openocd/src/target/hla_target.c

827 lines
22 KiB
C

/***************************************************************************
* Copyright (C) 2011 by Mathias Kuester *
* Mathias Kuester <kesmtp@freenet.de> *
* *
* Copyright (C) 2011 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* revised: 4/25/13 by brent@mbari.org [DCC target request support] *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/jtag.h"
#include "jtag/hla/hla_transport.h"
#include "jtag/hla/hla_interface.h"
#include "jtag/hla/hla_layout.h"
#include "register.h"
#include "algorithm.h"
#include "target.h"
#include "breakpoints.h"
#include "target_type.h"
#include "armv7m.h"
#include "cortex_m.h"
#include "arm_semihosting.h"
#include "target_request.h"
#define savedDCRDR dbgbase /* FIXME: using target->dbgbase to preserve DCRDR */
#define ARMV7M_SCS_DCRSR DCB_DCRSR
#define ARMV7M_SCS_DCRDR DCB_DCRDR
static inline struct hl_interface_s *target_to_adapter(struct target *target)
{
return target->tap->priv;
}
static int adapter_load_core_reg_u32(struct target *target,
uint32_t num, uint32_t *value)
{
int retval;
struct hl_interface_s *adapter = target_to_adapter(target);
LOG_DEBUG("%s", __func__);
/* NOTE: we "know" here that the register identifiers used
* in the v7m header match the Cortex-M3 Debug Core Register
* Selector values for R0..R15, xPSR, MSP, and PSP.
*/
switch (num) {
case 0 ... 18:
/* read a normal core register */
retval = adapter->layout->api->read_reg(adapter->fd, num, value);
if (retval != ERROR_OK) {
LOG_ERROR("JTAG failure %i", retval);
return ERROR_JTAG_DEVICE_ERROR;
}
LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
break;
case ARMV7M_FPSID:
case ARMV7M_FPEXC:
*value = 0;
break;
case ARMV7M_FPSCR:
/* Floating-point Status and Registers */
retval = target_write_u32(target, ARMV7M_SCS_DCRSR, 33);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, ARMV7M_SCS_DCRDR, value);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
break;
case ARMV7M_S0 ... ARMV7M_S31:
/* Floating-point Status and Registers */
retval = target_write_u32(target, ARMV7M_SCS_DCRSR, num-ARMV7M_S0+64);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, ARMV7M_SCS_DCRDR, value);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "", (int)num, *value);
break;
case ARMV7M_D0 ... ARMV7M_D15:
value = 0;
break;
case ARMV7M_PRIMASK:
case ARMV7M_BASEPRI:
case ARMV7M_FAULTMASK:
case ARMV7M_CONTROL:
/* Cortex-M3 packages these four registers as bitfields
* in one Debug Core register. So say r0 and r2 docs;
* it was removed from r1 docs, but still works.
*/
retval = adapter->layout->api->read_reg(adapter->fd, 20, value);
if (retval != ERROR_OK)
return retval;
switch (num) {
case ARMV7M_PRIMASK:
*value = buf_get_u32((uint8_t *) value, 0, 1);
break;
case ARMV7M_BASEPRI:
*value = buf_get_u32((uint8_t *) value, 8, 8);
break;
case ARMV7M_FAULTMASK:
*value = buf_get_u32((uint8_t *) value, 16, 1);
break;
case ARMV7M_CONTROL:
*value = buf_get_u32((uint8_t *) value, 24, 2);
break;
}
LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "",
(int)num, *value);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
static int adapter_store_core_reg_u32(struct target *target,
uint32_t num, uint32_t value)
{
int retval;
uint32_t reg;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct hl_interface_s *adapter = target_to_adapter(target);
LOG_DEBUG("%s", __func__);
/* NOTE: we "know" here that the register identifiers used
* in the v7m header match the Cortex-M3 Debug Core Register
* Selector values for R0..R15, xPSR, MSP, and PSP.
