openocd/src/jtag/drivers/ft232r.c

927 lines
25 KiB
C

/***************************************************************************
* Copyright (C) 2010 Serge Vakulenko *
* serge@vak.ru *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if IS_CYGWIN == 1
#include "windows.h"
#undef LOG_ERROR
#endif
/* project specific includes */
#include <jtag/adapter.h>
#include <jtag/interface.h>
#include <jtag/commands.h>
#include <helper/time_support.h>
#include "libusb_helper.h"
/* system includes */
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
/*
* Sync bit bang mode is implemented as described in FTDI Application
* Note AN232R-01: "Bit Bang Modes for the FT232R and FT245R".
*/
/*
* USB endpoints.
*/
#define IN_EP 0x02
#define OUT_EP 0x81
/* Requests */
#define SIO_RESET 0 /* Reset the port */
#define SIO_MODEM_CTRL 1 /* Set the modem control register */
#define SIO_SET_FLOW_CTRL 2 /* Set flow control register */
#define SIO_SET_BAUD_RATE 3 /* Set baud rate */
#define SIO_SET_DATA 4 /* Set the data characteristics of the port */
#define SIO_POLL_MODEM_STATUS 5
#define SIO_SET_EVENT_CHAR 6
#define SIO_SET_ERROR_CHAR 7
#define SIO_SET_LATENCY_TIMER 9
#define SIO_GET_LATENCY_TIMER 10
#define SIO_SET_BITMODE 11
#define SIO_READ_PINS 12
#define SIO_READ_EEPROM 0x90
#define SIO_WRITE_EEPROM 0x91
#define SIO_ERASE_EEPROM 0x92
#define FT232R_BUF_SIZE_EXTRA 4096
static uint16_t ft232r_vid = 0x0403; /* FTDI */
static uint16_t ft232r_pid = 0x6001; /* FT232R */
static struct libusb_device_handle *adapter;
static uint8_t *ft232r_output;
static size_t ft232r_output_len;
/**
* FT232R GPIO bit number to RS232 name
*/
#define FT232R_BIT_COUNT 8
static char *ft232r_bit_name_array[FT232R_BIT_COUNT] = {
"TXD", /* 0: pin 1 TCK output */
"RXD", /* 1: pin 5 TDI output */
"RTS", /* 2: pin 3 TDO input */
"CTS", /* 3: pin 11 TMS output */
"DTR", /* 4: pin 2 /TRST output */
"DSR", /* 5: pin 9 unused */
"DCD", /* 6: pin 10 /SYSRST output */
"RI" /* 7: pin 6 unused */
};
static int tck_gpio; /* initialized to 0 by default */
static int tdi_gpio = 1;
static int tdo_gpio = 2;
static int tms_gpio = 3;
static int ntrst_gpio = 4;
static int nsysrst_gpio = 6;
static size_t ft232r_buf_size = FT232R_BUF_SIZE_EXTRA;
/** 0xFFFF disables restore by default, after exit serial port will not work.
* 0x15 sets TXD RTS DTR as outputs, after exit serial port will continue to work.
*/
static uint16_t ft232r_restore_bitmode = 0xFFFF;
/**
* Perform sync bitbang output/input transaction.
* Before call, an array ft232r_output[] should be filled with data to send.
* Counter ft232r_output_len contains the number of bytes to send.
* On return, received data is put back to array ft232r_output[].
*/
static int ft232r_send_recv(void)
{
/* FIFO TX buffer has 128 bytes.
* FIFO RX buffer has 256 bytes.
* First two bytes of received packet contain contain modem
* and line status and are ignored.
