openocd/src/flash/nor/stm32x.c

1256 lines
32 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "stm32x.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
static int stm32x_mass_erase(struct flash_bank *bank);
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
{
LOG_WARNING("incomplete flash_bank stm32x configuration");
return ERROR_FLASH_BANK_INVALID;
}
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->write_algorithm = NULL;
stm32x_info->probed = 0;
return ERROR_OK;
}
static uint32_t stm32x_get_flash_status(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t status;
target_read_u32(target, STM32_FLASH_SR, &status);
return status;
}
static uint32_t stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
/* wait for busy to clear */
while (((status = stm32x_get_flash_status(bank)) & FLASH_BSY) && (timeout-- > 0))
{
LOG_DEBUG("status: 0x%" PRIx32 "", status);
alive_sleep(1);
}
/* Clear but report errors */
if (status & (FLASH_WRPRTERR | FLASH_PGERR))
{
target_write_u32(target, STM32_FLASH_SR, FLASH_WRPRTERR | FLASH_PGERR);
}
return status;
}
static int stm32x_read_options(struct flash_bank *bank)
{
uint32_t optiondata;
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* read current option bytes */
target_read_u32(target, STM32_FLASH_OBR, &optiondata);
stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
if (optiondata & (1 << OPT_READOUT))
LOG_INFO("Device Security Bit Set");
/* each bit refers to a 4bank protection */
target_read_u32(target, STM32_FLASH_WRPR, &optiondata);
stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
return ERROR_OK;
}
static int stm32x_erase_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint32_t status;
stm32x_info = bank->driver_priv;
/* read current options */
stm32x_read_options(bank);
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* erase option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER | FLASH_OPTWRE);
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
/* clear readout protection and complementary option bytes
* this will also force a device unlock if set */
stm32x_info->option_bytes.RDP = 0x5AA5;
return ERROR_OK;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint32_t status;
stm32x_info = bank->driver_priv;
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY1);
target_write_u32(target, STM32_FLASH_OPTKEYR, KEY2);
/* program option bytes */
target_write_u32(target, STM32_FLASH_CR, FLASH_OPTPG | FLASH_OPTWRE);
/* write user option byte */
target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
/* write protection byte 1 */
target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
/* write protection byte 2 */
target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
/* write protection byte 3 */
target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
/* write protection byte 4 */
target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
/* write readout protection bit */
target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint32_t protection;
int i, s;
int num_bits;
int set;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
target_read_u32(target, STM32_FLASH_WRPR, &protection);
/* medium density - each protection bit is for 4 * 1K pages
* high density - each protection bit is for 2 * 2K pages */
num_bits = (bank->num_sectors / stm32x_info->ppage_size);
if (stm32x_info->ppage_size == 2)
{
/* high density flash/connectivity line protection */
set = 1;
if (protection & (1 << 31))
set = 0;
/* bit 31 controls sector 62 - 255 protection for high density
* bit 31 controls sector 62 - 127 protection for connectivity line */
for (s = 62; s < bank->num_sectors; s++)
{
bank->sectors[s].is_protected = set;
}
if (bank->num_sectors > 61)
num_bits = 31;
for (i = 0; i < num_bits; i++)
{
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
}
else
{
/* low/medium density flash protection */
for (i = 0; i < num_bits; i++)
{
set = 1;
if (protection & (1 << i))
set = 0;
for (s = 0; s < stm32x_info->ppage_size; s++)
bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
}
}
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, int first, int last)
{
struct target *target = bank->target;
int i;
uint32_t status;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
{
return stm32x_mass_erase(bank);
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
for (i = first; i <= last; i++)
{
target_write_u32(target, STM32_FLASH_CR, FLASH_PER);
target_write_u32(target, STM32_FLASH_AR, bank->base + bank->sectors[i].offset);
target_write_u32(target, STM32_FLASH_CR, FLASH_PER | FLASH_STRT);
status = stm32x_wait_status_busy(bank, 10);
if (status & FLASH_WRPRTERR)
return ERROR_FLASH_OPERATION_FAILED;
if (status & FLASH_PGERR)
return ERROR_FLASH_OPERATION_FAILED;
bank->sectors[i].is_erased = 1;
}
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}
static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
int i, reg, bit;
int status;
uint32_t protection;
stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first && (first % stm32x_info->ppage_size)) || ((last + 1) && (last + 1) % stm32x_info->ppage_size))
{
LOG_WARNING("Error: start and end sectors must be on a %d sector boundary", stm32x_info->ppage_size);
return ERROR_FLASH_SECTOR_INVALID;
}
/* medium density - each bit refers to a 4bank protection
* high density - each bit refers to a 2bank protection */
target_read_u32(target, STM32_FLASH_WRPR, &protection);
prot_reg[0] = (uint16_t)protection;
