openocd/src/target/arm920t.c
Antonio Borneo 580b8f5da0 target: fix memory leaks on targets based on arm9tdmi
Similarly to the fix for arm926ejs (also base on arm9tdmi), fix
the other targets based on arm9tdmi.
The fix for arm926ejs is tested on SPEAr320 target.

This fix is proposed separately because is not tested on a correct
target device, but tested on SPEAr320 by hacking the target type
and pretending it is the correct one, e.g.:
	sed -i s/arm926ejs/arm920t/ tcl/target/spear3xx.cfg

The memory leaks detected and fixed are:
- arm register cache;
- EmbeddedICE register cache;
- arm_jtag_reset_callback internal data;
- struct <target_type>_common.

Change-Id: I565f9a5bf144a9df78474434d86a64127ef0fbe5
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/5699
Tested-by: jenkins
2020-07-26 20:12:21 +01:00

1733 lines
47 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm920t.h"
#include <helper/time_support.h>
#include "target_type.h"
#include "register.h"
#include "arm_opcodes.h"
/*
* For information about the ARM920T, see ARM DDI 0151C especially
* Chapter 9 about debug support, which shows how to manipulate each
* of the different scan chains:
*
* 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
* 1 ... debugging; watchpoint and breakpoint status, etc; also
* MMU and cache access in conjunction with scan chain 15
* 2 ... EmbeddedICE
* 3 ... external boundary scan (SoC-specific, unused here)
* 4 ... access to cache tag RAM
* 6 ... ETM9
* 15 ... access coprocessor 15, "physical" or "interpreted" modes
* "interpreted" works with a few actual MRC/MCR instructions
* "physical" provides register-like behaviors. Section 9.6.7
* covers these details.
*
* The ARM922T is similar, but with smaller caches (8K each, vs 16K).
*/
#if 0
#define _DEBUG_INSTRUCTION_EXECUTION_
#endif
/* Table 9-8 shows scan chain 15 format during physical access mode, using a
* dedicated 6-bit address space (encoded in bits 33:38). Writes use one
* JTAG scan, while reads use two.
*
* Table 9-9 lists the thirteen registers which support physical access.
* ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
* to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
*
* x == bit[38]
* y == bits[37:34]
* z == bit[33]
*/
#define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
/* Registers supporting physical Read access (from table 9-9) */
#define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
#define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
#define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
/* NOTE: several more registers support only physical read access */
/* Registers supporting physical Read/Write access (from table 9-9) */
#define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
#define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
#define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
#define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
#define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
static int arm920t_read_cp15_physical(struct target *target,
int reg_addr, uint32_t *value)
{
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 1;
uint8_t reg_addr_buf = reg_addr & 0x3f;
uint8_t nr_w_buf = 0;
int retval;
jtag_info = &arm920t->arm7_9_common.jtag_info;
retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].num_bits = 32;
fields[1].out_value = NULL;
fields[1].in_value = NULL;
fields[2].num_bits = 6;
fields[2].out_value = &reg_addr_buf;
fields[2].in_value = NULL;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
fields[1].in_value = (uint8_t *)value;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
jtag_execute_queue();
LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
#endif
return ERROR_OK;
}
static int arm920t_write_cp15_physical(struct target *target,
int reg_addr, uint32_t value)
{
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 1;
uint8_t reg_addr_buf = reg_addr & 0x3f;
uint8_t nr_w_buf = 1;
uint8_t value_buf[4];
int retval;
jtag_info = &arm920t->arm7_9_common.jtag_info;
buf_set_u32(value_buf, 0, 32, value);
retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].num_bits = 32;
fields[1].out_value = value_buf;
fields[1].in_value = NULL;
fields[2].num_bits = 6;
fields[2].out_value = &reg_addr_buf;
fields[2].in_value = NULL;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
#endif
return ERROR_OK;
}
/* See table 9-10 for scan chain 15 format during interpreted access mode.
* If the TESTSTATE register is set for interpreted access, certain CP15
* MRC and MCR instructions may be executed through scan chain 15.
