openocd/src/target/lakemont.c
Marc Schink fb43f1ff4e target: Rework 'set' variable of break-/watchpoints
The 'set' variable name suggests a boolean data type which determines
whether a breakpoint (or watchpoint) is active. However, it is also
used to store the number of the breakpoint.

This encoding leads to inconsistent value assignments: boolean and
integer values are mixed. Also, associated hardware comparator
numbers, which are usually numbered from 0, cannot be used directly.
An additional offset is required to store the comparator numbers.

In order to make the code more readable and the value assignment more
consistent, change the variable name to 'is_set', its data type to 'bool'
and introduce a dedicated variable for the break-/watchpoint
number.

In order to make the review easier, the data types of various related
variables (e.g. number of breakpoints) are not changed.

While at it, fix a few coding style issues.

Change-Id: I2193f5639247cce6b80580d4c1c6afee916aeb82
Signed-off-by: Marc Schink <dev@zapb.de>
Reviewed-on: https://review.openocd.org/c/openocd/+/6319
Tested-by: jenkins
Reviewed-by: Antonio Borneo <borneo.antonio@gmail.com>
2022-03-19 09:14:39 +00:00

1254 lines
42 KiB
C

/*
* Copyright(c) 2013-2016 Intel Corporation.
*
* Adrian Burns (adrian.burns@intel.com)
* Thomas Faust (thomas.faust@intel.com)
* Ivan De Cesaris (ivan.de.cesaris@intel.com)
* Julien Carreno (julien.carreno@intel.com)
* Jeffrey Maxwell (jeffrey.r.maxwell@intel.com)
* Jessica Gomez (jessica.gomez.hernandez@intel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact Information:
* Intel Corporation
*/
/*
* @file
* This implements the probemode operations for Lakemont 1 (LMT1).
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <helper/log.h>
#include "target.h"
#include "target_type.h"
#include "lakemont.h"
#include "register.h"
#include "breakpoints.h"
#include "x86_32_common.h"
static int irscan(struct target *t, uint8_t *out,
uint8_t *in, uint8_t ir_len);
static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len);
static int save_context(struct target *target);
static int restore_context(struct target *target);
static uint32_t get_tapstatus(struct target *t);
static int enter_probemode(struct target *t);
static int exit_probemode(struct target *t);
static int halt_prep(struct target *t);
static int do_halt(struct target *t);
static int do_resume(struct target *t);
static int read_all_core_hw_regs(struct target *t);
static int write_all_core_hw_regs(struct target *t);
static int read_hw_reg(struct target *t,
int reg, uint32_t *regval, uint8_t cache);
static int write_hw_reg(struct target *t,
int reg, uint32_t regval, uint8_t cache);
static struct reg_cache *lakemont_build_reg_cache
(struct target *target);
static int submit_reg_pir(struct target *t, int num);
static int submit_instruction_pir(struct target *t, int num);
static int submit_pir(struct target *t, uint64_t op);
static int lakemont_get_core_reg(struct reg *reg);
static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf);
static struct scan_blk scan;
/* registers and opcodes for register access, pm_idx is used to identify the
* registers that are modified for lakemont probemode specific operations
*/
static const struct {
uint8_t id;
const char *name;
uint64_t op;
uint8_t pm_idx;
unsigned bits;
enum reg_type type;
const char *group;
const char *feature;
} regs[] = {
/* general purpose registers */
{ EAX, "eax", 0x000000D01D660000, 0, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ECX, "ecx", 0x000000501D660000, 1, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ EDX, "edx", 0x000000901D660000, 2, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ EBX, "ebx", 0x000000101D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ESP, "esp", 0x000000E01D660000, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
{ EBP, "ebp", 0x000000601D660000, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
{ ESI, "esi", 0x000000A01D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ EDI, "edi", 0x000000201D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
/* instruction pointer & flags */
{ EIP, "eip", 0x000000C01D660000, 3, 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.i386.core" },
{ EFLAGS, "eflags", 0x000000401D660000, 4, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
/* segment registers */
{ CS, "cs", 0x000000281D660000, 5, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ SS, "ss", 0x000000C81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ DS, "ds", 0x000000481D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ES, "es", 0x000000A81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FS, "fs", 0x000000881D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ GS, "gs", 0x000000081D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
/* floating point unit registers - not accessible via JTAG - here to satisfy GDB */