prot_reg[1] = (uint16_t)(protection >> 8);
prot_reg[2] = (uint16_t)(protection >> 16);
prot_reg[3] = (uint16_t)(protection >> 24);
if (stm32x_info->ppage_size == 2)
{
/* high density flash */
/* bit 7 controls sector 62 - 255 protection */
if (last > 61)
{
if (set)
prot_reg[3] &= ~(1 << 7);
else
prot_reg[3] |= (1 << 7);
}
if (first > 61)
first = 62;
if (last > 61)
last = 61;
for (i = first; i <= last; i++)
{
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
else
{
/* medium density flash */
for (i = first; i <= last; i++)
{
reg = (i / stm32x_info->ppage_size) / 8;
bit = (i / stm32x_info->ppage_size) - (reg * 8);
if (set)
prot_reg[reg] &= ~(1 << bit);
else
prot_reg[reg] |= (1 << bit);
}
}
if ((status = stm32x_erase_options(bank)) != ERROR_OK)
return status;
stm32x_info->option_bytes.protection[0] = prot_reg[0];
stm32x_info->option_bytes.protection[1] = prot_reg[1];
stm32x_info->option_bytes.protection[2] = prot_reg[2];
stm32x_info->option_bytes.protection[3] = prot_reg[3];
return stm32x_write_options(bank);
}
static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[4];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
uint8_t stm32x_flash_write_code[] = {
/* write: */
0xDF, 0xF8, 0x24, 0x40, /* ldr r4, STM32_FLASH_CR */
0x09, 0x4D, /* ldr r5, STM32_FLASH_SR */
0x4F, 0xF0, 0x01, 0x03, /* mov r3, #1 */
0x23, 0x60, /* str r3, [r4, #0] */
0x30, 0xF8, 0x02, 0x3B, /* ldrh r3, [r0], #2 */
0x21, 0xF8, 0x02, 0x3B, /* strh r3, [r1], #2 */
/* busy: */
0x2B, 0x68, /* ldr r3, [r5, #0] */
0x13, 0xF0, 0x01, 0x0F, /* tst r3, #0x01 */
0xFB, 0xD0, /* beq busy */
0x13, 0xF0, 0x14, 0x0F, /* tst r3, #0x14 */
0x01, 0xD1, /* bne exit */
0x01, 0x3A, /* subs r2, r2, #1 */
0xED, 0xD1, /* bne write */
/* exit: */
0xFE, 0xE7, /* b exit */
0x10, 0x20, 0x02, 0x40, /* STM32_FLASH_CR: .word 0x40022010 */
0x0C, 0x20, 0x02, 0x40 /* STM32_FLASH_SR: .word 0x4002200C */
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &stm32x_info->write_algorithm) != ERROR_OK)
{
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address, sizeof(stm32x_flash_write_code), stm32x_flash_write_code)) != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK)
{
buffer_size /= 2;
if (buffer_size <= 256)
{
/* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
if (stm32x_info->write_algorithm)
target_free_working_area(target, stm32x_info->write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
};
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARMV7M_MODE_ANY;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN);
while (count > 0)
{
uint32_t thisrun_count = (count > (buffer_size / 2)) ? (buffer_size / 2) : count;
if ((retval = target_write_buffer(target, source->address, thisrun_count * 2, buffer)) != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
if ((retval = target_run_algorithm(target, 0, NULL, 4, reg_params, stm32x_info->write_algorithm->address, \
stm32x_info->write_algorithm->address + (sizeof(stm32x_flash_write_code) - 10), 10000, &armv7m_info)) != ERROR_OK)
{
LOG_ERROR("error executing stm32x flash write algorithm");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) & FLASH_PGERR)
{
LOG_ERROR("flash memory not erased before writing");
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, FLASH_PGERR);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
if (buf_get_u32(reg_params[3].value, 0, 32) & FLASH_WRPRTERR)
{
LOG_ERROR("flash memory write protected");
/* Clear but report errors */
target_write_u32(target, STM32_FLASH_SR, FLASH_WRPRTERR);
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 2;
address += thisrun_count * 2;
count -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, stm32x_info->write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
return retval;
}
static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t words_remaining = (count / 2);
uint32_t bytes_remaining = (count & 0x00000001);
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
uint8_t status;
int retval;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x1)
{
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* unlock flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* multiple half words (2-byte) to be programmed? */
if (words_remaining > 0)
{
/* try using a block write */
if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK)
{
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
/* if block write failed (no sufficient working area),
* we use normal (slow) single dword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
}
else if (retval == ERROR_FLASH_OPERATION_FAILED)
{
LOG_ERROR("flash writing failed with error code: 0x%x", retval);
return ERROR_FLASH_OPERATION_FAILED;
}
}
else
{
buffer += words_remaining * 2;
address += words_remaining * 2;
words_remaining = 0;
}
}
while (words_remaining > 0)
{
uint16_t value;
memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
target_write_u16(target, address, value);
status = stm32x_wait_status_busy(bank, 5);
if (status & FLASH_WRPRTERR)
{
LOG_ERROR("flash memory not erased before writing");
return ERROR_FLASH_OPERATION_FAILED;
}
if (status & FLASH_PGERR)
{
LOG_ERROR("flash memory write protected");
return ERROR_FLASH_OPERATION_FAILED;
}
bytes_written += 2;
words_remaining--;
address += 2;
}
if (bytes_remaining)
{
uint16_t value = 0xffff;
memcpy(&value, buffer + bytes_written, bytes_remaining);
target_write_u32(target, STM32_FLASH_CR, FLASH_PG);
target_write_u16(target, address, value);