*
* Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
* executed using scan chain 15 interpreted mode.
*/
static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
uint32_t arm_opcode)
{
int retval;
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm_jtag *jtag_info;
struct scan_field fields[4];
uint8_t access_type_buf = 0; /* interpreted access */
uint8_t reg_addr_buf = 0x0;
uint8_t nr_w_buf = 0;
uint8_t cp15_opcode_buf[4];
jtag_info = &arm920t->arm7_9_common.jtag_info;
retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
if (retval != ERROR_OK)
return retval;
buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
fields[0].num_bits = 1;
fields[0].out_value = &access_type_buf;
fields[0].in_value = NULL;
fields[1].num_bits = 32;
fields[1].out_value = cp15_opcode_buf;
fields[1].in_value = NULL;
fields[2].num_bits = 6;
fields[2].out_value = &reg_addr_buf;
fields[2].in_value = NULL;
fields[3].num_bits = 1;
fields[3].out_value = &nr_w_buf;
fields[3].in_value = NULL;
jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
retval = arm7_9_execute_sys_speed(target);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("failed executing JTAG queue");
return retval;
}
return ERROR_OK;
}
static int arm920t_read_cp15_interpreted(struct target *target,
uint32_t cp15_opcode, uint32_t address, uint32_t *value)
{
struct arm *arm = target_to_arm(target);
uint32_t *regs_p[1];
uint32_t regs[2];
uint32_t cp15c15 = 0x0;
struct reg *r = arm->core_cache->reg_list;
/* load address into R1 */
regs[1] = address;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* read-modify-write CP15 test state register
* to enable interpreted access mode */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
cp15c15 |= 1; /* set interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* execute CP15 instruction and ARM load (reading from coprocessor) */
arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
/* disable interpreted access mode */
cp15c15 &= ~1U; /* clear interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* retrieve value from R0 */
regs_p[0] = value;
arm9tdmi_read_core_regs(target, 0x1, regs_p);
jtag_execute_queue();
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
cp15_opcode, address, *value);
#endif
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
r[0].dirty = true;
r[1].dirty = true;
return ERROR_OK;
}
static
int arm920t_write_cp15_interpreted(struct target *target,
uint32_t cp15_opcode, uint32_t value, uint32_t address)
{
uint32_t cp15c15 = 0x0;
struct arm *arm = target_to_arm(target);
uint32_t regs[2];
struct reg *r = arm->core_cache->reg_list;
/* load value, address into R0, R1 */
regs[0] = value;
regs[1] = address;
arm9tdmi_write_core_regs(target, 0x3, regs);
/* read-modify-write CP15 test state register
* to enable interpreted access mode */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
cp15c15 |= 1; /* set interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* execute CP15 instruction and ARM store (writing to coprocessor) */
arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
/* disable interpreted access mode */
cp15c15 &= ~1U; /* set interpret mode */
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
#ifdef _DEBUG_INSTRUCTION_EXECUTION_
LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
cp15_opcode, value, address);
#endif
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
r[0].dirty = true;
r[1].dirty = true;
return ERROR_OK;
}
/* EXPORTED to FA256 */
int arm920t_get_ttb(struct target *target, uint32_t *result)
{
int retval;
uint32_t ttb = 0x0;
retval = arm920t_read_cp15_interpreted(target,
/* FIXME use opcode macro */
0xeebf0f51, 0x0, &ttb);
if (retval != ERROR_OK)
return retval;
*result = ttb;
return ERROR_OK;
}
/* EXPORTED to FA256 */
int arm920t_disable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if (mmu)
cp15_control &= ~0x1U;
if (d_u_cache)
cp15_control &= ~0x4U;
if (i_cache)
cp15_control &= ~0x1000U;
retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
return retval;
}
/* EXPORTED to FA256 */
int arm920t_enable_mmu_caches(struct target *target, int mmu,
int d_u_cache, int i_cache)
{
uint32_t cp15_control;
int retval;
/* read cp15 control register */
retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
if (mmu)
cp15_control |= 0x1U;
if (d_u_cache)
cp15_control |= 0x4U;
if (i_cache)
cp15_control |= 0x1000U;
retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
return retval;
}
/* EXPORTED to FA256 */
int arm920t_post_debug_entry(struct target *target)
{
uint32_t cp15c15;
struct arm920t_common *arm920t = target_to_arm920(target);