* Unfortunately, transfer sizes bigger than 64 bytes
* frequently cause hang ups. */
assert(ft232r_output_len > 0);
size_t total_written = 0;
size_t total_read = 0;
int rxfifo_free = 128;
while (total_read < ft232r_output_len) {
/* Write */
int bytes_to_write = ft232r_output_len - total_written;
if (bytes_to_write > 64)
bytes_to_write = 64;
if (bytes_to_write > rxfifo_free)
bytes_to_write = rxfifo_free;
if (bytes_to_write) {
int n;
if (jtag_libusb_bulk_write(adapter, IN_EP,
(char *) ft232r_output + total_written,
bytes_to_write, 1000, &n) != ERROR_OK) {
LOG_ERROR("usb bulk write failed");
return ERROR_JTAG_DEVICE_ERROR;
}
total_written += n;
rxfifo_free -= n;
}
/* Read */
uint8_t reply[64];
int n;
if (jtag_libusb_bulk_read(adapter, OUT_EP, (char *) reply,
sizeof(reply), 1000, &n) != ERROR_OK) {
LOG_ERROR("usb bulk read failed");
return ERROR_JTAG_DEVICE_ERROR;
}
if (n > 2) {
/* Copy data, ignoring first 2 bytes. */
memcpy(ft232r_output + total_read, reply + 2, n - 2);
int bytes_read = n - 2;
total_read += bytes_read;
rxfifo_free += bytes_read;
if (total_read > total_written) {
LOG_ERROR("read more bytes than wrote");
return ERROR_JTAG_DEVICE_ERROR;
}
}
}
ft232r_output_len = 0;
return ERROR_OK;
}
static void ft232r_increase_buf_size(size_t new_buf_size)
{
uint8_t *new_buf_ptr;
if (new_buf_size >= ft232r_buf_size) {
new_buf_size += FT232R_BUF_SIZE_EXTRA;
new_buf_ptr = realloc(ft232r_output, new_buf_size);
if (new_buf_ptr) {
ft232r_output = new_buf_ptr;
ft232r_buf_size = new_buf_size;
}
}
}
/**
* Add one TCK/TMS/TDI sample to send buffer.
*/
static void ft232r_write(int tck, int tms, int tdi)
{
unsigned out_value = (1<<ntrst_gpio) | (1<<nsysrst_gpio);
if (tck)
out_value |= (1<<tck_gpio);
if (tms)
out_value |= (1<<tms_gpio);
if (tdi)
out_value |= (1<<tdi_gpio);
ft232r_increase_buf_size(ft232r_output_len);
if (ft232r_output_len >= ft232r_buf_size) {
/* FIXME: should we just execute queue here? */
LOG_ERROR("ft232r_write: buffer overflow");
return;
}
ft232r_output[ft232r_output_len++] = out_value;
}
/**
* Control /TRST and /SYSRST pins.
* Perform immediate bitbang transaction.
*/
static void ft232r_reset(int trst, int srst)
{
unsigned out_value = (1<<ntrst_gpio) | (1<<nsysrst_gpio);
LOG_DEBUG("ft232r_reset(%d,%d)", trst, srst);
if (trst == 1)
out_value &= ~(1<<ntrst_gpio); /* switch /TRST low */
else if (trst == 0)
out_value |= (1<<ntrst_gpio); /* switch /TRST high */
if (srst == 1)
out_value &= ~(1<<nsysrst_gpio); /* switch /SYSRST low */
else if (srst == 0)
out_value |= (1<<nsysrst_gpio); /* switch /SYSRST high */
ft232r_increase_buf_size(ft232r_output_len);
if (ft232r_output_len >= ft232r_buf_size) {
/* FIXME: should we just execute queue here? */
LOG_ERROR("ft232r_write: buffer overflow");
return;
}
ft232r_output[ft232r_output_len++] = out_value;
ft232r_send_recv();
}
static int ft232r_speed(int divisor)
{
int baud = (divisor == 0) ? 3000000 :
(divisor == 1) ? 2000000 :
3000000 / divisor;
LOG_DEBUG("ft232r_speed(%d) rate %d bits/sec", divisor, baud);
if (jtag_libusb_control_transfer(adapter,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT,
SIO_SET_BAUD_RATE, divisor, 0, 0, 0, 1000) != 0) {
LOG_ERROR("cannot set baud rate");
return ERROR_JTAG_DEVICE_ERROR;
}
return ERROR_OK;
}
static int ft232r_init(void)
{
uint16_t avids[] = {ft232r_vid, 0};
uint16_t apids[] = {ft232r_pid, 0};