*/
switch (num) {
case 0 ... 18:
retval = adapter->layout->api->write_reg(adapter->fd, num, value);
if (retval != ERROR_OK) {
struct reg *r;
LOG_ERROR("JTAG failure");
r = armv7m->arm.core_cache->reg_list + num;
r->dirty = r->valid;
return ERROR_JTAG_DEVICE_ERROR;
}
LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
break;
case ARMV7M_FPSID:
case ARMV7M_FPEXC:
break;
case ARMV7M_FPSCR:
/* Floating-point Status and Registers */
retval = target_write_u32(target, ARMV7M_SCS_DCRDR, value);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, ARMV7M_SCS_DCRSR, 33 | (1<<16));
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
break;
case ARMV7M_S0 ... ARMV7M_S31:
/* Floating-point Status and Registers */
retval = target_write_u32(target, ARMV7M_SCS_DCRDR, value);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, ARMV7M_SCS_DCRSR, (num-ARMV7M_S0+64) | (1<<16));
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
break;
case ARMV7M_D0 ... ARMV7M_D15:
break;
case ARMV7M_PRIMASK:
case ARMV7M_BASEPRI:
case ARMV7M_FAULTMASK:
case ARMV7M_CONTROL:
/* Cortex-M3 packages these four registers as bitfields
* in one Debug Core register. So say r0 and r2 docs;
* it was removed from r1 docs, but still works.
*/
adapter->layout->api->read_reg(adapter->fd, 20, &reg);
switch (num) {
case ARMV7M_PRIMASK:
buf_set_u32((uint8_t *) &reg, 0, 1, value);
break;
case ARMV7M_BASEPRI:
buf_set_u32((uint8_t *) &reg, 8, 8, value);
break;
case ARMV7M_FAULTMASK:
buf_set_u32((uint8_t *) &reg, 16, 1, value);
break;
case ARMV7M_CONTROL:
buf_set_u32((uint8_t *) &reg, 24, 2, value);
break;
}
adapter->layout->api->write_reg(adapter->fd, 20, reg);
LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
static int adapter_examine_debug_reason(struct target *target)
{
if ((target->debug_reason != DBG_REASON_DBGRQ)
&& (target->debug_reason != DBG_REASON_SINGLESTEP)) {
target->debug_reason = DBG_REASON_BREAKPOINT;
}
return ERROR_OK;
}
static int hl_dcc_read(struct hl_interface_s *hl_if, uint8_t *value, uint8_t *ctrl)
{
uint16_t dcrdr;
int retval = hl_if->layout->api->read_mem(hl_if->fd,
DCB_DCRDR, 1, sizeof(dcrdr), (uint8_t *)&dcrdr);
if (retval == ERROR_OK) {
*ctrl = (uint8_t)dcrdr;
*value = (uint8_t)(dcrdr >> 8);
LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
if (dcrdr & 1) {
/* write ack back to software dcc register
* to signify we have read data */
/* atomically clear just the byte containing the busy bit */
static const uint8_t zero;
retval = hl_if->layout->api->write_mem(hl_if->fd, DCB_DCRDR, 1, 1, &zero);
}
}
return retval;
}
static int hl_target_request_data(struct target *target,
uint32_t size, uint8_t *buffer)
{
struct hl_interface_s *hl_if = target_to_adapter(target);
uint8_t data;
uint8_t ctrl;
uint32_t i;
for (i = 0; i < (size * 4); i++) {
hl_dcc_read(hl_if, &data, &ctrl);
buffer[i] = data;
}
return ERROR_OK;
}
static int hl_handle_target_request(void *priv)
{
struct target *target = priv;
if (!target_was_examined(target))
return ERROR_OK;
struct hl_interface_s *hl_if = target_to_adapter(target);
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING) {
uint8_t data;
uint8_t ctrl;
hl_dcc_read(hl_if, &data, &ctrl);
/* check if we have data */
if (ctrl & (1 << 0)) {
uint32_t request;
/* we assume target is quick enough */
request = data;
hl_dcc_read(hl_if, &data, &ctrl);
request |= (data << 8);
hl_dcc_read(hl_if, &data, &ctrl);
request |= (data << 16);
hl_dcc_read(hl_if, &data, &ctrl);
request |= (data << 24);
target_request(target, request);
}
}
return ERROR_OK;
}
static int adapter_init_arch_info(struct target *target,
struct cortex_m_common *cortex_m,
struct jtag_tap *tap)
{
struct armv7m_common *armv7m;
LOG_DEBUG("%s", __func__);
armv7m = &cortex_m->armv7m;
armv7m_init_arch_info(target, armv7m);
armv7m->load_core_reg_u32 = adapter_load_core_reg_u32;