int retval;
/* examine cp15 control reg */
retval = arm920t_read_cp15_physical(target,
CP15PHYS_CTRL, &arm920t->cp15_control_reg);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) {
uint32_t cache_type_reg;
/* identify caches */
retval = arm920t_read_cp15_physical(target,
CP15PHYS_CACHETYPE, &cache_type_reg);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
armv4_5_identify_cache(cache_type_reg,
&arm920t->armv4_5_mmu.armv4_5_cache);
}
arm920t->armv4_5_mmu.mmu_enabled =
(arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
(arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
(arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
/* save i/d fault status and address register
* FIXME use opcode macros */
retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
if (retval != ERROR_OK)
return retval;
retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
if (retval != ERROR_OK)
return retval;
retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
if (retval != ERROR_OK)
return retval;
retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
if (arm920t->preserve_cache) {
/* read-modify-write CP15 test state register
* to disable I/D-cache linefills */
retval = arm920t_read_cp15_physical(target,
CP15PHYS_TESTSTATE, &cp15c15);
if (retval != ERROR_OK)
return retval;
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
cp15c15 |= 0x600;
retval = arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
/* EXPORTED to FA256 */
void arm920t_pre_restore_context(struct target *target)
{
uint32_t cp15c15 = 0;
struct arm920t_common *arm920t = target_to_arm920(target);
/* restore i/d fault status and address register */
arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
/* read-modify-write CP15 test state register
* to reenable I/D-cache linefills */
if (arm920t->preserve_cache) {
arm920t_read_cp15_physical(target,
CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
cp15c15 &= ~0x600U;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
}
}
static const char arm920_not[] = "target is not an ARM920";
static int arm920t_verify_pointer(struct command_invocation *cmd,
struct arm920t_common *arm920t)
{
if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
command_print(cmd, arm920_not);
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
/** Logs summary of ARM920 state for a halted target. */
int arm920t_arch_state(struct target *target)
{
static const char *state[] = {
"disabled", "enabled"
};
struct arm920t_common *arm920t = target_to_arm920(target);
if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
LOG_ERROR("BUG: %s", arm920_not);
return ERROR_TARGET_INVALID;
}
arm_arch_state(target);
LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
state[arm920t->armv4_5_mmu.mmu_enabled],
state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
return ERROR_OK;
}
static int arm920_mmu(struct target *target, int *enabled)
{
if (target->state != TARGET_HALTED) {
LOG_ERROR("%s: target not halted", __func__);
return ERROR_TARGET_INVALID;
}
*enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
return ERROR_OK;
}
static int arm920_virt2phys(struct target *target,
target_addr_t virt, target_addr_t *phys)
{
uint32_t cb;
struct arm920t_common *arm920t = target_to_arm920(target);
uint32_t ret;
int retval = armv4_5_mmu_translate_va(target,
&arm920t->armv4_5_mmu, virt, &cb, &ret);
if (retval != ERROR_OK)
return retval;
*phys = ret;
return ERROR_OK;
}
/** Reads a buffer, in the specified word size, with current MMU settings. */
int arm920t_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int retval;
retval = arm7_9_read_memory(target, address, size, count, buffer);
return retval;
}
static int arm920t_read_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
struct arm920t_common *arm920t = target_to_arm920(target);
return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
address, size, count, buffer);
}
static int arm920t_write_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
struct arm920t_common *arm920t = target_to_arm920(target);
return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
address, size, count, buffer);
}
/** Writes a buffer, in the specified word size, with current MMU settings. */
int arm920t_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
int retval;
const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
struct arm920t_common *arm920t = target_to_arm920(target);
/* FIX!!!! this should be cleaned up and made much more general. The
* plan is to write up and test on arm920t specifically and
* then generalize and clean up afterwards.