{ ST0, "st0", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST1, "st1", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST2, "st2", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST3, "st3", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST4, "st4", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST5, "st5", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST6, "st6", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ ST7, "st7", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FCTRL, "fctrl", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FSTAT, "fstat", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FTAG, "ftag", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FISEG, "fiseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FIOFF, "fioff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FOSEG, "foseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FOOFF, "fooff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
{ FOP, "fop", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
/* control registers */
{ CR0, "cr0", 0x000000001D660000, 6, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CR2, "cr2", 0x000000BC1D660000, 7, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CR3, "cr3", 0x000000801D660000, 8, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CR4, "cr4", 0x0000002C1D660000, 9, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
/* debug registers */
{ DR0, "dr0", 0x0000007C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR1, "dr1", 0x000000FC1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR2, "dr2", 0x000000021D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR3, "dr3", 0x000000821D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR6, "dr6", 0x000000301D660000, 10, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DR7, "dr7", 0x000000B01D660000, 11, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
/* descriptor tables */
{ IDTB, "idtbase", 0x000000581D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ IDTL, "idtlimit", 0x000000D81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ IDTAR, "idtar", 0x000000981D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GDTB, "gdtbase", 0x000000B81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GDTL, "gdtlimit", 0x000000781D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GDTAR, "gdtar", 0x000000381D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TR, "tr", 0x000000701D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTR, "ldtr", 0x000000F01D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTB, "ldbase", 0x000000041D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTL, "ldlimit", 0x000000841D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ LDTAR, "ldtar", 0x000000F81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
/* segment registers */
{ CSB, "csbase", 0x000000F41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CSL, "cslimit", 0x0000000C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ CSAR, "csar", 0x000000741D660000, 12, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DSB, "dsbase", 0x000000941D660000, 13, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DSL, "dslimit", 0x000000541D660000, 14, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ DSAR, "dsar", 0x000000141D660000, 15, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ ESB, "esbase", 0x0000004C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ ESL, "eslimit", 0x000000CC1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ ESAR, "esar", 0x0000008C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ FSB, "fsbase", 0x000000641D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ FSL, "fslimit", 0x000000E41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ FSAR, "fsar", 0x000000A41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GSB, "gsbase", 0x000000C41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GSL, "gslimit", 0x000000241D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ GSAR, "gsar", 0x000000441D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ SSB, "ssbase", 0x000000341D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ SSL, "sslimit", 0x000000B41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ SSAR, "ssar", 0x000000D41D660000, 16, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TSSB, "tssbase", 0x000000E81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TSSL, "tsslimit", 0x000000181D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
{ TSSAR, "tssar", 0x000000681D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
/* probemode control register */
{ PMCR, "pmcr", 0x000000421D660000, 17, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
};
static const struct {
uint8_t id;
const char *name;
uint64_t op;
} instructions[] = {
/* memory read/write */
{ MEMRDB32, "MEMRDB32", 0x0909090909090851 },
{ MEMRDB16, "MEMRDB16", 0x09090909090851E6 },
{ MEMRDH32, "MEMRDH32", 0x090909090908D166 },
{ MEMRDH16, "MEMRDH16", 0x090909090908D1E6 },
{ MEMRDW32, "MEMRDW32", 0x09090909090908D1 },
{ MEMRDW16, "MEMRDW16", 0x0909090908D1E666 },
{ MEMWRB32, "MEMWRB32", 0x0909090909090811 },
{ MEMWRB16, "MEMWRB16", 0x09090909090811E6 },
{ MEMWRH32, "MEMWRH32", 0x0909090909089166 },
{ MEMWRH16, "MEMWRH16", 0x09090909090891E6 },