armv7m->store_core_reg_u32 = adapter_store_core_reg_u32;
armv7m->examine_debug_reason = adapter_examine_debug_reason;
armv7m->stlink = true;
target_register_timer_callback(hl_handle_target_request, 1, 1, target);
return ERROR_OK;
}
static int adapter_init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_DEBUG("%s", __func__);
armv7m_build_reg_cache(target);
return ERROR_OK;
}
static int adapter_target_create(struct target *target,
Jim_Interp *interp)
{
LOG_DEBUG("%s", __func__);
struct cortex_m_common *cortex_m = calloc(1, sizeof(struct cortex_m_common));
if (!cortex_m)
return ERROR_COMMAND_SYNTAX_ERROR;
adapter_init_arch_info(target, cortex_m, target->tap);
return ERROR_OK;
}
static int adapter_load_context(struct target *target)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
int num_regs = armv7m->arm.core_cache->num_regs;
for (int i = 0; i < num_regs; i++) {
struct reg *r = &armv7m->arm.core_cache->reg_list[i];
if (!r->valid)
armv7m->arm.read_core_reg(target, r, i, ARM_MODE_ANY);
}
return ERROR_OK;
}
static int adapter_debug_entry(struct target *target)
{
struct hl_interface_s *adapter = target_to_adapter(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
struct arm *arm = &armv7m->arm;
struct reg *r;
uint32_t xPSR;
int retval;
/* preserve the DCRDR across halts */
retval = target_read_u32(target, DCB_DCRDR, &target->savedDCRDR);
if (retval != ERROR_OK)
return retval;
retval = armv7m->examine_debug_reason(target);
if (retval != ERROR_OK)
return retval;
adapter_load_context(target);
/* make sure we clear the vector catch bit */
adapter->layout->api->write_debug_reg(adapter->fd, DCB_DEMCR, TRCENA);
r = arm->cpsr;
xPSR = buf_get_u32(r->value, 0, 32);
/* Are we in an exception handler */
if (xPSR & 0x1FF) {
armv7m->exception_number = (xPSR & 0x1FF);
arm->core_mode = ARM_MODE_HANDLER;
arm->map = armv7m_msp_reg_map;
} else {
unsigned control = buf_get_u32(arm->core_cache
->reg_list[ARMV7M_CONTROL].value, 0, 2);
/* is this thread privileged? */
arm->core_mode = control & 1
? ARM_MODE_USER_THREAD
: ARM_MODE_THREAD;
/* which stack is it using? */
if (control & 2)
arm->map = armv7m_psp_reg_map;
else
arm->map = armv7m_msp_reg_map;
armv7m->exception_number = 0;
}
LOG_DEBUG("entered debug state in core mode: %s at PC 0x%08" PRIx32 ", target->state: %s",
arm_mode_name(arm->core_mode),
*(uint32_t *)(arm->pc->value),
target_state_name(target));
return retval;
}
static int adapter_poll(struct target *target)
{
enum target_state state;
struct hl_interface_s *adapter = target_to_adapter(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
enum target_state prev_target_state = target->state;
state = adapter->layout->api->state(adapter->fd);
if (state == TARGET_UNKNOWN) {
LOG_ERROR("jtag status contains invalid mode value - communication failure");
return ERROR_TARGET_FAILURE;
}
if (target->state == state)
return ERROR_OK;
if (state == TARGET_HALTED) {
target->state = state;
int retval = adapter_debug_entry(target);
if (retval != ERROR_OK)
return retval;
if (prev_target_state == TARGET_DEBUG_RUNNING) {
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
} else {
if (arm_semihosting(target, &retval) != 0)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
LOG_DEBUG("halted: PC: 0x%08x", buf_get_u32(armv7m->arm.pc->value, 0, 32));
}
return ERROR_OK;
}
static int adapter_assert_reset(struct target *target)
{
int res = ERROR_OK;
struct hl_interface_s *adapter = target_to_adapter(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
bool use_srst_fallback = true;
LOG_DEBUG("%s", __func__);
enum reset_types jtag_reset_config = jtag_get_reset_config();
bool srst_asserted = false;
if ((jtag_reset_config & RESET_HAS_SRST) &&
(jtag_reset_config & RESET_SRST_NO_GATING)) {
jtag_add_reset(0, 1);
