openocd/src/flash/nor/kinetis.c

2366 lines
69 KiB
C

/***************************************************************************
* Copyright (C) 2011 by Mathias Kuester *
* kesmtp@freenet.de *
* *
* Copyright (C) 2011 sleep(5) ltd *
* tomas@sleepfive.com *
* *
* Copyright (C) 2012 by Christopher D. Kilgour *
* techie at whiterocker.com *
* *
* Copyright (C) 2013 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp *
* *
* Copyright (C) 2015 Tomas Vanek *
* vanekt@fbl.cz *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "jtag/interface.h"
#include "imp.h"
#include <helper/binarybuffer.h>
#include <helper/time_support.h>
#include <target/target_type.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
/*
* Implementation Notes
*
* The persistent memories in the Kinetis chip families K10 through
* K70 are all manipulated with the Flash Memory Module. Some
* variants call this module the FTFE, others call it the FTFL. To
* indicate that both are considered here, we use FTFX.
*
* Within the module, according to the chip variant, the persistent
* memory is divided into what Freescale terms Program Flash, FlexNVM,
* and FlexRAM. All chip variants have Program Flash. Some chip
* variants also have FlexNVM and FlexRAM, which always appear
* together.
*
* A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
* each block to a separate bank. Each block size varies by chip and
* may be determined by the read-only SIM_FCFG1 register. The sector
* size within each bank/block varies by chip, and may be 1, 2 or 4k.
* The sector size may be different for flash and FlexNVM.
*
* The first half of the flash (1 or 2 blocks) is always Program Flash
* and always starts at address 0x00000000. The "PFLSH" flag, bit 23
* of the read-only SIM_FCFG2 register, determines whether the second
* half of the flash is also Program Flash or FlexNVM+FlexRAM. When
* PFLSH is set, the second from the first half. When PFLSH is clear,
* the second half of flash is FlexNVM and always starts at address
* 0x10000000. FlexRAM, which is also present when PFLSH is clear,
* always starts at address 0x14000000.
*
* The Flash Memory Module provides a register set where flash
* commands are loaded to perform flash operations like erase and
* program. Different commands are available depending on whether
* Program Flash or FlexNVM/FlexRAM is being manipulated. Although
* the commands used are quite consistent between flash blocks, the
* parameters they accept differ according to the flash sector size.
*
*/
/* Addressess */
#define FCF_ADDRESS 0x00000400
#define FCF_FPROT 0x8
#define FCF_FSEC 0xc
#define FCF_FOPT 0xd
#define FCF_FDPROT 0xf
#define FCF_SIZE 0x10
#define FLEXRAM 0x14000000
#define FMC_PFB01CR 0x4001f004
#define FTFx_FSTAT 0x40020000
#define FTFx_FCNFG 0x40020001
#define FTFx_FCCOB3 0x40020004
#define FTFx_FPROT3 0x40020010
#define FTFx_FDPROT 0x40020017
#define SIM_SDID 0x40048024
#define SIM_SOPT1 0x40047000
#define SIM_FCFG1 0x4004804c
#define SIM_FCFG2 0x40048050
#define WDOG_STCTRH 0x40052000
#define SMC_PMCTRL 0x4007E001
#define SMC_PMSTAT 0x4007E003
/* Values */
#define PM_STAT_RUN 0x01
#define PM_STAT_VLPR 0x04
#define PM_CTRL_RUNM_RUN 0x00
/* Commands */
#define FTFx_CMD_BLOCKSTAT 0x00
#define FTFx_CMD_SECTSTAT 0x01
#define FTFx_CMD_LWORDPROG 0x06
#define FTFx_CMD_SECTERASE 0x09
#define FTFx_CMD_SECTWRITE 0x0b
#define FTFx_CMD_MASSERASE 0x44
#define FTFx_CMD_PGMPART 0x80
#define FTFx_CMD_SETFLEXRAM 0x81
/* The older Kinetis K series uses the following SDID layout :
* Bit 31-16 : 0
* Bit 15-12 : REVID
* Bit 11-7 : DIEID
* Bit 6-4 : FAMID
* Bit 3-0 : PINID
*
* The newer Kinetis series uses the following SDID layout :
* Bit 31-28 : FAMID
* Bit 27-24 : SUBFAMID
* Bit 23-20 : SERIESID
* Bit 19-16 : SRAMSIZE
* Bit 15-12 : REVID
* Bit 6-4 : Reserved (0)
* Bit 3-0 : PINID
*
* We assume that if bits 31-16 are 0 then it's an older
* K-series MCU.