{ MEMWRW32, "MEMWRW32", 0x0909090909090891 },
{ MEMWRW16, "MEMWRW16", 0x090909090891E666 },
/* IO read/write */
{ IORDB32, "IORDB32", 0x0909090909090937 },
{ IORDB16, "IORDB16", 0x09090909090937E6 },
{ IORDH32, "IORDH32", 0x090909090909B766 },
{ IORDH16, "IORDH16", 0x090909090909B7E6 },
{ IORDW32, "IORDW32", 0x09090909090909B7 },
{ IORDW16, "IORDW16", 0x0909090909B7E666 },
{ IOWRB32, "IOWRB32", 0x0909090909090977 },
{ IOWRB16, "IOWRB16", 0x09090909090977E6 },
{ IOWRH32, "IOWRH32", 0x090909090909F766 },
{ IOWRH16, "IOWRH16", 0x090909090909F7E6 },
{ IOWRW32, "IOWRW32", 0x09090909090909F7 },
{ IOWRW16, "IOWRW16", 0x0909090909F7E666 },
/* lakemont1 core shadow ram access opcodes */
{ SRAMACCESS, "SRAMACCESS", 0x0000000E9D660000 },
{ SRAM2PDR, "SRAM2PDR", 0x4CF0000000000000 },
{ PDR2SRAM, "PDR2SRAM", 0x0CF0000000000000 },
{ WBINVD, "WBINVD", 0x09090909090990F0 },
};
bool check_not_halted(const struct target *t)
{
bool halted = t->state == TARGET_HALTED;
if (!halted)
LOG_ERROR("target running, halt it first");
return !halted;
}
static int irscan(struct target *t, uint8_t *out,
uint8_t *in, uint8_t ir_len)
{
int retval = ERROR_OK;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (!t->tap) {
retval = ERROR_FAIL;
LOG_ERROR("%s invalid target tap", __func__);
return retval;
}
if (ir_len != t->tap->ir_length) {
retval = ERROR_FAIL;
if (t->tap->enabled)
LOG_ERROR("%s tap enabled but tap irlen=%d",
__func__, t->tap->ir_length);
else
LOG_ERROR("%s tap not enabled and irlen=%d",
__func__, t->tap->ir_length);
return retval;
}
struct scan_field *fields = &scan.field;
fields->num_bits = ir_len;
fields->out_value = out;
fields->in_value = in;
jtag_add_ir_scan(x86_32->curr_tap, fields, TAP_IDLE);
if (x86_32->flush) {
retval = jtag_execute_queue();
if (retval != ERROR_OK)
LOG_ERROR("%s failed to execute queue", __func__);
}
return retval;
}
static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len)
{
int retval = ERROR_OK;
uint64_t data = 0;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (!t->tap) {
retval = ERROR_FAIL;
LOG_ERROR("%s invalid target tap", __func__);
return retval;
}
if (len > MAX_SCAN_SIZE || 0 == len) {
retval = ERROR_FAIL;
LOG_ERROR("%s data len is %d bits, max is %d bits",
__func__, len, MAX_SCAN_SIZE);
return retval;
}
struct scan_field *fields = &scan.field;
fields->out_value = out;
fields->in_value = in;
fields->num_bits = len;
jtag_add_dr_scan(x86_32->curr_tap, 1, fields, TAP_IDLE);
if (x86_32->flush) {
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("%s drscan failed to execute queue", __func__);
return retval;
}
}
if (in) {
if (len >= 8) {
for (int n = (len / 8) - 1 ; n >= 0; n--)
data = (data << 8) + *(in+n);
} else
LOG_DEBUG("dr in 0x%02" PRIx8, *in);
} else {
LOG_ERROR("%s no drscan data", __func__);
retval = ERROR_FAIL;
}
return retval;
}
static int save_context(struct target *t)
{
int err;
/* read core registers from lakemont sram */
err = read_all_core_hw_regs(t);
if (err != ERROR_OK) {
LOG_ERROR("%s error reading regs", __func__);
return err;
}
return ERROR_OK;
}
static int restore_context(struct target *t)
{
int err = ERROR_OK;
uint32_t i;
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* write core regs into the core PM SRAM from the reg_cache */
err = write_all_core_hw_regs(t);
if (err != ERROR_OK) {
LOG_ERROR("%s error writing regs", __func__);
return err;
}
for (i = 0; i < (x86_32->cache->num_regs); i++) {
x86_32->cache->reg_list[i].dirty = false;
x86_32->cache->reg_list[i].valid = false;
}
return err;
}
/*
* we keep reg_cache in sync with hardware at halt/resume time, we avoid
* writing to real hardware here because pm_regs reflects the hardware
* while we are halted then reg_cache syncs with hw on resume
* TODO - in order for "reg eip force" to work it assume get/set reads
* and writes from hardware, may be other reasons also because generally
* other openocd targets read/write from hardware in get/set - watch this!
*/
static int lakemont_get_core_reg(struct reg *reg)
{
int retval = ERROR_OK;
struct lakemont_core_reg *lakemont_reg = reg->arch_info;
struct target *t = lakemont_reg->target;
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
LOG_DEBUG("reg=%s, value=0x%08" PRIx32, reg->name,
buf_get_u32(reg->value, 0, 32));
return retval;
}
static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct lakemont_core_reg *lakemont_reg = reg->arch_info;
struct target *t = lakemont_reg->target;
uint32_t value = buf_get_u32(buf, 0, 32);
LOG_DEBUG("reg=%s, newval=0x%08" PRIx32, reg->name, value);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
buf_set_u32(reg->value, 0, 32, value);
reg->dirty = true;
reg->valid = true;
return ERROR_OK;
}
static const struct reg_arch_type lakemont_reg_type = {
/* these get called if reg_cache doesn't have a "valid" value
* of an individual reg eg "reg eip" but not for "reg" block
*/
.get = lakemont_get_core_reg,
.set = lakemont_set_core_reg,
};
struct reg_cache *lakemont_build_reg_cache(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
int num_regs = ARRAY_SIZE(regs);