res = adapter->layout->api->assert_srst(adapter->fd, 0);
srst_asserted = true;
}
adapter->layout->api->write_debug_reg(adapter->fd, DCB_DHCSR, DBGKEY|C_DEBUGEN);
/* only set vector catch if halt is requested */
if (target->reset_halt)
adapter->layout->api->write_debug_reg(adapter->fd, DCB_DEMCR, TRCENA|VC_CORERESET);
else
adapter->layout->api->write_debug_reg(adapter->fd, DCB_DEMCR, TRCENA);
if (jtag_reset_config & RESET_HAS_SRST) {
if (!srst_asserted) {
jtag_add_reset(0, 1);
res = adapter->layout->api->assert_srst(adapter->fd, 0);
}
if (res == ERROR_COMMAND_NOTFOUND)
LOG_ERROR("Hardware srst not supported, falling back to software reset");
else if (res == ERROR_OK) {
/* hardware srst supported */
use_srst_fallback = false;
}
}
if (use_srst_fallback) {
/* stlink v1 api does not support hardware srst, so we use a software reset fallback */
adapter->layout->api->write_debug_reg(adapter->fd, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
}
res = adapter->layout->api->reset(adapter->fd);
if (res != ERROR_OK)
return res;
/* registers are now invalid */
register_cache_invalidate(armv7m->arm.core_cache);
if (target->reset_halt) {
target->state = TARGET_RESET;
target->debug_reason = DBG_REASON_DBGRQ;
} else {
target->state = TARGET_HALTED;
}
return ERROR_OK;
}
static int adapter_deassert_reset(struct target *target)
{
struct hl_interface_s *adapter = target_to_adapter(target);
enum reset_types jtag_reset_config = jtag_get_reset_config();
LOG_DEBUG("%s", __func__);
if (jtag_reset_config & RESET_HAS_SRST)
adapter->layout->api->assert_srst(adapter->fd, 1);
/* virtual deassert reset, we need it for the internal
* jtag state machine
*/
jtag_add_reset(0, 0);
target->savedDCRDR = 0; /* clear both DCC busy bits on initial resume */
return target->reset_halt ? ERROR_OK : target_resume(target, 1, 0, 0, 0);
}
static int adapter_halt(struct target *target)
{
int res;
struct hl_interface_s *adapter = target_to_adapter(target);
LOG_DEBUG("%s", __func__);
if (target->state == TARGET_HALTED) {
LOG_DEBUG("target was already halted");
return ERROR_OK;
}
if (target->state == TARGET_UNKNOWN)
LOG_WARNING("target was in unknown state when halt was requested");
res = adapter->layout->api->halt(adapter->fd);
if (res != ERROR_OK)
return res;
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
static int adapter_resume(struct target *target, int current,
uint32_t address, int handle_breakpoints,
int debug_execution)
{
int res;
struct hl_interface_s *adapter = target_to_adapter(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
uint32_t resume_pc;
struct breakpoint *breakpoint = NULL;
struct reg *pc;
LOG_DEBUG("%s %d 0x%08x %d %d", __func__, current, address,
handle_breakpoints, debug_execution);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!debug_execution) {
target_free_all_working_areas(target);
cortex_m_enable_breakpoints(target);
cortex_m_enable_watchpoints(target);
}
pc = armv7m->arm.pc;
if (!current) {
buf_set_u32(pc->value, 0, 32, address);
pc->dirty = true;
pc->valid = true;
}
if (!breakpoint_find(target, buf_get_u32(pc->value, 0, 32))
&& !debug_execution) {
armv7m_maybe_skip_bkpt_inst(target, NULL);
}
resume_pc = buf_get_u32(pc->value, 0, 32);
/* write any user vector flags */
res = target_write_u32(target, DCB_DEMCR, TRCENA | armv7m->demcr);
if (res != ERROR_OK)
return res;
armv7m_restore_context(target);
/* restore savedDCRDR */
res = target_write_u32(target, DCB_DCRDR, target->savedDCRDR);
if (res != ERROR_OK)
return res;
/* registers are now invalid */
register_cache_invalidate(armv7m->arm.core_cache);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
/* Single step past breakpoint at current address */
breakpoint = breakpoint_find(target, resume_pc);
if (breakpoint) {
LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
breakpoint->address,