if (jtag_libusb_open(avids, apids, &adapter, NULL)) {
const char *ft232r_serial_desc = adapter_get_required_serial();
LOG_ERROR("ft232r not found: vid=%04x, pid=%04x, serial=%s\n",
ft232r_vid, ft232r_pid, (!ft232r_serial_desc) ? "[any]" : ft232r_serial_desc);
return ERROR_JTAG_INIT_FAILED;
}
if (ft232r_restore_bitmode == 0xFFFF) /* serial port will not be restored after jtag: */
libusb_detach_kernel_driver(adapter, 0);
else /* serial port will be restored after jtag: */
libusb_set_auto_detach_kernel_driver(adapter, 1); /* 1: DONT_DETACH_SIO_MODULE */
if (libusb_claim_interface(adapter, 0)) {
LOG_ERROR("unable to claim interface");
return ERROR_JTAG_INIT_FAILED;
}
/* Reset the device. */
if (jtag_libusb_control_transfer(adapter,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT,
SIO_RESET, 0, 0, 0, 0, 1000) != 0) {
LOG_ERROR("unable to reset device");
return ERROR_JTAG_INIT_FAILED;
}
/* Sync bit bang mode. */
if (jtag_libusb_control_transfer(adapter,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT,
SIO_SET_BITMODE, (1<<tck_gpio) | (1<<tdi_gpio) | (1<<tms_gpio) | (1<<ntrst_gpio) | (1<<nsysrst_gpio) | 0x400,
0, 0, 0, 1000) != 0) {
LOG_ERROR("cannot set sync bitbang mode");
return ERROR_JTAG_INIT_FAILED;
}
/* Exactly 500 nsec between updates. */
unsigned divisor = 1;
unsigned char latency_timer = 1;
/* Frequency divisor is 14-bit non-zero value. */
if (jtag_libusb_control_transfer(adapter,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT,
SIO_SET_BAUD_RATE, divisor,
0, 0, 0, 1000) != 0) {
LOG_ERROR("cannot set baud rate");
return ERROR_JTAG_INIT_FAILED;
}
if (jtag_libusb_control_transfer(adapter,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT,
SIO_SET_LATENCY_TIMER, latency_timer, 0, 0, 0, 1000) != 0) {
LOG_ERROR("unable to set latency timer");
return ERROR_JTAG_INIT_FAILED;
}
ft232r_output = malloc(ft232r_buf_size);
if (!ft232r_output) {
LOG_ERROR("Unable to allocate memory for the buffer");
return ERROR_JTAG_INIT_FAILED;
}
return ERROR_OK;
}
static int ft232r_quit(void)
{
/* to restore serial port: set TXD RTS DTR as outputs, others as inputs, disable sync bit bang mode. */
if (ft232r_restore_bitmode != 0xFFFF) {
if (jtag_libusb_control_transfer(adapter,
LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_RECIPIENT_DEVICE | LIBUSB_ENDPOINT_OUT,
SIO_SET_BITMODE, ft232r_restore_bitmode,
0, 0, 0, 1000) != 0) {
LOG_ERROR("cannot set bitmode to restore serial port");
}
}
if (libusb_release_interface(adapter, 0) != 0)
LOG_ERROR("usb release interface failed");
jtag_libusb_close(adapter);
free(ft232r_output); /* free used memory */
ft232r_output = NULL; /* reset pointer to memory */
ft232r_buf_size = FT232R_BUF_SIZE_EXTRA; /* reset next initial buffer size */
return ERROR_OK;
}
static int ft232r_speed_div(int divisor, int *khz)
{
/* Maximum 3 Mbaud for bit bang mode. */
if (divisor == 0)
*khz = 3000;
else if (divisor == 1)
*khz = 2000;
else
*khz = 3000 / divisor;
return ERROR_OK;
}
static int ft232r_khz(int khz, int *divisor)
{
if (khz == 0) {
LOG_DEBUG("RCLK not supported");
return ERROR_FAIL;
}
/* Calculate frequency divisor. */
if (khz > 2500)
*divisor = 0; /* Special case: 3 MHz */
else if (khz > 1700)
*divisor = 1; /* Special case: 2 MHz */
else {
*divisor = (2*3000 / khz + 1) / 2;
if (*divisor > 0x3FFF)
*divisor = 0x3FFF;
}
return ERROR_OK;
}
static char *ft232r_bit_number_to_name(int bit)
{
