int retval = jtag_get_speed_readable(&actual_khz);
if (ERROR_OK != retval)
LOG_INFO("adapter-specific clock speed value %d", jtag_get_speed());
else if (actual_khz)
{
/* Adaptive clocking -- JTAG-specific */
if ((CLOCK_MODE_RCLK == clock_mode)
|| ((CLOCK_MODE_KHZ == clock_mode) && !requested_khz))
{
LOG_INFO("RCLK (adaptive clock speed) not supported - fallback to %d kHz"
, actual_khz);
}
else
LOG_INFO("clock speed %d kHz", actual_khz);
}
else
LOG_INFO("RCLK (adaptive clock speed)");
return ERROR_OK;
}
int jtag_init_inner(struct command_context *cmd_ctx)
{
struct jtag_tap *tap;
int retval;
bool issue_setup = true;
LOG_DEBUG("Init JTAG chain");
tap = jtag_tap_next_enabled(NULL);
if (tap == NULL) {
/* Once JTAG itself is properly set up, and the scan chain
* isn't absurdly large, IDCODE autoprobe should work fine.
*
* But ... IRLEN autoprobe can fail even on systems which
* are fully conformant to JTAG. Also, JTAG setup can be
* quite finicky on some systems.
*
* REVISIT: if TAP autoprobe works OK, then in many cases
* we could escape to tcl code and set up targets based on
* the TAP's IDCODE values.
*/
LOG_WARNING("There are no enabled taps. "
"AUTO PROBING MIGHT NOT WORK!!");
/* REVISIT default clock will often be too fast ... */
}
jtag_add_tlr();
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
/* Examine DR values first. This discovers problems which will
* prevent communication ... hardware issues like TDO stuck, or
* configuring the wrong number of (enabled) TAPs.
*/
retval = jtag_examine_chain();
switch (retval) {
case ERROR_OK:
/* complete success */
break;
case ERROR_JTAG_INIT_SOFT_FAIL:
/* For backward compatibility reasons, try coping with
* configuration errors involving only ID mismatches.
* We might be able to talk to the devices.
*/
LOG_ERROR("Trying to use configured scan chain anyway...");
issue_setup = false;
break;
default:
/* some hard error; already issued diagnostics */
return retval;
}
/* Now look at IR values. Problems here will prevent real
* communication. They mostly mean that the IR length is
* wrong ... or that the IR capture value is wrong. (The
* latter is uncommon, but easily worked around: provide
* ircapture/irmask values during TAP setup.)
*/
retval = jtag_validate_ircapture();
if (retval != ERROR_OK)
return retval;
if (issue_setup)
jtag_notify_event(JTAG_TAP_EVENT_SETUP);
else
LOG_WARNING("Bypassing JTAG setup events due to errors");
return ERROR_OK;
}
int adapter_quit(void)
{
if (!jtag || !jtag->quit)
return ERROR_OK;
// close the JTAG interface
int result = jtag->quit();
if (ERROR_OK != result)
LOG_ERROR("failed: %d", result);
return ERROR_OK;
}
int jtag_init_reset(struct command_context *cmd_ctx)
{
int retval;
if ((retval = adapter_init(cmd_ctx)) != ERROR_OK)
return retval;
LOG_DEBUG("Initializing with hard TRST+SRST reset");
/*
* This procedure is used by default when OpenOCD triggers a reset.
* It's now done through an overridable Tcl "init_reset" wrapper.
*
* This started out as a more powerful "get JTAG working" reset than
* jtag_init_inner(), applying TRST because some chips won't activate
* JTAG without a TRST cycle (presumed to be async, though some of
* those chips synchronize JTAG activation using TCK).
*
* But some chips only activate JTAG as part of an SRST cycle; SRST
* got mixed in. So it became a hard reset routine, which got used
* in more places, and which coped with JTAG reset being forced as
* part of SRST (srst_pulls_trst).
*
* And even more corner cases started to surface: TRST and/or SRST
* assertion timings matter; some chips need other JTAG operations;
* TRST/SRST sequences can need to be different from these, etc.
*
* Systems should override that wrapper to support system-specific
* requirements that this not-fully-generic code doesn't handle.
*
* REVISIT once Tcl code can read the reset_config modes, this won't
* need to be a C routine at all...
*/
jtag_add_reset(1, 0); /* TAP_RESET, using TMS+TCK or TRST */
if (jtag_reset_config & RESET_HAS_SRST)
{
jtag_add_reset(1, 1);
if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
jtag_add_reset(0, 1);
}
jtag_add_reset(0, 0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
/* Check that we can communication on the JTAG chain + eventually we want to
* be able to perform enumeration only after OpenOCD has started
* telnet and GDB server
*
* That would allow users to more easily perform any magic they need to before
* reset happens.