*/
#define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
#define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
#define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
#define KINETIS_SDID_DIEID_MASK 0x00000F80
#define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
#define KINETIS_SDID_DIEID_K22FN256 0x00000A80
#define KINETIS_SDID_DIEID_K22FN512 0x00000E80
#define KINETIS_SDID_DIEID_K24FN256 0x00000700
#define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
/* We can't rely solely on the FAMID field to determine the MCU
* type since some FAMID values identify multiple MCUs with
* different flash sector sizes (K20 and K22 for instance).
* Therefore we combine it with the DIEID bits which may possibly
* break if Freescale bumps the DIEID for a particular MCU. */
#define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
#define KINETIS_K_SDID_K10_M50 0x00000000
#define KINETIS_K_SDID_K10_M72 0x00000080
#define KINETIS_K_SDID_K10_M100 0x00000100
#define KINETIS_K_SDID_K10_M120 0x00000180
#define KINETIS_K_SDID_K11 0x00000220
#define KINETIS_K_SDID_K12 0x00000200
#define KINETIS_K_SDID_K20_M50 0x00000010
#define KINETIS_K_SDID_K20_M72 0x00000090
#define KINETIS_K_SDID_K20_M100 0x00000110
#define KINETIS_K_SDID_K20_M120 0x00000190
#define KINETIS_K_SDID_K21_M50 0x00000230
#define KINETIS_K_SDID_K21_M120 0x00000330
#define KINETIS_K_SDID_K22_M50 0x00000210
#define KINETIS_K_SDID_K22_M120 0x00000310
#define KINETIS_K_SDID_K30_M72 0x000000A0
#define KINETIS_K_SDID_K30_M100 0x00000120
#define KINETIS_K_SDID_K40_M72 0x000000B0
#define KINETIS_K_SDID_K40_M100 0x00000130
#define KINETIS_K_SDID_K50_M72 0x000000E0
#define KINETIS_K_SDID_K51_M72 0x000000F0
#define KINETIS_K_SDID_K53 0x00000170
#define KINETIS_K_SDID_K60_M100 0x00000140
#define KINETIS_K_SDID_K60_M150 0x000001C0
#define KINETIS_K_SDID_K70_M150 0x000001D0
#define KINETIS_SDID_SERIESID_MASK 0x00F00000
#define KINETIS_SDID_SERIESID_K 0x00000000
#define KINETIS_SDID_SERIESID_KL 0x00100000
#define KINETIS_SDID_SERIESID_KW 0x00500000
#define KINETIS_SDID_SERIESID_KV 0x00600000
#define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
#define KINETIS_SDID_SUBFAMID_KX0 0x00000000
#define KINETIS_SDID_SUBFAMID_KX1 0x01000000
#define KINETIS_SDID_SUBFAMID_KX2 0x02000000
#define KINETIS_SDID_SUBFAMID_KX3 0x03000000
#define KINETIS_SDID_SUBFAMID_KX4 0x04000000
#define KINETIS_SDID_SUBFAMID_KX5 0x05000000
#define KINETIS_SDID_SUBFAMID_KX6 0x06000000
#define KINETIS_SDID_FAMILYID_MASK 0xF0000000
#define KINETIS_SDID_FAMILYID_K0X 0x00000000
#define KINETIS_SDID_FAMILYID_K1X 0x10000000
#define KINETIS_SDID_FAMILYID_K2X 0x20000000
#define KINETIS_SDID_FAMILYID_K3X 0x30000000
#define KINETIS_SDID_FAMILYID_K4X 0x40000000
#define KINETIS_SDID_FAMILYID_K6X 0x60000000
#define KINETIS_SDID_FAMILYID_K7X 0x70000000
struct kinetis_flash_bank {
bool probed;
uint32_t sector_size;
uint32_t max_flash_prog_size;
uint32_t protection_size;
uint32_t prog_base; /* base address for FTFx operations */
/* same as bank->base for pflash, differs for FlexNVM */
uint32_t protection_block; /* number of first protection block in this bank */
uint32_t sim_sdid;
uint32_t sim_fcfg1;
uint32_t sim_fcfg2;
enum {
FC_AUTO = 0,
FC_PFLASH,
FC_FLEX_NVM,
FC_FLEX_RAM,
} flash_class;
enum {
FS_PROGRAM_SECTOR = 1,
FS_PROGRAM_LONGWORD = 2,
FS_PROGRAM_PHRASE = 4, /* Unsupported */
FS_INVALIDATE_CACHE = 8,
} flash_support;
};
#define MDM_AP 1
#define MDM_REG_STAT 0x00
#define MDM_REG_CTRL 0x04
#define MDM_REG_ID 0xfc
#define MDM_STAT_FMEACK (1<<0)
#define MDM_STAT_FREADY (1<<1)
#define MDM_STAT_SYSSEC (1<<2)
#define MDM_STAT_SYSRES (1<<3)
#define MDM_STAT_FMEEN (1<<5)
#define MDM_STAT_BACKDOOREN (1<<6)
#define MDM_STAT_LPEN (1<<7)
#define MDM_STAT_VLPEN (1<<8)
#define MDM_STAT_LLSMODEXIT (1<<9)
#define MDM_STAT_VLLSXMODEXIT (1<<10)
#define MDM_STAT_CORE_HALTED (1<<16)
#define MDM_STAT_CORE_SLEEPDEEP (1<<17)
#define MDM_STAT_CORESLEEPING (1<<18)
#define MDM_CTRL_FMEIP (1<<0)
#define MDM_CTRL_DBG_DIS (1<<1)
#define MDM_CTRL_DBG_REQ (1<<2)
#define MDM_CTRL_SYS_RES_REQ (1<<3)
#define MDM_CTRL_CORE_HOLD_RES (1<<4)
#define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
#define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
#define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
#define MDM_ACCESS_TIMEOUT 500 /* msec */
static bool allow_fcf_writes;
static uint8_t fcf_fopt = 0xff;
struct flash_driver kinetis_flash;
static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count);
static int kinetis_auto_probe(struct flash_bank *bank);
static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