status = stm32x_wait_status_busy(bank, 5);
if (status & FLASH_WRPRTERR)
{
LOG_ERROR("flash memory not erased before writing");
return ERROR_FLASH_OPERATION_FAILED;
}
if (status & FLASH_PGERR)
{
LOG_ERROR("flash memory write protected");
return ERROR_FLASH_OPERATION_FAILED;
}
}
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
return ERROR_OK;
}
static int stm32x_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
int i;
uint16_t num_pages;
uint32_t device_id;
int page_size;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
stm32x_info->probed = 0;
/* read stm32 device id register */
target_read_u32(target, 0xE0042000, &device_id);
LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
/* get flash size from target */
if (target_read_u16(target, 0x1FFFF7E0, &num_pages) != ERROR_OK)
{
/* failed reading flash size, default to max target family */
num_pages = 0xffff;
}
if ((device_id & 0x7ff) == 0x410)
{
/* medium density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revA */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
num_pages = 128;
}
}
else if ((device_id & 0x7ff) == 0x412)
{
/* low density - we have 1k pages
* 4 pages for a protection area */
page_size = 1024;
stm32x_info->ppage_size = 4;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revA */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash");
num_pages = 32;
}
}
else if ((device_id & 0x7ff) == 0x414)
{
/* high density - we have 2k pages
* 2 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 2;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revZ */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash");
num_pages = 512;
}
}
else if ((device_id & 0x7ff) == 0x418)
{
/* connectivity line density - we have 2k pages
* 2 pages for a protection area */
page_size = 2048;
stm32x_info->ppage_size = 2;
/* check for early silicon */
if (num_pages == 0xffff)
{
/* number of sectors incorrect on revZ */
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash");
num_pages = 256;
}
}
else
{
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FLASH_OPERATION_FAILED;
}
LOG_INFO("flash size = %dkbytes", num_pages);
/* calculate numbers of pages */
num_pages /= (page_size / 1024);
bank->base = 0x08000000;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
for (i = 0; i < num_pages; i++)
{
bank->sectors[i].offset = i * page_size;
bank->sectors[i].size = page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32x_info->probed = 1;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
#if 0
COMMAND_HANDLER(stm32x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static int stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct target *target = bank->target;
uint32_t device_id;
int printed;
/* read stm32 device id register */
target_read_u32(target, 0xE0042000, &device_id);
if ((device_id & 0x7ff) == 0x410)
{
printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x0000:
snprintf(buf, buf_size, "A");
break;
case 0x2000:
snprintf(buf, buf_size, "B");
break;
case 0x2001:
snprintf(buf, buf_size, "Z");
break;
case 0x2003:
snprintf(buf, buf_size, "Y");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x412)
{
printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x414)
{
printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else if ((device_id & 0x7ff) == 0x418)
{
printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16)
{
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1001:
snprintf(buf, buf_size, "Z");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
}
else
{
snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x lock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.RDP = 0;
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x locked");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x unlock <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to unlock device");
return ERROR_OK;
}
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x unlocked");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_read_command)
{
uint32_t optionbyte;
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x options_read <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
target_read_u32(target, STM32_FLASH_OBR, &optionbyte);
command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
if (buf_get_u32((uint8_t*)&optionbyte, OPT_ERROR, 1))
command_print(CMD_CTX, "Option Byte Complement Error");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_READOUT, 1))
command_print(CMD_CTX, "Readout Protection On");
else
command_print(CMD_CTX, "Readout Protection Off");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDWDGSW, 1))
command_print(CMD_CTX, "Software Watchdog");
else
command_print(CMD_CTX, "Hardware Watchdog");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTOP, 1))
command_print(CMD_CTX, "Stop: No reset generated");
else
command_print(CMD_CTX, "Stop: Reset generated");
if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTDBY, 1))
command_print(CMD_CTX, "Standby: No reset generated");
else
command_print(CMD_CTX, "Standby: Reset generated");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_write_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
uint16_t optionbyte = 0xF8;
if (CMD_ARGC < 4)
{
command_print(CMD_CTX, "stm32x options_write <bank> <SWWDG | HWWDG> <RSTSTNDBY | NORSTSTNDBY> <RSTSTOP | NORSTSTOP>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* REVISIT: ignores some options which we will display...