*/
return jtag_init_inner(cmd_ctx);
}
int jtag_init(struct command_context *cmd_ctx)
{
int retval;
if ((retval = adapter_init(cmd_ctx)) != ERROR_OK)
return retval;
/* guard against oddball hardware: force resets to be inactive */
jtag_add_reset(0, 0);
if ((retval = jtag_execute_queue()) != ERROR_OK)
return retval;
if (Jim_Eval_Named(cmd_ctx->interp, "jtag_init", __FILE__, __LINE__) != JIM_OK)
return ERROR_FAIL;
return ERROR_OK;
}
unsigned jtag_get_speed_khz(void)
{
return speed_khz;
}
static int adapter_khz_to_speed(unsigned khz, int* speed)
{
LOG_DEBUG("convert khz to interface specific speed value");
speed_khz = khz;
if (jtag != NULL)
{
LOG_DEBUG("have interface set up");
int speed_div1;
int retval = jtag->khz(jtag_get_speed_khz(), &speed_div1);
if (ERROR_OK != retval)
{
return retval;
}
*speed = speed_div1;
}
return ERROR_OK;
}
static int jtag_rclk_to_speed(unsigned fallback_speed_khz, int* speed)
{
int retval = adapter_khz_to_speed(0, speed);
if ((ERROR_OK != retval) && fallback_speed_khz)
{
LOG_DEBUG("trying fallback speed...");
retval = adapter_khz_to_speed(fallback_speed_khz, speed);
}
return retval;
}
static int jtag_set_speed(int speed)
{
jtag_speed = speed;
/* this command can be called during CONFIG,
* in which case jtag isn't initialized */
return jtag ? jtag->speed(speed) : ERROR_OK;
}
int jtag_config_khz(unsigned khz)
{
LOG_DEBUG("handle jtag khz");
clock_mode = CLOCK_MODE_KHZ;
int speed = 0;
int retval = adapter_khz_to_speed(khz, &speed);
return (ERROR_OK != retval) ? retval : jtag_set_speed(speed);
}
int jtag_config_rclk(unsigned fallback_speed_khz)
{
LOG_DEBUG("handle jtag rclk");
clock_mode = CLOCK_MODE_RCLK;
rclk_fallback_speed_khz = fallback_speed_khz;
int speed = 0;
int retval = jtag_rclk_to_speed(fallback_speed_khz, &speed);
return (ERROR_OK != retval) ? retval : jtag_set_speed(speed);
}
int jtag_get_speed(void)
{
int speed;
switch(clock_mode)
{
case CLOCK_MODE_SPEED:
speed = jtag_speed;
break;
case CLOCK_MODE_KHZ:
adapter_khz_to_speed(jtag_get_speed_khz(), &speed);
break;
case CLOCK_MODE_RCLK:
jtag_rclk_to_speed(rclk_fallback_speed_khz, &speed);
break;
default:
LOG_ERROR("BUG: unknown jtag clock mode");
speed = 0;
break;
}
return speed;
}
int jtag_get_speed_readable(int *khz)
{
return jtag ? jtag->speed_div(jtag_get_speed(), khz) : ERROR_OK;
}
void jtag_set_verify(bool enable)
{
jtag_verify = enable;
}
bool jtag_will_verify()
{
return jtag_verify;
}
void jtag_set_verify_capture_ir(bool enable)
{
jtag_verify_capture_ir = enable;
}
bool jtag_will_verify_capture_ir()
{
return jtag_verify_capture_ir;
}
int jtag_power_dropout(int *dropout)
{
if (jtag == NULL)
{
/* TODO: as the jtag interface is not valid all
* we can do at the moment is exit OpenOCD */
LOG_ERROR("No Valid JTAG Interface Configured.");
exit(-1);
}
return jtag->power_dropout(dropout);
}
int jtag_srst_asserted(int *srst_asserted)
{
return jtag->srst_asserted(srst_asserted);
}
enum reset_types jtag_get_reset_config(void)
{
return jtag_reset_config;
}
void jtag_set_reset_config(enum reset_types type)
{
jtag_reset_config = type;
}
int jtag_get_trst(void)
{
return jtag_trst;
}
int jtag_get_srst(void)
{
return jtag_srst;
}
void jtag_set_nsrst_delay(unsigned delay)
{
adapter_nsrst_delay = delay;
}
unsigned jtag_get_nsrst_delay(void)
{
return adapter_nsrst_delay;
}
void jtag_set_ntrst_delay(unsigned delay)
{
jtag_ntrst_delay = delay;
}
unsigned jtag_get_ntrst_delay(void)
{
return jtag_ntrst_delay;
}
void jtag_set_nsrst_assert_width(unsigned delay)
{
adapter_nsrst_assert_width = delay;
}
unsigned jtag_get_nsrst_assert_width(void)
{
return adapter_nsrst_assert_width;
}
void jtag_set_ntrst_assert_width(unsigned delay)
{
jtag_ntrst_assert_width = delay;
}
unsigned jtag_get_ntrst_assert_width(void)
{
return jtag_ntrst_assert_width;
}