if (bit >= 0 && bit < FT232R_BIT_COUNT)
return ft232r_bit_name_array[bit];
return "?";
}
static int ft232r_bit_name_to_number(const char *name)
{
int i;
if (name[0] >= '0' && name[0] <= '9' && name[1] == '\0') {
i = atoi(name);
if (i >= 0 && i < FT232R_BIT_COUNT)
return i;
}
for (i = 0; i < FT232R_BIT_COUNT; i++)
if (strcasecmp(name, ft232r_bit_name_array[i]) == 0)
return i;
return -1;
}
COMMAND_HANDLER(ft232r_handle_vid_pid_command)
{
if (CMD_ARGC > 2) {
LOG_WARNING("ignoring extra IDs in ft232r_vid_pid "
"(maximum is 1 pair)");
CMD_ARGC = 2;
}
if (CMD_ARGC == 2) {
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], ft232r_vid);
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], ft232r_pid);
} else
LOG_WARNING("incomplete ft232r_vid_pid configuration");
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_jtag_nums_command)
{
if (CMD_ARGC == 4) {
tck_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]);
tms_gpio = ft232r_bit_name_to_number(CMD_ARGV[1]);
tdi_gpio = ft232r_bit_name_to_number(CMD_ARGV[2]);
tdo_gpio = ft232r_bit_name_to_number(CMD_ARGV[3]);
} else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tck_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tms_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tdi_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tdo_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R nums: TCK = %d %s, TMS = %d %s, TDI = %d %s, TDO = %d %s",
tck_gpio, ft232r_bit_number_to_name(tck_gpio),
tms_gpio, ft232r_bit_number_to_name(tms_gpio),
tdi_gpio, ft232r_bit_number_to_name(tdi_gpio),
tdo_gpio, ft232r_bit_number_to_name(tdo_gpio));
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_tck_num_command)
{
if (CMD_ARGC == 1)
tck_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]);
else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tck_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R num: TCK = %d %s", tck_gpio, ft232r_bit_number_to_name(tck_gpio));
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_tms_num_command)
{
if (CMD_ARGC == 1)
tms_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]);
else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tms_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R num: TMS = %d %s", tms_gpio, ft232r_bit_number_to_name(tms_gpio));
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_tdo_num_command)
{
if (CMD_ARGC == 1)
tdo_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]);
else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tdo_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R num: TDO = %d %s", tdo_gpio, ft232r_bit_number_to_name(tdo_gpio));
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_tdi_num_command)
{
if (CMD_ARGC == 1)
tdi_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]);
else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (tdi_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R num: TDI = %d %s", tdi_gpio, ft232r_bit_number_to_name(tdi_gpio));
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_trst_num_command)
{
if (CMD_ARGC == 1)
ntrst_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]);
else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (ntrst_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R num: TRST = %d %s", ntrst_gpio, ft232r_bit_number_to_name(ntrst_gpio));
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_srst_num_command)