struct reg_cache **cache_p = register_get_last_cache_p(&t->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct lakemont_core_reg *arch_info = malloc(sizeof(struct lakemont_core_reg) * num_regs);
struct reg_feature *feature;
int i;
if (!cache || !reg_list || !arch_info) {
free(cache);
free(reg_list);
free(arch_info);
LOG_ERROR("%s out of memory", __func__);
return NULL;
}
/* Build the process context cache */
cache->name = "lakemont registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
x86_32->cache = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].target = t;
arch_info[i].x86_32_common = x86_32;
arch_info[i].op = regs[i].op;
arch_info[i].pm_idx = regs[i].pm_idx;
reg_list[i].name = regs[i].name;
reg_list[i].size = 32;
reg_list[i].value = calloc(1, 4);
reg_list[i].dirty = false;
reg_list[i].valid = false;
reg_list[i].type = &lakemont_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].group = regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("%s unable to allocate feature list", __func__);
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = regs[i].type;
else
LOG_ERROR("%s unable to allocate reg type list", __func__);
}
return cache;
}
static uint32_t get_tapstatus(struct target *t)
{
scan.out[0] = TAPSTATUS;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return 0;
if (drscan(t, NULL, scan.out, TS_SIZE) != ERROR_OK)
return 0;
return buf_get_u32(scan.out, 0, 32);
}
static int enter_probemode(struct target *t)
{
uint32_t tapstatus = 0;
int retries = 100;
tapstatus = get_tapstatus(t);
LOG_DEBUG("TS before PM enter = 0x%08" PRIx32, tapstatus);
if (tapstatus & TS_PM_BIT) {
LOG_DEBUG("core already in probemode");
return ERROR_OK;
}
scan.out[0] = PROBEMODE;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = 1;
if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
return ERROR_FAIL;
while (retries--) {
tapstatus = get_tapstatus(t);
LOG_DEBUG("TS after PM enter = 0x%08" PRIx32, tapstatus);
if ((tapstatus & TS_PM_BIT) && (!(tapstatus & TS_EN_PM_BIT)))
return ERROR_OK;
}
LOG_ERROR("%s PM enter error, tapstatus = 0x%08" PRIx32
, __func__, tapstatus);
return ERROR_FAIL;
}
static int exit_probemode(struct target *t)
{
uint32_t tapstatus = get_tapstatus(t);
LOG_DEBUG("TS before PM exit = 0x%08" PRIx32, tapstatus);
if (!(tapstatus & TS_PM_BIT)) {
LOG_USER("core not in PM");
return ERROR_OK;
}
scan.out[0] = PROBEMODE;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = 0;
if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
/* do whats needed to properly enter probemode for debug on lakemont */
static int halt_prep(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (write_hw_reg(t, DSB, PM_DSB, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSB].name, PM_DSB);
if (write_hw_reg(t, DSL, PM_DSL, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSL].name, PM_DSL);
if (write_hw_reg(t, DSAR, PM_DSAR, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write DSAR 0x%08" PRIx32, PM_DSAR);
if (write_hw_reg(t, CSB, PM_DSB, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[CSB].name, PM_DSB);
if (write_hw_reg(t, CSL, PM_DSL, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write %s 0x%08" PRIx32, regs[CSL].name, PM_DSL);
if (write_hw_reg(t, DR7, PM_DR7, 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write DR7 0x%08" PRIx32, PM_DR7);
uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
uint32_t csar = buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32);
uint32_t ssar = buf_get_u32(x86_32->cache->reg_list[SSAR].value, 0, 32);
uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
/* clear VM86 and IF bits if they are set */
LOG_DEBUG("EFLAGS = 0x%08" PRIx32 ", VM86 = %d, IF = %d", eflags,
eflags & EFLAGS_VM86 ? 1 : 0,
eflags & EFLAGS_IF ? 1 : 0);
if ((eflags & EFLAGS_VM86) || (eflags & EFLAGS_IF)) {
x86_32->pm_regs[I(EFLAGS)] = eflags & ~(EFLAGS_VM86 | EFLAGS_IF);
if (write_hw_reg(t, EFLAGS, x86_32->pm_regs[I(EFLAGS)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("EFLAGS now = 0x%08" PRIx32 ", VM86 = %d, IF = %d",
x86_32->pm_regs[I(EFLAGS)],
x86_32->pm_regs[I(EFLAGS)] & EFLAGS_VM86 ? 1 : 0,
x86_32->pm_regs[I(EFLAGS)] & EFLAGS_IF ? 1 : 0);
}
/* set CPL to 0 for memory access */
if (csar & CSAR_DPL) {
x86_32->pm_regs[I(CSAR)] = csar & ~CSAR_DPL;
if (write_hw_reg(t, CSAR, x86_32->pm_regs[I(CSAR)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write CSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(CSAR)]);
}
if (ssar & SSAR_DPL) {
x86_32->pm_regs[I(SSAR)] = ssar & ~SSAR_DPL;
if (write_hw_reg(t, SSAR, x86_32->pm_regs[I(SSAR)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("write SSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(SSAR)]);
}
/* if cache's are enabled, disable and flush, depending on the core version */
if (!(x86_32->core_type == LMT3_5) && !(cr0 & CR0_CD)) {
LOG_DEBUG("caching enabled CR0 = 0x%08" PRIx32, cr0);
if (cr0 & CR0_PG) {
x86_32->pm_regs[I(CR0)] = cr0 & ~CR0_PG;
if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("cleared paging CR0_PG = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
/* submit wbinvd to flush cache */
if (submit_reg_pir(t, WBINVD) != ERROR_OK)
return ERROR_FAIL;
x86_32->pm_regs[I(CR0)] =