*
* Also it should be moved to the callbacks that handle breakpoints
* specifically and not the generic memory write fn's. See XScale code.
*/
if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
((size == 2) || (size == 4))) {
/* special case the handling of single word writes to
* bypass MMU, to allow implementation of breakpoints
* in memory marked read only
* by MMU
*/
uint32_t cb;
uint32_t pa;
/*
* We need physical address and cb
*/
retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
address, &cb, &pa);
if (retval != ERROR_OK)
return retval;
if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) {
if (cb & 0x1) {
LOG_DEBUG("D-Cache buffered, "
"drain write buffer");
/*
* Buffered ?
* Drain write buffer - MCR p15,0,Rd,c7,c10,4
*/
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
0x0, 0);
if (retval != ERROR_OK)
return retval;
}
if (cb == 0x3) {
/*
* Write back memory ? -> clean cache
*
* There is no way to clean cache lines using
* cp15 scan chain, so copy the full cache
* line from cache to physical memory.
*/
uint8_t data[32];
LOG_DEBUG("D-Cache in 'write back' mode, "
"flush cache line");
retval = target_read_memory(target,
address & cache_mask, 1,
sizeof(data), &data[0]);
if (retval != ERROR_OK)
return retval;
retval = armv4_5_mmu_write_physical(target,
&arm920t->armv4_5_mmu,
pa & cache_mask, 1,
sizeof(data), &data[0]);
if (retval != ERROR_OK)
return retval;
}
/* Cached ? */
if (cb & 0x2) {
/*
* Cached ? -> Invalidate data cache using MVA
*
* MCR p15,0,Rd,c7,c6,1
*/
LOG_DEBUG("D-Cache enabled, "
"invalidate cache line");
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
address & cache_mask);
if (retval != ERROR_OK)
return retval;
}
}
/* write directly to physical memory,
* bypassing any read only MMU bits, etc.
*/
retval = armv4_5_mmu_write_physical(target,
&arm920t->armv4_5_mmu, pa, size,
count, buffer);
if (retval != ERROR_OK)
return retval;
} else {
retval = arm7_9_write_memory(target, address, size, count, buffer);
if (retval != ERROR_OK)
return retval;
}
/* If ICache is enabled, we have to invalidate affected ICache lines
* the DCache is forced to write-through,
* so we don't have to clean it here
*/
if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) {
if (count <= 1) {
/* invalidate ICache single entry with MVA
* mcr 15, 0, r0, cr7, cr5, {1}
*/
LOG_DEBUG("I-Cache enabled, "
"invalidating affected I-Cache line");
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
0x0, address & cache_mask);
if (retval != ERROR_OK)
return retval;
} else {
/* invalidate ICache
* mcr 15, 0, r0, cr7, cr5, {0}
*/
retval = arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
0x0, 0x0);
if (retval != ERROR_OK)
return retval;
}
}
return ERROR_OK;
}
/* EXPORTED to FA256 */
int arm920t_soft_reset_halt(struct target *target)
{
int retval = ERROR_OK;
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *arm = &arm7_9->arm;
struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
int64_t then = timeval_ms();
bool timeout;
while (!(timeout = ((timeval_ms()-then) > 1000))) {
if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) {
embeddedice_read_reg(dbg_stat);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
} else
break;
if (debug_level >= 3) {
/* do not eat all CPU, time out after 1 se*/
alive_sleep(100);
} else
keep_alive();
}
if (timeout) {
LOG_ERROR("Failed to halt CPU after 1 sec");
return ERROR_TARGET_TIMEOUT;
}
target->state = TARGET_HALTED;
/* SVC, ARM state, IRQ and FIQ disabled */
uint32_t cpsr;
cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
cpsr &= ~0xff;
cpsr |= 0xd3;
arm_set_cpsr(arm, cpsr);
arm->cpsr->dirty = true;
/* start fetching from 0x0 */
buf_set_u32(arm->pc->value, 0, 32, 0x0);
arm->pc->dirty = true;
arm->pc->valid = true;
arm920t_disable_mmu_caches(target, 1, 1, 1);
arm920t->armv4_5_mmu.mmu_enabled = 0;
arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
/* FIXME remove forward decls */
static int arm920t_mrc(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t *value);
static int arm920t_mcr(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t value);
static int arm920t_init_arch_info(struct target *target,
struct arm920t_common *arm920t, struct jtag_tap *tap)
{
struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
arm7_9->arm.mrc = arm920t_mrc;
arm7_9->arm.mcr = arm920t_mcr;
/* initialize arm7/arm9 specific info (including armv4_5) */
arm9tdmi_init_arch_info(target, arm7_9, tap);
arm920t->common_magic = ARM920T_COMMON_MAGIC;
arm7_9->post_debug_entry = arm920t_post_debug_entry;
arm7_9->pre_restore_context = arm920t_pre_restore_context;
arm7_9->write_memory = arm920t_write_memory;
arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
arm920t->armv4_5_mmu.has_tiny_pages = 1;
arm920t->armv4_5_mmu.mmu_enabled = 0;
/* disabling linefills leads to lockups, so keep them enabled for now
* this doesn't affect correctness, but might affect timing issues, if
* important data is evicted from the cache during the debug session
* */
arm920t->preserve_cache = 0;
/* override hw single-step capability from ARM9TDMI */
arm7_9->has_single_step = 1;
return ERROR_OK;
}
static int arm920t_target_create(struct target *target, Jim_Interp *interp)
{
struct arm920t_common *arm920t;
arm920t = calloc(1, sizeof(struct arm920t_common));
return arm920t_init_arch_info(target, arm920t, target->tap);
}
static void arm920t_deinit_target(struct target *target)
{
struct arm *arm = target_to_arm(target);
struct arm920t_common *arm920t = target_to_arm920(target);
arm7_9_deinit(target);
arm_free_reg_cache(arm);
free(arm920t);
}
COMMAND_HANDLER(arm920t_handle_read_cache_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *arm = &arm7_9->arm;
uint32_t cp15c15;
uint32_t cp15_ctrl, cp15_ctrl_saved;
uint32_t regs[16];
uint32_t *regs_p[16];
uint32_t C15_C_D_Ind, C15_C_I_Ind;
int i;
FILE *output;
int segment, index_t;
struct reg *r;
retval = arm920t_verify_pointer(CMD, arm920t);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
output = fopen(CMD_ARGV[0], "w");
if (output == NULL) {
LOG_DEBUG("error opening cache content file");
return ERROR_OK;
}
for (i = 0; i < 16; i++)
regs_p[i] = &regs[i];
/* disable MMU and Caches */
arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
cp15_ctrl_saved = cp15_ctrl;
cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
| ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
/* read CP15 test state register */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
jtag_execute_queue();
/* read DCache content */
fprintf(output, "DCache:\n");
/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
for (segment = 0;
segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
segment++) {
fprintf(output, "\nsegment: %i\n----------", segment);
/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* D CAM Read, loads current victim into C15.C.D.Ind */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
/* read current victim */
arm920t_read_cp15_physical(target,
CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
for (index_t = 0; index_t < 64; index_t++) {
/* Ra:
* r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
*/
regs[0] = 0x0 | (segment << 5) | (index_t << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write DCache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
/* Read D RAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
/* Read D CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
ARMV4_5_LDR(9, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read D RAM and CAM content */
arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
/* mask LFSR[6] */
regs[9] &= 0xfffffffe;
fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
PRIx32 ", content (%s):\n",
segment, index_t, regs[9],
(regs[9] & 0x10) ? "valid" : "invalid");
for (i = 1; i < 9; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
i-1, regs[i]);
}
}
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write DCache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
}
/* read ICache content */
fprintf(output, "ICache:\n");
/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
for (segment = 0;
segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
segment++) {
fprintf(output, "segment: %i\n----------", segment);
/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* I CAM Read, loads current victim into C15.C.I.Ind */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
/* read current victim */
arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
&C15_C_I_Ind);
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
for (index_t = 0; index_t < 64; index_t++) {
/* Ra:
* r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
*/
regs[0] = 0x0 | (segment << 5) | (index_t << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write ICache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
/* Read I RAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
/* Read I CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
ARMV4_5_LDR(9, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read I RAM and CAM content */
arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
/* mask LFSR[6] */
regs[9] &= 0xfffffffe;
fprintf(output, "\nsegment: %i, index: %i, "
"CAM: 0x%8.8" PRIx32 ", content (%s):\n",
segment, index_t, regs[9],
(regs[9] & 0x10) ? "valid" : "invalid");
for (i = 1; i < 9; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
i-1, regs[i]);
}
}
/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
arm9tdmi_write_core_regs(target, 0x1, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write ICache victim */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
}
/* restore CP15 MMU and Cache settings */
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
command_print(CMD, "cache content successfully output to %s",
CMD_ARGV[0]);
fclose(output);
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
/* force writeback of the valid data */
r = arm->core_cache->reg_list;
r[0].dirty = r[0].valid;
r[1].dirty = r[1].valid;
r[2].dirty = r[2].valid;
r[3].dirty = r[3].valid;
r[4].dirty = r[4].valid;
r[5].dirty = r[5].valid;
r[6].dirty = r[6].valid;
r[7].dirty = r[7].valid;
r = arm_reg_current(arm, 8);
r->dirty = r->valid;
r = arm_reg_current(arm, 9);
r->dirty = r->valid;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_read_mmu_command)
{
int retval = ERROR_OK;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
struct arm *arm = &arm7_9->arm;
uint32_t cp15c15;
uint32_t cp15_ctrl, cp15_ctrl_saved;
uint32_t regs[16];
uint32_t *regs_p[16];
int i;
FILE *output;
uint32_t Dlockdown, Ilockdown;
struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
int victim;
struct reg *r;
retval = arm920t_verify_pointer(CMD, arm920t);
if (retval != ERROR_OK)
return retval;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
output = fopen(CMD_ARGV[0], "w");
if (output == NULL) {
LOG_DEBUG("error opening mmu content file");
return ERROR_OK;
}
for (i = 0; i < 16; i++)
regs_p[i] = &regs[i];
/* disable MMU and Caches */
arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
cp15_ctrl_saved = cp15_ctrl;
cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
| ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
/* read CP15 test state register */
arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
/* prepare reading D TLB content
* */
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* Read D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* read D TLB lockdown stored to r1 */
arm9tdmi_read_core_regs(target, 0x2, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
Dlockdown = regs[1];
for (victim = 0; victim < 64; victim += 8) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
ARMV4_5_STR(1, 0));
/* Read D TLB CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read D TLB CAM content stored to r2-r9 */
arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
for (i = 0; i < 8; i++)
d_tlb[victim + i].cam = regs[i + 2];
}
for (victim = 0; victim < 64; victim++) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
/* Read D TLB RAM1 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
/* Read D TLB RAM2 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read D TLB RAM content stored to r2 and r3 */
arm9tdmi_read_core_regs(target, 0xc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
d_tlb[victim].ram1 = regs[2];
d_tlb[victim].ram2 = regs[3];
}
/* restore D TLB lockdown */
regs[1] = Dlockdown;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* Write D TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
/* prepare reading I TLB content
* */
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* Read I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
