openocd/src/target/mem_ap.c
Antonio Borneo 2fe2cafe20 mem_ap: fix target arch_info type
The target mem_ap appears as an ARM target, thus it allows the
execution of ARM specific commands causing the crash of OpenOCD.
E.g. 'arm mrc ...' can be executed and segfaults.

Replace the incorrect ARM magic number with a dedicated one.
While there, remove the 'struct arm', that is now holding only the
mem_ap's dap, and replace it with a pointer to the dap.

Change-Id: I881332d3fdf8d8f8271b8711607737b052a5699b
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6213
Tested-by: jenkins
2021-05-22 10:11:10 +01:00

287 lines
7.3 KiB
C

/*****************************************************************************
* Copyright (C) 2016 by Matthias Welwarsky <matthias.welwarsky@sysgo.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
****************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target.h"
#include "target_type.h"
#include "arm_adi_v5.h"
#include "register.h"
#include <jtag/jtag.h>
#define MEM_AP_COMMON_MAGIC 0x4DE4DA50
struct mem_ap {
int common_magic;
struct adiv5_dap *dap;
struct adiv5_ap *ap;
int ap_num;
};
static int mem_ap_target_create(struct target *target, Jim_Interp *interp)
{
struct mem_ap *mem_ap;
struct adiv5_private_config *pc;
pc = (struct adiv5_private_config *)target->private_config;
if (pc == NULL)
return ERROR_FAIL;
if (pc->ap_num == DP_APSEL_INVALID) {
LOG_ERROR("AP number not specified");
return ERROR_FAIL;
}
mem_ap = calloc(1, sizeof(struct mem_ap));
if (mem_ap == NULL) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
mem_ap->ap_num = pc->ap_num;
mem_ap->common_magic = MEM_AP_COMMON_MAGIC;
mem_ap->dap = pc->dap;
target->arch_info = mem_ap;
if (!target->gdb_port_override)
target->gdb_port_override = strdup("disabled");
return ERROR_OK;
}
static int mem_ap_init_target(struct command_context *cmd_ctx, struct target *target)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return ERROR_OK;
}
static void mem_ap_deinit_target(struct target *target)
{
LOG_DEBUG("%s", __func__);
free(target->private_config);
free(target->arch_info);
return;
}
static int mem_ap_arch_state(struct target *target)
{
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static int mem_ap_poll(struct target *target)
{
if (target->state == TARGET_UNKNOWN) {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}
return ERROR_OK;
}
static int mem_ap_halt(struct target *target)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
static int mem_ap_resume(struct target *target, int current, target_addr_t address,
int handle_breakpoints, int debug_execution)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
return ERROR_OK;
}
static int mem_ap_step(struct target *target, int current, target_addr_t address,
int handle_breakpoints)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
static int mem_ap_assert_reset(struct target *target)
{
target->state = TARGET_RESET;
target->debug_reason = DBG_REASON_UNDEFINED;
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static int mem_ap_examine(struct target *target)
{
struct mem_ap *mem_ap = target->arch_info;
if (!target_was_examined(target)) {
mem_ap->ap = dap_ap(mem_ap->dap, mem_ap->ap_num);
target_set_examined(target);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return mem_ap_init(mem_ap->ap);
}
return ERROR_OK;
}
static int mem_ap_deassert_reset(struct target *target)
{
if (target->reset_halt) {
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
} else {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static int mem_ap_reg_get(struct reg *reg)
{
return ERROR_OK;
}
static int mem_ap_reg_set(struct reg *reg, uint8_t *buf)
{
return ERROR_OK;
}
static struct reg_arch_type mem_ap_reg_arch_type = {
.get = mem_ap_reg_get,
.set = mem_ap_reg_set,
};
const char *mem_ap_get_gdb_arch(struct target *target)
{
return "arm";
}
/*
* Dummy ARM register emulation:
* reg[0..15]: 32 bits, r0~r12, sp, lr, pc
* reg[16..23]: 96 bits, f0~f7
* reg[24]: 32 bits, fps
* reg[25]: 32 bits, cpsr
*
* Set 'exist' only to reg[0..15], so initial response to GDB is correct
*/
#define NUM_REGS 26
#define MAX_REG_SIZE 96
#define REG_EXIST(n) ((n) < 16)
#define REG_SIZE(n) ((((n) >= 16) && ((n) < 24)) ? 96 : 32)
struct mem_ap_alloc_reg_list {
/* reg_list must be the first field */
struct reg *reg_list[NUM_REGS];
struct reg regs[NUM_REGS];
uint8_t regs_value[MAX_REG_SIZE / 8];
};
static int mem_ap_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
struct mem_ap_alloc_reg_list *mem_ap_alloc = calloc(1, sizeof(struct mem_ap_alloc_reg_list));
if (!mem_ap_alloc) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
*reg_list = mem_ap_alloc->reg_list;
*reg_list_size = NUM_REGS;
struct reg *regs = mem_ap_alloc->regs;
for (int i = 0; i < NUM_REGS; i++) {
regs[i].number = i;
regs[i].value = mem_ap_alloc->regs_value;
regs[i].size = REG_SIZE(i);
regs[i].exist = REG_EXIST(i);
regs[i].type = &mem_ap_reg_arch_type;
(*reg_list)[i] = &regs[i];
}
return ERROR_OK;
}
static int mem_ap_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("Reading memory at physical address " TARGET_ADDR_FMT
"; size %" PRIu32 "; count %" PRIu32, address, size, count);
if (count == 0 || buffer == NULL)
return ERROR_COMMAND_SYNTAX_ERROR;
return mem_ap_read_buf(mem_ap->ap, buffer, size, count, address);
}
static int mem_ap_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count,
const uint8_t *buffer)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("Writing memory at physical address " TARGET_ADDR_FMT
"; size %" PRIu32 "; count %" PRIu32, address, size, count);
if (count == 0 || buffer == NULL)
return ERROR_COMMAND_SYNTAX_ERROR;
return mem_ap_write_buf(mem_ap->ap, buffer, size, count, address);
}
struct target_type mem_ap_target = {
.name = "mem_ap",
.target_create = mem_ap_target_create,
.init_target = mem_ap_init_target,
.deinit_target = mem_ap_deinit_target,
.examine = mem_ap_examine,
.target_jim_configure = adiv5_jim_configure,
.poll = mem_ap_poll,
.arch_state = mem_ap_arch_state,
.halt = mem_ap_halt,
.resume = mem_ap_resume,
.step = mem_ap_step,
.assert_reset = mem_ap_assert_reset,
.deassert_reset = mem_ap_deassert_reset,
.get_gdb_arch = mem_ap_get_gdb_arch,
.get_gdb_reg_list = mem_ap_get_gdb_reg_list,
.read_memory = mem_ap_read_memory,
.write_memory = mem_ap_write_memory,
};