x86_32->pm_regs[I(CR0)] | (CR0_CD | CR0_NW | CR0_PG);
if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("set CD, NW and PG, CR0 = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
}
}
return ERROR_OK;
}
static int do_halt(struct target *t)
{
/* needs proper handling later if doing a halt errors out */
t->state = TARGET_DEBUG_RUNNING;
if (enter_probemode(t) != ERROR_OK)
return ERROR_FAIL;
return lakemont_update_after_probemode_entry(t);
}
/* we need to expose the update to be able to complete the reset at SoC level */
int lakemont_update_after_probemode_entry(struct target *t)
{
if (save_context(t) != ERROR_OK)
return ERROR_FAIL;
if (halt_prep(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_HALTED;
return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
}
static int do_resume(struct target *t)
{
/* needs proper handling later */
t->state = TARGET_DEBUG_RUNNING;
if (restore_context(t) != ERROR_OK)
return ERROR_FAIL;
if (exit_probemode(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_RUNNING;
t->debug_reason = DBG_REASON_NOTHALTED;
LOG_USER("target running");
return target_call_event_callbacks(t, TARGET_EVENT_RESUMED);
}
static int read_all_core_hw_regs(struct target *t)
{
int err;
uint32_t regval;
unsigned i;
struct x86_32_common *x86_32 = target_to_x86_32(t);
for (i = 0; i < (x86_32->cache->num_regs); i++) {
if (regs[i].pm_idx == NOT_AVAIL_REG)
continue;
err = read_hw_reg(t, regs[i].id, &regval, 1);
if (err != ERROR_OK) {
LOG_ERROR("%s error saving reg %s",
__func__, x86_32->cache->reg_list[i].name);
return err;
}
}
LOG_DEBUG("read_all_core_hw_regs read %u registers ok", i);
return ERROR_OK;
}
static int write_all_core_hw_regs(struct target *t)
{
int err;
unsigned i;
struct x86_32_common *x86_32 = target_to_x86_32(t);
for (i = 0; i < (x86_32->cache->num_regs); i++) {
if (regs[i].pm_idx == NOT_AVAIL_REG)
continue;
err = write_hw_reg(t, i, 0, 1);
if (err != ERROR_OK) {
LOG_ERROR("%s error restoring reg %s",
__func__, x86_32->cache->reg_list[i].name);
return err;
}
}
LOG_DEBUG("write_all_core_hw_regs wrote %u registers ok", i);
return ERROR_OK;
}
/* read reg from lakemont core shadow ram, update reg cache if needed */
static int read_hw_reg(struct target *t, int reg, uint32_t *regval, uint8_t cache)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct lakemont_core_reg *arch_info;
arch_info = x86_32->cache->reg_list[reg].arch_info;
x86_32->flush = 0; /* don't flush scans till we have a batch */
if (submit_reg_pir(t, reg) != ERROR_OK)
return ERROR_FAIL;
if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
return ERROR_FAIL;
if (submit_instruction_pir(t, SRAM2PDR) != ERROR_OK)
return ERROR_FAIL;
x86_32->flush = 1;
scan.out[0] = RDWRPDR;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
if (drscan(t, NULL, scan.out, PDR_SIZE) != ERROR_OK)
return ERROR_FAIL;
jtag_add_sleep(DELAY_SUBMITPIR);
*regval = buf_get_u32(scan.out, 0, 32);
if (cache) {
buf_set_u32(x86_32->cache->reg_list[reg].value, 0, 32, *regval);
x86_32->cache->reg_list[reg].valid = true;
x86_32->cache->reg_list[reg].dirty = false;
}
LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
x86_32->cache->reg_list[reg].name,
arch_info->op,
*regval);
return ERROR_OK;
}
/* write lakemont core shadow ram reg, update reg cache if needed */
static int write_hw_reg(struct target *t, int reg, uint32_t regval, uint8_t cache)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct lakemont_core_reg *arch_info;
arch_info = x86_32->cache->reg_list[reg].arch_info;
uint8_t reg_buf[4];
if (cache)
regval = buf_get_u32(x86_32->cache->reg_list[reg].value, 0, 32);
buf_set_u32(reg_buf, 0, 32, regval);
LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
x86_32->cache->reg_list[reg].name,
arch_info->op,
regval);
x86_32->flush = 0; /* don't flush scans till we have a batch */
if (submit_reg_pir(t, reg) != ERROR_OK)
return ERROR_FAIL;
if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = RDWRPDR;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
if (drscan(t, reg_buf, scan.out, PDR_SIZE) != ERROR_OK)
return ERROR_FAIL;
x86_32->flush = 1;
if (submit_instruction_pir(t, PDR2SRAM) != ERROR_OK)
return ERROR_FAIL;
/* we are writing from the cache so ensure we reset flags */
if (cache) {
x86_32->cache->reg_list[reg].dirty = false;
x86_32->cache->reg_list[reg].valid = false;
}
return ERROR_OK;
}
static bool is_paging_enabled(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (x86_32->pm_regs[I(CR0)] & CR0_PG)
return true;
else
return false;
}
static uint8_t get_num_user_regs(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
return x86_32->cache->num_regs;
}
/* value of the CR0.PG (paging enabled) bit influences memory reads/writes */
static int disable_paging(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
x86_32->pm_regs[I(CR0)] = x86_32->pm_regs[I(CR0)] & ~CR0_PG;
int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
if (err != ERROR_OK) {
LOG_ERROR("%s error disabling paging", __func__);
return err;
}
return err;
}
static int enable_paging(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
x86_32->pm_regs[I(CR0)] = (x86_32->pm_regs[I(CR0)] | CR0_PG);