/* read I TLB lockdown stored to r1 */
arm9tdmi_read_core_regs(target, 0x2, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
Ilockdown = regs[1];
for (victim = 0; victim < 64; victim += 8) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
ARMV4_5_STR(1, 0));
/* Read I TLB CAM */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read I TLB CAM content stored to r2-r9 */
arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
for (i = 0; i < 8; i++)
i_tlb[i + victim].cam = regs[i + 2];
}
for (victim = 0; victim < 64; victim++) {
/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
* base remains unchanged, victim goes through entries 0 to 63
*/
regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
arm9tdmi_write_core_regs(target, 0x2, regs);
/* set interpret mode */
cp15c15 |= 0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* Write I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
/* Read I TLB RAM1 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
/* Read I TLB RAM2 */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
/* clear interpret mode */
cp15c15 &= ~0x1;
arm920t_write_cp15_physical(target,
CP15PHYS_TESTSTATE, cp15c15);
/* read I TLB RAM content stored to r2 and r3 */
arm9tdmi_read_core_regs(target, 0xc, regs_p);
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
i_tlb[victim].ram1 = regs[2];
i_tlb[victim].ram2 = regs[3];
}
/* restore I TLB lockdown */
regs[1] = Ilockdown;
arm9tdmi_write_core_regs(target, 0x2, regs);
/* Write I TLB lockdown */
arm920t_execute_cp15(target,
ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
/* restore CP15 MMU and Cache settings */
arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
/* output data to file */
fprintf(output, "D TLB content:\n");
for (i = 0; i < 64; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
" 0x%8.8" PRIx32 " %s\n",
i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
(d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
}
fprintf(output, "\n\nI TLB content:\n");
for (i = 0; i < 64; i++) {
fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
" 0x%8.8" PRIx32 " %s\n",
i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
(i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
}
command_print(CMD, "mmu content successfully output to %s",
CMD_ARGV[0]);
fclose(output);
if (!is_arm_mode(arm->core_mode)) {
LOG_ERROR("not a valid arm core mode - communication failure?");
return ERROR_FAIL;
}
/* force writeback of the valid data */
r = arm->core_cache->reg_list;
r[0].dirty = r[0].valid;
r[1].dirty = r[1].valid;
r[2].dirty = r[2].valid;
r[3].dirty = r[3].valid;
r[4].dirty = r[4].valid;
r[5].dirty = r[5].valid;
r[6].dirty = r[6].valid;
r[7].dirty = r[7].valid;
r = arm_reg_current(arm, 8);
r->dirty = r->valid;
r = arm_reg_current(arm, 9);
r->dirty = r->valid;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cp15_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD, arm920t);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD, "target must be stopped for "
"\"%s\" command", CMD_NAME);
return ERROR_OK;
}
/* one argument, read a register.
* two arguments, write it.
*/
if (CMD_ARGC >= 1) {
int address;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
if (CMD_ARGC == 1) {
uint32_t value;
retval = arm920t_read_cp15_physical(target, address, &value);
if (retval != ERROR_OK) {
command_print(CMD,
"couldn't access reg %i", address);
return ERROR_OK;
}
retval = jtag_execute_queue();
if (retval != ERROR_OK)
return retval;
command_print(CMD, "%i: %8.8" PRIx32,
address, value);
} else if (CMD_ARGC == 2) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
retval = arm920t_write_cp15_physical(target,
address, value);
if (retval != ERROR_OK) {
command_print(CMD,
"couldn't access reg %i", address);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD, "%i: %8.8" PRIx32,
address, value);
}
}
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cp15i_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD, arm920t);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD, "target must be stopped for "
"\"%s\" command", CMD_NAME);
return ERROR_OK;
}
/* one argument, read a register.
* two arguments, write it.