breakpoint->unique_id);
cortex_m_unset_breakpoint(target, breakpoint);
res = adapter->layout->api->step(adapter->fd);
if (res != ERROR_OK)
return res;
cortex_m_set_breakpoint(target, breakpoint);
}
}
res = adapter->layout->api->run(adapter->fd);
if (res != ERROR_OK)
return res;
target->debug_reason = DBG_REASON_NOTHALTED;
if (!debug_execution) {
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
} else {
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
}
return ERROR_OK;
}
static int adapter_step(struct target *target, int current,
uint32_t address, int handle_breakpoints)
{
int res;
struct hl_interface_s *adapter = target_to_adapter(target);
struct armv7m_common *armv7m = target_to_armv7m(target);
struct breakpoint *breakpoint = NULL;
struct reg *pc = armv7m->arm.pc;
bool bkpt_inst_found = false;
LOG_DEBUG("%s", __func__);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!current) {
buf_set_u32(pc->value, 0, 32, address);
pc->dirty = true;
pc->valid = true;
}
uint32_t pc_value = buf_get_u32(pc->value, 0, 32);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
breakpoint = breakpoint_find(target, pc_value);
if (breakpoint)
cortex_m_unset_breakpoint(target, breakpoint);
}
armv7m_maybe_skip_bkpt_inst(target, &bkpt_inst_found);
target->debug_reason = DBG_REASON_SINGLESTEP;
armv7m_restore_context(target);
/* restore savedDCRDR */
res = target_write_u32(target, DCB_DCRDR, target->savedDCRDR);
if (res != ERROR_OK)
return res;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
res = adapter->layout->api->step(adapter->fd);
if (res != ERROR_OK)
return res;
/* registers are now invalid */
register_cache_invalidate(armv7m->arm.core_cache);
if (breakpoint)
cortex_m_set_breakpoint(target, breakpoint);
adapter_debug_entry(target);
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
LOG_INFO("halted: PC: 0x%08x", buf_get_u32(armv7m->arm.pc->value, 0, 32));
return ERROR_OK;
}
static int adapter_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count,
uint8_t *buffer)
{
struct hl_interface_s *adapter = target_to_adapter(target);
if (!count || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("%s 0x%08x %d %d", __func__, address, size, count);
return adapter->layout->api->read_mem(adapter->fd, address, size, count, buffer);
}
static int adapter_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count,
const uint8_t *buffer)
{
struct hl_interface_s *adapter = target_to_adapter(target);
if (!count || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("%s 0x%08x %d %d", __func__, address, size, count);
return adapter->layout->api->write_mem(adapter->fd, address, size, count, buffer);
}
static const struct command_registration adapter_command_handlers[] = {
{
.chain = arm_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct target_type hla_target = {
.name = "hla_target",
.deprecated_name = "stm32_stlink",
.init_target = adapter_init_target,
.target_create = adapter_target_create,
.examine = cortex_m_examine,
.commands = adapter_command_handlers,
.poll = adapter_poll,
.arch_state = armv7m_arch_state,
.target_request_data = hl_target_request_data,
.assert_reset = adapter_assert_reset,
.deassert_reset = adapter_deassert_reset,
.halt = adapter_halt,
.resume = adapter_resume,
.step = adapter_step,
.get_gdb_reg_list = armv7m_get_gdb_reg_list,
.read_memory = adapter_read_memory,
.write_memory = adapter_write_memory,
.checksum_memory = armv7m_checksum_memory,
.blank_check_memory = armv7m_blank_check_memory,
.run_algorithm = armv7m_run_algorithm,
.start_algorithm = armv7m_start_algorithm,
.wait_algorithm = armv7m_wait_algorithm,
.add_breakpoint = cortex_m_add_breakpoint,
.remove_breakpoint = cortex_m_remove_breakpoint,
.add_watchpoint = cortex_m_add_watchpoint,
.remove_watchpoint = cortex_m_remove_watchpoint,
};