int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
if (err != ERROR_OK) {
LOG_ERROR("%s error enabling paging", __func__);
return err;
}
return err;
}
static bool sw_bpts_supported(struct target *t)
{
uint32_t tapstatus = get_tapstatus(t);
if (tapstatus & TS_SBP_BIT)
return true;
else
return false;
}
static int transaction_status(struct target *t)
{
uint32_t tapstatus = get_tapstatus(t);
if ((TS_EN_PM_BIT | TS_PRDY_BIT) & tapstatus) {
LOG_ERROR("%s transaction error tapstatus = 0x%08" PRIx32
, __func__, tapstatus);
return ERROR_FAIL;
} else {
return ERROR_OK;
}
}
static int submit_instruction(struct target *t, int num)
{
int err = submit_instruction_pir(t, num);
if (err != ERROR_OK) {
LOG_ERROR("%s error submitting pir", __func__);
return err;
}
return err;
}
static int submit_reg_pir(struct target *t, int num)
{
LOG_DEBUG("reg %s op=0x%016" PRIx64, regs[num].name, regs[num].op);
int err = submit_pir(t, regs[num].op);
if (err != ERROR_OK) {
LOG_ERROR("%s error submitting pir", __func__);
return err;
}
return err;
}
static int submit_instruction_pir(struct target *t, int num)
{
LOG_DEBUG("%s op=0x%016" PRIx64, instructions[num].name,
instructions[num].op);
int err = submit_pir(t, instructions[num].op);
if (err != ERROR_OK) {
LOG_ERROR("%s error submitting pir", __func__);
return err;
}
return err;
}
/*
* PIR (Probe Mode Instruction Register), SUBMITPIR is an "IR only" TAP
* command; there is no corresponding data register
*/
static int submit_pir(struct target *t, uint64_t op)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
uint8_t op_buf[8];
buf_set_u64(op_buf, 0, 64, op);
int flush = x86_32->flush;
x86_32->flush = 0;
scan.out[0] = WRPIR;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
if (drscan(t, op_buf, scan.out, PIR_SIZE) != ERROR_OK)
return ERROR_FAIL;
scan.out[0] = SUBMITPIR;
x86_32->flush = flush;
if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
return ERROR_FAIL;
jtag_add_sleep(DELAY_SUBMITPIR);
return ERROR_OK;
}
int lakemont_init_target(struct command_context *cmd_ctx, struct target *t)
{
lakemont_build_reg_cache(t);
t->state = TARGET_RUNNING;
t->debug_reason = DBG_REASON_NOTHALTED;
return ERROR_OK;
}
int lakemont_init_arch_info(struct target *t, struct x86_32_common *x86_32)
{
x86_32->submit_instruction = submit_instruction;
x86_32->transaction_status = transaction_status;
x86_32->read_hw_reg = read_hw_reg;
x86_32->write_hw_reg = write_hw_reg;
x86_32->sw_bpts_supported = sw_bpts_supported;
x86_32->get_num_user_regs = get_num_user_regs;
x86_32->is_paging_enabled = is_paging_enabled;
x86_32->disable_paging = disable_paging;
x86_32->enable_paging = enable_paging;
return ERROR_OK;
}
int lakemont_poll(struct target *t)
{
/* LMT1 PMCR register currently allows code breakpoints, data breakpoints,
* single stepping and shutdowns to be redirected to PM but does not allow
* redirecting into PM as a result of SMM enter and SMM exit
*/
uint32_t ts = get_tapstatus(t);
if (ts == 0xFFFFFFFF && t->state != TARGET_DEBUG_RUNNING) {
/* something is wrong here */
LOG_ERROR("tapstatus invalid - scan_chain serialization or locked JTAG access issues");
/* TODO: Give a hint that unlocking is wrong or maybe a
* 'jtag arp_init' helps
*/
t->state = TARGET_DEBUG_RUNNING;
return ERROR_OK;
}
if (t->state == TARGET_HALTED && (!(ts & TS_PM_BIT))) {
LOG_INFO("target running for unknown reason");
t->state = TARGET_RUNNING;
}
if (t->state == TARGET_RUNNING &&
t->state != TARGET_DEBUG_RUNNING) {
if ((ts & TS_PM_BIT) && (ts & TS_PMCR_BIT)) {
LOG_DEBUG("redirect to PM, tapstatus=0x%08" PRIx32, get_tapstatus(t));
t->state = TARGET_DEBUG_RUNNING;
if (save_context(t) != ERROR_OK)
return ERROR_FAIL;
if (halt_prep(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_HALTED;
t->debug_reason = DBG_REASON_UNDEFINED;
struct x86_32_common *x86_32 = target_to_x86_32(t);
uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
uint32_t dr6 = buf_get_u32(x86_32->cache->reg_list[DR6].value, 0, 32);
uint32_t hwbreakpoint = (uint32_t)-1;
if (dr6 & DR6_BRKDETECT_0)
hwbreakpoint = 0;
if (dr6 & DR6_BRKDETECT_1)
hwbreakpoint = 1;
if (dr6 & DR6_BRKDETECT_2)
hwbreakpoint = 2;
if (dr6 & DR6_BRKDETECT_3)
hwbreakpoint = 3;
if (hwbreakpoint != (uint32_t)-1) {
uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
uint32_t type = dr7 & (0x03 << (DR7_RW_SHIFT + hwbreakpoint*DR7_RW_LEN_SIZE));
if (type == DR7_BP_EXECUTE) {
LOG_USER("hit hardware breakpoint (hwreg=%" PRIu32 ") at 0x%08" PRIx32, hwbreakpoint, eip);
} else {
uint32_t address = 0;
switch (hwbreakpoint) {
default:
case 0:
address = buf_get_u32(x86_32->cache->reg_list[DR0].value, 0, 32);
break;
case 1:
address = buf_get_u32(x86_32->cache->reg_list[DR1].value, 0, 32);
break;
case 2:
address = buf_get_u32(x86_32->cache->reg_list[DR2].value, 0, 32);
break;
case 3:
address = buf_get_u32(x86_32->cache->reg_list[DR3].value, 0, 32);
break;
}
LOG_USER("hit '%s' watchpoint for 0x%08" PRIx32 " (hwreg=%" PRIu32 ") at 0x%08" PRIx32,
type == DR7_BP_WRITE ? "write" : "access", address,
hwbreakpoint, eip);
}
t->debug_reason = DBG_REASON_BREAKPOINT;
} else {
/* Check if the target hit a software breakpoint.