{
if (CMD_ARGC == 1)
nsysrst_gpio = ft232r_bit_name_to_number(CMD_ARGV[0]);
else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
if (nsysrst_gpio < 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R num: SRST = %d %s", nsysrst_gpio, ft232r_bit_number_to_name(nsysrst_gpio));
return ERROR_OK;
}
COMMAND_HANDLER(ft232r_handle_restore_serial_command)
{
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], ft232r_restore_bitmode);
else if (CMD_ARGC != 0)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD,
"FT232R restore serial: 0x%04X (%s)",
ft232r_restore_bitmode, ft232r_restore_bitmode == 0xFFFF ? "disabled" : "enabled");
return ERROR_OK;
}
static const struct command_registration ft232r_subcommand_handlers[] = {
{
.name = "vid_pid",
.handler = ft232r_handle_vid_pid_command,
.mode = COMMAND_CONFIG,
.help = "USB VID and PID of the adapter",
.usage = "vid pid",
},
{
.name = "jtag_nums",
.handler = ft232r_handle_jtag_nums_command,
.mode = COMMAND_CONFIG,
.help = "gpio numbers for tck, tms, tdi, tdo. (in that order)",
.usage = "<0-7|TXD-RI> <0-7|TXD-RI> <0-7|TXD-RI> <0-7|TXD-RI>",
},
{
.name = "tck_num",
.handler = ft232r_handle_tck_num_command,
.mode = COMMAND_CONFIG,
.help = "gpio number for tck.",
.usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>",
},
{
.name = "tms_num",
.handler = ft232r_handle_tms_num_command,
.mode = COMMAND_CONFIG,
.help = "gpio number for tms.",
.usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>",
},
{
.name = "tdo_num",
.handler = ft232r_handle_tdo_num_command,
.mode = COMMAND_CONFIG,
.help = "gpio number for tdo.",
.usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>",
},
{
.name = "tdi_num",
.handler = ft232r_handle_tdi_num_command,
.mode = COMMAND_CONFIG,
.help = "gpio number for tdi.",
.usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>",
},
{
.name = "srst_num",
.handler = ft232r_handle_srst_num_command,
.mode = COMMAND_CONFIG,
.help = "gpio number for srst.",
.usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>",
},
{
.name = "trst_num",
.handler = ft232r_handle_trst_num_command,
.mode = COMMAND_CONFIG,
.help = "gpio number for trst.",
.usage = "<0-7|TXD|RXD|RTS|CTS|DTR|DSR|DCD|RI>",
},
{
.name = "restore_serial",
.handler = ft232r_handle_restore_serial_command,
.mode = COMMAND_CONFIG,
.help = "bitmode control word that restores serial port.",
.usage = "bitmode_control_word",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration ft232r_command_handlers[] = {
{
.name = "ft232r",
.mode = COMMAND_ANY,
.help = "perform ft232r management",
.chain = ft232r_subcommand_handlers,
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
/*
* Synchronous bitbang protocol implementation.
*/
static void syncbb_end_state(tap_state_t state)
{
if (tap_is_state_stable(state))
tap_set_end_state(state);
else {
LOG_ERROR("BUG: %i is not a valid end state", state);
exit(-1);
}
}
static void syncbb_state_move(int skip)
{
int i = 0, tms = 0;
uint8_t tms_scan = tap_get_tms_path(tap_get_state(), tap_get_end_state());
int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
for (i = skip; i < tms_count; i++) {
tms = (tms_scan >> i) & 1;
ft232r_write(0, tms, 0);
ft232r_write(1, tms, 0);
}
ft232r_write(0, tms, 0);
tap_set_state(tap_get_end_state());
}
/**
* Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
* (or SWD) state machine.