*/
if (CMD_ARGC >= 1) {
uint32_t opcode;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
if (CMD_ARGC == 1) {
uint32_t value;
retval = arm920t_read_cp15_interpreted(target,
opcode, 0x0, &value);
if (retval != ERROR_OK) {
command_print(CMD,
"couldn't execute %8.8" PRIx32,
opcode);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD, "%8.8" PRIx32 ": %8.8" PRIx32,
opcode, value);
} else if (CMD_ARGC == 2) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
retval = arm920t_write_cp15_interpreted(target,
opcode, value, 0);
if (retval != ERROR_OK) {
command_print(CMD,
"couldn't execute %8.8" PRIx32,
opcode);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD, "%8.8" PRIx32 ": %8.8" PRIx32,
opcode, value);
} else if (CMD_ARGC == 3) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
uint32_t address;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
retval = arm920t_write_cp15_interpreted(target,
opcode, value, address);
if (retval != ERROR_OK) {
command_print(CMD,
"couldn't execute %8.8" PRIx32, opcode);
/* REVISIT why lie? "return retval"? */
return ERROR_OK;
}
command_print(CMD, "%8.8" PRIx32 ": %8.8" PRIx32
" %8.8" PRIx32, opcode, value, address);
}
} else
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
COMMAND_HANDLER(arm920t_handle_cache_info_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct arm920t_common *arm920t = target_to_arm920(target);
retval = arm920t_verify_pointer(CMD, arm920t);
if (retval != ERROR_OK)
return retval;
return armv4_5_handle_cache_info_command(CMD,
&arm920t->armv4_5_mmu.armv4_5_cache);
}
static int arm920t_mrc(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t *value)
{
if (cpnum != 15) {
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
/* read "to" r0 */
return arm920t_read_cp15_interpreted(target,
ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
0, value);
}
static int arm920t_mcr(struct target *target, int cpnum,
uint32_t op1, uint32_t op2,
uint32_t CRn, uint32_t CRm,
uint32_t value)
{
if (cpnum != 15) {
LOG_ERROR("Only cp15 is supported");
return ERROR_FAIL;
}
/* write "from" r0 */
return arm920t_write_cp15_interpreted(target,
ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
0, value);
}
static const struct command_registration arm920t_exec_command_handlers[] = {
{
.name = "cp15",
.handler = arm920t_handle_cp15_command,
.mode = COMMAND_EXEC,
.help = "display/modify cp15 register",
.usage = "regnum [value]",
},
{
.name = "cp15i",
.handler = arm920t_handle_cp15i_command,
.mode = COMMAND_EXEC,
/* prefer using less error-prone "arm mcr" or "arm mrc" */
.help = "display/modify cp15 register using ARM opcode"
" (DEPRECATED)",
.usage = "instruction [value [address]]",
},
{
.name = "cache_info",
.handler = arm920t_handle_cache_info_command,
.mode = COMMAND_EXEC,
.usage = "",
.help = "display information about target caches",
},
{
.name = "read_cache",
.handler = arm920t_handle_read_cache_command,
.mode = COMMAND_EXEC,
.help = "dump I/D cache content to file",
.usage = "filename",
},
{
.name = "read_mmu",
.handler = arm920t_handle_read_mmu_command,
.mode = COMMAND_EXEC,
.help = "dump I/D mmu content to file",
.usage = "filename",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration arm920t_command_handlers[] = {
{
.chain = arm9tdmi_command_handlers,
},
{
.name = "arm920t",
.mode = COMMAND_ANY,
.help = "arm920t command group",
.usage = "",
.chain = arm920t_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
/** Holds methods for ARM920 targets. */
struct target_type arm920t_target = {
.name = "arm920t",
.poll = arm7_9_poll,
.arch_state = arm920t_arch_state,
.target_request_data = arm7_9_target_request_data,
.halt = arm7_9_halt,
.resume = arm7_9_resume,
.step = arm7_9_step,
.assert_reset = arm7_9_assert_reset,
.deassert_reset = arm7_9_deassert_reset,
.soft_reset_halt = arm920t_soft_reset_halt,
.get_gdb_arch = arm_get_gdb_arch,
.get_gdb_reg_list = arm_get_gdb_reg_list,
.read_memory = arm920t_read_memory,
.write_memory = arm7_9_write_memory_opt,
.read_phys_memory = arm920t_read_phys_memory,
.write_phys_memory = arm920t_write_phys_memory,
.mmu = arm920_mmu,
.virt2phys = arm920_virt2phys,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = arm7_9_add_breakpoint,
.remove_breakpoint = arm7_9_remove_breakpoint,
.add_watchpoint = arm7_9_add_watchpoint,
.remove_watchpoint = arm7_9_remove_watchpoint,
.commands = arm920t_command_handlers,
.target_create = arm920t_target_create,
.init_target = arm9tdmi_init_target,
.deinit_target = arm920t_deinit_target,
.examine = arm7_9_examine,
.check_reset = arm7_9_check_reset,
};