* ! Watch out: EIP is currently pointing after the breakpoint opcode
*/
struct breakpoint *bp = NULL;
bp = breakpoint_find(t, eip-1);
if (bp) {
t->debug_reason = DBG_REASON_BREAKPOINT;
if (bp->type == BKPT_SOFT) {
/* The EIP is now pointing the next byte after the
* breakpoint instruction. This needs to be corrected.
*/
buf_set_u32(x86_32->cache->reg_list[EIP].value, 0, 32, eip-1);
x86_32->cache->reg_list[EIP].dirty = true;
x86_32->cache->reg_list[EIP].valid = true;
LOG_USER("hit software breakpoint at 0x%08" PRIx32, eip-1);
} else {
/* it's not a hardware breakpoint (checked already in DR6 state)
* and it's also not a software breakpoint ...
*/
LOG_USER("hit unknown breakpoint at 0x%08" PRIx32, eip);
}
} else {
/* There is also the case that we hit an breakpoint instruction,
* which was not set by us. This needs to be handled be the
* application that introduced the breakpoint.
*/
LOG_USER("unknown break reason at 0x%08" PRIx32, eip);
}
}
return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
}
}
return ERROR_OK;
}
int lakemont_arch_state(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
LOG_USER("target halted due to %s at 0x%08" PRIx32 " in %s mode",
debug_reason_name(t),
buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32),
(buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32) & CR0_PE) ? "protected" : "real");
return ERROR_OK;
}
int lakemont_halt(struct target *t)
{
if (t->state == TARGET_RUNNING) {
t->debug_reason = DBG_REASON_DBGRQ;
if (do_halt(t) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
} else {
LOG_ERROR("%s target not running", __func__);
return ERROR_FAIL;
}
}
int lakemont_resume(struct target *t, int current, target_addr_t address,
int handle_breakpoints, int debug_execution)
{
struct breakpoint *bp = NULL;
struct x86_32_common *x86_32 = target_to_x86_32(t);
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
/* TODO lakemont_enable_breakpoints(t); */
if (t->state == TARGET_HALTED) {
/* running away for a software breakpoint needs some special handling */
uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
bp = breakpoint_find(t, eip);
if (bp /*&& bp->type == BKPT_SOFT*/) {
/* the step will step over the breakpoint */
if (lakemont_step(t, 0, 0, 1) != ERROR_OK) {
LOG_ERROR("%s stepping over a software breakpoint at 0x%08" PRIx32 " "
"failed to resume the target", __func__, eip);
return ERROR_FAIL;
}
}
/* if breakpoints are enabled, we need to redirect these into probe mode */
struct breakpoint *activeswbp = t->breakpoints;
while (activeswbp && !activeswbp->is_set)
activeswbp = activeswbp->next;
struct watchpoint *activehwbp = t->watchpoints;
while (activehwbp && !activehwbp->is_set)
activehwbp = activehwbp->next;
if (activeswbp || activehwbp)
buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
if (do_resume(t) != ERROR_OK)
return ERROR_FAIL;
} else {
LOG_USER("target not halted");
return ERROR_FAIL;
}
return ERROR_OK;
}
int lakemont_step(struct target *t, int current,
target_addr_t address, int handle_breakpoints)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
uint32_t pmcr = buf_get_u32(x86_32->cache->reg_list[PMCR].value, 0, 32);
struct breakpoint *bp = NULL;
int retval = ERROR_OK;
uint32_t tapstatus = 0;
if (check_not_halted(t))
return ERROR_TARGET_NOT_HALTED;
bp = breakpoint_find(t, eip);
if (retval == ERROR_OK && bp/*&& bp->type == BKPT_SOFT*/) {
/* TODO: This should only be done for software breakpoints.
* Stepping from hardware breakpoints should be possible with the resume flag
* Needs testing.