*/
static int syncbb_execute_tms(struct jtag_command *cmd)
{
unsigned num_bits = cmd->cmd.tms->num_bits;
const uint8_t *bits = cmd->cmd.tms->bits;
LOG_DEBUG_IO("TMS: %d bits", num_bits);
int tms = 0;
for (unsigned i = 0; i < num_bits; i++) {
tms = ((bits[i/8] >> (i % 8)) & 1);
ft232r_write(0, tms, 0);
ft232r_write(1, tms, 0);
}
ft232r_write(0, tms, 0);
return ERROR_OK;
}
static void syncbb_path_move(struct pathmove_command *cmd)
{
int num_states = cmd->num_states;
int state_count;
int tms = 0;
state_count = 0;
while (num_states) {
if (tap_state_transition(tap_get_state(), false) == cmd->path[state_count]) {
tms = 0;
} else if (tap_state_transition(tap_get_state(), true) == cmd->path[state_count]) {
tms = 1;
} else {
LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition",
tap_state_name(tap_get_state()),
tap_state_name(cmd->path[state_count]));
exit(-1);
}
ft232r_write(0, tms, 0);
ft232r_write(1, tms, 0);
tap_set_state(cmd->path[state_count]);
state_count++;
num_states--;
}
ft232r_write(0, tms, 0);
tap_set_end_state(tap_get_state());
}
static void syncbb_runtest(int num_cycles)
{
int i;
tap_state_t saved_end_state = tap_get_end_state();
/* only do a state_move when we're not already in IDLE */
if (tap_get_state() != TAP_IDLE) {
syncbb_end_state(TAP_IDLE);
syncbb_state_move(0);
}
/* execute num_cycles */
for (i = 0; i < num_cycles; i++) {
ft232r_write(0, 0, 0);
ft232r_write(1, 0, 0);
}
ft232r_write(0, 0, 0);
/* finish in end_state */
syncbb_end_state(saved_end_state);
if (tap_get_state() != tap_get_end_state())
syncbb_state_move(0);
}
/**
* Function syncbb_stableclocks
* issues a number of clock cycles while staying in a stable state.
* Because the TMS value required to stay in the RESET state is a 1, whereas
* the TMS value required to stay in any of the other stable states is a 0,
* this function checks the current stable state to decide on the value of TMS
* to use.
*/
static void syncbb_stableclocks(int num_cycles)
{
int tms = (tap_get_state() == TAP_RESET ? 1 : 0);
int i;
/* send num_cycles clocks onto the cable */
for (i = 0; i < num_cycles; i++) {
ft232r_write(1, tms, 0);
ft232r_write(0, tms, 0);
}
}
static void syncbb_scan(bool ir_scan, enum scan_type type, uint8_t *buffer, int scan_size)
{
tap_state_t saved_end_state = tap_get_end_state();
int bit_cnt, bit0_index;
if (!((!ir_scan && (tap_get_state() == TAP_DRSHIFT)) || (ir_scan && (tap_get_state() == TAP_IRSHIFT)))) {
if (ir_scan)
syncbb_end_state(TAP_IRSHIFT);
else
syncbb_end_state(TAP_DRSHIFT);
syncbb_state_move(0);
syncbb_end_state(saved_end_state);
}
bit0_index = ft232r_output_len;
for (bit_cnt = 0; bit_cnt < scan_size; bit_cnt++) {
int tms = (bit_cnt == scan_size-1) ? 1 : 0;
int tdi;
int bytec = bit_cnt/8;
int bcval = 1 << (bit_cnt % 8);
/* if we're just reading the scan, but don't care about the output
* default to outputting 'low', this also makes valgrind traces more readable,
* as it removes the dependency on an uninitialised value
*/
tdi = 0;
if ((type != SCAN_IN) && (buffer[bytec] & bcval))
tdi = 1;
ft232r_write(0, tms, tdi);
ft232r_write(1, tms, tdi);
}
if (tap_get_state() != tap_get_end_state()) {
/* we *KNOW* the above loop transitioned out of
* the shift state, so we skip the first state
* and move directly to the end state.