* and doesn't insist on the specified syntax.
*/
/* OPT_RDWDGSW */
if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
{
optionbyte |= (1 << 0);
}
else /* REVISIT must be "HWWDG" then ... */
{
optionbyte &= ~(1 << 0);
}
/* OPT_RDRSTSTDBY */
if (strcmp(CMD_ARGV[2], "NORSTSTNDBY") == 0)
{
optionbyte |= (1 << 1);
}
else /* REVISIT must be "RSTSTNDBY" then ... */
{
optionbyte &= ~(1 << 1);
}
/* OPT_RDRSTSTOP */
if (strcmp(CMD_ARGV[3], "NORSTSTOP") == 0)
{
optionbyte |= (1 << 2);
}
else /* REVISIT must be "RSTSTOP" then ... */
{
optionbyte &= ~(1 << 2);
}
if (stm32x_erase_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to erase options");
return ERROR_OK;
}
stm32x_info->option_bytes.user_options = optionbyte;
if (stm32x_write_options(bank) != ERROR_OK)
{
command_print(CMD_CTX, "stm32x failed to write options");
return ERROR_OK;
}
command_print(CMD_CTX, "stm32x write options complete");
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t status;
if (target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
target_write_u32(target, STM32_FLASH_KEYR, KEY1);
target_write_u32(target, STM32_FLASH_KEYR, KEY2);
/* mass erase flash memory */
target_write_u32(target, STM32_FLASH_CR, FLASH_MER);
target_write_u32(target, STM32_FLASH_CR, FLASH_MER | FLASH_STRT);
status = stm32x_wait_status_busy(bank, 10);
target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
if (status & FLASH_WRPRTERR)
{
LOG_ERROR("stm32x device protected");
return ERROR_OK;
}
if (status & FLASH_PGERR)
{
LOG_ERROR("stm32x device programming failed");
return ERROR_OK;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
int i;
if (CMD_ARGC < 1)
{
command_print(CMD_CTX, "stm32x mass_erase <bank>");
return ERROR_OK;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
if (stm32x_mass_erase(bank) == ERROR_OK)
{
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
{
bank->sectors[i].is_erased = 1;
}
command_print(CMD_CTX, "stm32x mass erase complete");
}
else
{
command_print(CMD_CTX, "stm32x mass erase failed");
}
return ERROR_OK;
}
static const struct command_registration stm32x_exec_command_handlers[] = {
{
.name = "lock",
.handler = &stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = &stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = &stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "options_read",
.handler = &stm32x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option byte.",
},
{
.name = "options_write",
.handler = &stm32x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id ('SWWDG'|'HWWDG') "
"('RSTSTNDBY'|'NORSTSTNDBY') "
"('RSTSTOP'|'NORSTSTOP')",
.help = "Replace bits in device option byte.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32x_command_handlers[] = {
{
.name = "stm32x",
.mode = COMMAND_ANY,
.help = "stm32x flash command group",
.chain = stm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32x_flash = {
.name = "stm32x",
.commands = stm32x_command_handlers,
.flash_bank_command = &stm32x_flash_bank_command,
.erase = &stm32x_erase,
.protect = &stm32x_protect,
.write = &stm32x_write,
.probe = &stm32x_probe,
.auto_probe = &stm32x_auto_probe,
.erase_check = &default_flash_mem_blank_check,
.protect_check = &stm32x_protect_check,
.info = &stm32x_info,
};