*/
retval = x86_32_common_remove_breakpoint(t, bp);
}
/* Set EFLAGS[TF] and PMCR[IR], exit pm and wait for PRDY# */
LOG_DEBUG("modifying PMCR = 0x%08" PRIx32 " and EFLAGS = 0x%08" PRIx32, pmcr, eflags);
eflags = eflags | (EFLAGS_TF | EFLAGS_RF);
buf_set_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32, eflags);
buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
LOG_DEBUG("EFLAGS [TF] [RF] bits set=0x%08" PRIx32 ", PMCR=0x%08" PRIx32 ", EIP=0x%08" PRIx32,
eflags, pmcr, eip);
/* Returned value unused. Can this line be removed? */
get_tapstatus(t);
t->debug_reason = DBG_REASON_SINGLESTEP;
t->state = TARGET_DEBUG_RUNNING;
if (restore_context(t) != ERROR_OK)
return ERROR_FAIL;
if (exit_probemode(t) != ERROR_OK)
return ERROR_FAIL;
target_call_event_callbacks(t, TARGET_EVENT_RESUMED);
tapstatus = get_tapstatus(t);
if (tapstatus & (TS_PM_BIT | TS_EN_PM_BIT | TS_PRDY_BIT | TS_PMCR_BIT)) {
/* target has stopped */
if (save_context(t) != ERROR_OK)
return ERROR_FAIL;
if (halt_prep(t) != ERROR_OK)
return ERROR_FAIL;
t->state = TARGET_HALTED;
LOG_USER("step done from EIP 0x%08" PRIx32 " to 0x%08" PRIx32, eip,
buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32));
target_call_event_callbacks(t, TARGET_EVENT_HALTED);
} else {
/* target didn't stop
* I hope the poll() will catch it, but the deleted breakpoint is gone
*/
LOG_ERROR("%s target didn't stop after executing a single step", __func__);
t->state = TARGET_RUNNING;
return ERROR_FAIL;
}
/* try to re-apply the breakpoint, even of step failed
* TODO: When a bp was set, we should try to stop the target - fix the return above
*/
if (bp/*&& bp->type == BKPT_SOFT*/) {
/* TODO: This should only be done for software breakpoints.
* Stepping from hardware breakpoints should be possible with the resume flag
* Needs testing.
*/
retval = x86_32_common_add_breakpoint(t, bp);
}
return retval;
}
static int lakemont_reset_break(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
struct jtag_tap *saved_tap = x86_32->curr_tap;
struct scan_field *fields = &scan.field;
int retval = ERROR_OK;
LOG_DEBUG("issuing port 0xcf9 reset");
/* prepare resetbreak setting the proper bits in CLTAPC_CPU_VPREQ */
x86_32->curr_tap = jtag_tap_by_position(1);
if (!x86_32->curr_tap) {
x86_32->curr_tap = saved_tap;
LOG_ERROR("%s could not select quark_x10xx.cltap", __func__);
return ERROR_FAIL;
}
fields->in_value = NULL;
fields->num_bits = 8;
/* select CLTAPC_CPU_VPREQ instruction*/
scan.out[0] = 0x51;
fields->out_value = ((uint8_t *)scan.out);
jtag_add_ir_scan(x86_32->curr_tap, fields, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
x86_32->curr_tap = saved_tap;
LOG_ERROR("%s irscan failed to execute queue", __func__);
return retval;
}
/* set enable_preq_on_reset & enable_preq_on_reset2 bits*/
scan.out[0] = 0x06;
fields->out_value = ((uint8_t *)scan.out);
jtag_add_dr_scan(x86_32->curr_tap, 1, fields, TAP_IDLE);
retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("%s drscan failed to execute queue", __func__);
x86_32->curr_tap = saved_tap;
return retval;
}
/* restore current tap */
x86_32->curr_tap = saved_tap;
return ERROR_OK;
}
/*
* If we ever get an adapter with support for PREQ# and PRDY#, we should
* update this function to add support for using those two signals.
*
* Meanwhile, we're assuming that we only support reset break.
*/
int lakemont_reset_assert(struct target *t)
{
struct x86_32_common *x86_32 = target_to_x86_32(t);
/* write 0x6 to I/O port 0xcf9 to cause the reset */
uint8_t cf9_reset_val = 0x6;
int retval;
LOG_DEBUG(" ");
if (t->state != TARGET_HALTED) {
LOG_DEBUG("target must be halted first");
retval = lakemont_halt(t);
if (retval != ERROR_OK) {
LOG_ERROR("could not halt target");
return retval;
}
x86_32->forced_halt_for_reset = true;
}
if (t->reset_halt) {
retval = lakemont_reset_break(t);
if (retval != ERROR_OK)
return retval;
}
retval = x86_32_common_write_io(t, 0xcf9, BYTE, &cf9_reset_val);
if (retval != ERROR_OK) {
LOG_ERROR("could not write to port 0xcf9");
return retval;
}
if (!t->reset_halt && x86_32->forced_halt_for_reset) {
x86_32->forced_halt_for_reset = false;
retval = lakemont_resume(t, true, 0x00, false, true);
if (retval != ERROR_OK)
return retval;
}
/* remove breakpoints and watchpoints */
x86_32_common_reset_breakpoints_watchpoints(t);
return ERROR_OK;
}
int lakemont_reset_deassert(struct target *t)
{
int retval;
LOG_DEBUG(" ");
if (target_was_examined(t)) {
retval = lakemont_poll(t);
if (retval != ERROR_OK)
return retval;
}
if (t->reset_halt) {
/* entered PM after reset, update the state */
retval = lakemont_update_after_probemode_entry(t);
if (retval != ERROR_OK) {
LOG_ERROR("could not update state after probemode entry");
return retval;
}
if (t->state != TARGET_HALTED) {
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(t));
if (target_was_examined(t)) {
retval = target_halt(t);
if (retval != ERROR_OK)
return retval;
} else {
t->state = TARGET_UNKNOWN;
}
}
}
return ERROR_OK;
}