*/
syncbb_state_move(1);
}
ft232r_send_recv();
if (type != SCAN_OUT)
for (bit_cnt = 0; bit_cnt < scan_size; bit_cnt++) {
int bytec = bit_cnt/8;
int bcval = 1 << (bit_cnt % 8);
int val = ft232r_output[bit0_index + bit_cnt*2 + 1];
if (val & (1<<tdo_gpio))
buffer[bytec] |= bcval;
else
buffer[bytec] &= ~bcval;
}
}
static int syncbb_execute_queue(void)
{
struct jtag_command *cmd = jtag_command_queue; /* currently processed command */
int scan_size;
enum scan_type type;
uint8_t *buffer;
int retval;
/* return ERROR_OK, unless a jtag_read_buffer returns a failed check
* that wasn't handled by a caller-provided error handler
*/
retval = ERROR_OK;
/* ft232r_blink(1);*/
while (cmd) {
switch (cmd->type) {
case JTAG_RESET:
LOG_DEBUG_IO("reset trst: %i srst %i", cmd->cmd.reset->trst, cmd->cmd.reset->srst);
if ((cmd->cmd.reset->trst == 1) ||
(cmd->cmd.reset->srst &&
(jtag_get_reset_config() & RESET_SRST_PULLS_TRST))) {
tap_set_state(TAP_RESET);
}
ft232r_reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst);
break;
case JTAG_RUNTEST:
LOG_DEBUG_IO("runtest %i cycles, end in %s", cmd->cmd.runtest->num_cycles,
tap_state_name(cmd->cmd.runtest->end_state));
syncbb_end_state(cmd->cmd.runtest->end_state);
syncbb_runtest(cmd->cmd.runtest->num_cycles);
break;
case JTAG_STABLECLOCKS:
/* this is only allowed while in a stable state. A check for a stable
* state was done in jtag_add_clocks()
*/
syncbb_stableclocks(cmd->cmd.stableclocks->num_cycles);
break;
case JTAG_TLR_RESET: /* renamed from JTAG_STATEMOVE */
LOG_DEBUG_IO("statemove end in %s", tap_state_name(cmd->cmd.statemove->end_state));
syncbb_end_state(cmd->cmd.statemove->end_state);
syncbb_state_move(0);
break;
case JTAG_PATHMOVE:
LOG_DEBUG_IO("pathmove: %i states, end in %s", cmd->cmd.pathmove->num_states,
tap_state_name(cmd->cmd.pathmove->path[cmd->cmd.pathmove->num_states - 1]));
syncbb_path_move(cmd->cmd.pathmove);
break;
case JTAG_SCAN:
LOG_DEBUG_IO("%s scan end in %s", (cmd->cmd.scan->ir_scan) ? "IR" : "DR",
tap_state_name(cmd->cmd.scan->end_state));
syncbb_end_state(cmd->cmd.scan->end_state);
scan_size = jtag_build_buffer(cmd->cmd.scan, &buffer);
type = jtag_scan_type(cmd->cmd.scan);
syncbb_scan(cmd->cmd.scan->ir_scan, type, buffer, scan_size);
if (jtag_read_buffer(buffer, cmd->cmd.scan) != ERROR_OK)
retval = ERROR_JTAG_QUEUE_FAILED;
free(buffer);
break;
case JTAG_SLEEP:
LOG_DEBUG_IO("sleep %" PRIu32, cmd->cmd.sleep->us);
jtag_sleep(cmd->cmd.sleep->us);
break;
case JTAG_TMS:
retval = syncbb_execute_tms(cmd);
break;
default:
LOG_ERROR("BUG: unknown JTAG command type encountered");
exit(-1);
}
if (ft232r_output_len > 0)
ft232r_send_recv();
cmd = cmd->next;
}
/* ft232r_blink(0);*/
return retval;
}
static struct jtag_interface ft232r_interface = {
.supported = DEBUG_CAP_TMS_SEQ,
.execute_queue = syncbb_execute_queue,
};
struct adapter_driver ft232r_adapter_driver = {
.name = "ft232r",
.transports = jtag_only,
.commands = ft232r_command_handlers,
.init = ft232r_init,
.quit = ft232r_quit,
.speed = ft232r_speed,
.khz = ft232r_khz,
.speed_div = ft232r_speed_div,
.jtag_ops = &ft232r_interface,
};