{
int retval;
LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a write request");
return retval;
}
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
return ERROR_OK;
}
static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
{
int retval;
retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to queue a read request");
return retval;
}
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed");
return retval;
}
LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
return ERROR_OK;
}
static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
uint32_t mask, uint32_t value, uint32_t timeout_ms)
{
uint32_t val;
int retval;
int64_t ms_timeout = timeval_ms() + timeout_ms;
do {
retval = kinetis_mdm_read_register(dap, reg, &val);
if (retval != ERROR_OK || (val & mask) == value)
return retval;
alive_sleep(1);
} while (timeval_ms() < ms_timeout);
LOG_DEBUG("MDM: polling timed out");
return ERROR_FAIL;
}
/*
* This command can be used to break a watchdog reset loop when
* connecting to an unsecured target. Unlike other commands, halt will
* automatically retry as it does not know how far into the boot process
* it is when the command is called.
*/
COMMAND_HANDLER(kinetis_mdm_halt)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
int retval;
int tries = 0;
uint32_t stat;
int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
if (!dap) {
LOG_ERROR("Cannot perform halt with a high-level adapter");
return ERROR_FAIL;
}
while (true) {
tries++;
kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
alive_sleep(1);
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
continue;
}
/* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
* reset with flash ready and without security
*/
if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
== (MDM_STAT_FREADY | MDM_STAT_SYSRES))
break;
if (timeval_ms() >= ms_timeout) {
LOG_ERROR("MDM: halt timed out");
return ERROR_FAIL;
}
}
LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
target_poll(target);
/* enable polling in case kinetis_check_flash_security_status disabled it */
jtag_poll_set_enabled(true);
alive_sleep(100);
target->reset_halt = true;
target->type->assert_reset(target);
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
return retval;
}
target->type->deassert_reset(target);
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_mdm_reset)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
int retval;
if (!dap) {
LOG_ERROR("Cannot perform reset with a high-level adapter");
return ERROR_FAIL;
}
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
return retval;
}
retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to assert reset");
return retval;
}
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
return retval;
}
return ERROR_OK;
}
/*
* This function implements the procedure to mass erase the flash via
* SWD/JTAG on Kinetis K and L series of devices as it is described in
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
* and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
* the core remains halted after this function completes as suggested
* by the application note.
*/
COMMAND_HANDLER(kinetis_mdm_mass_erase)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_ERROR("Cannot perform mass erase with a high-level adapter");
return ERROR_FAIL;
}
int retval;
/*
* ... Power on the processor, or if power has already been
* applied, assert the RESET pin to reset the processor. For
* devices that do not have a RESET pin, write the System
* Reset Request bit in the MDM-AP control register after
* establishing communication...
*/
/* assert SRST if configured */
bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
if (has_srst)
adapter_assert_reset();
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
if (retval != ERROR_OK && !has_srst) {
LOG_ERROR("MDM: failed to assert reset");
goto deassert_reset_and_exit;
}
/*
* ... Read the MDM-AP status register repeatedly and wait for
* stable conditions suitable for mass erase:
* - mass erase is enabled
* - flash is ready
* - reset is finished
*
* Mass erase is started as soon as all conditions are met in 32
* subsequent status reads.
*
* In case of not stable conditions (RESET/WDOG loop in secured device)
* the user is asked for manual pressing of RESET button
* as a last resort.
*/
int cnt_mass_erase_disabled = 0;
int cnt_ready = 0;
int64_t ms_start = timeval_ms();
bool man_reset_requested = false;
do {
uint32_t stat = 0;
int64_t ms_elapsed = timeval_ms() - ms_start;
if (!man_reset_requested && ms_elapsed > 100) {
LOG_INFO("MDM: Press RESET button now if possible.");
man_reset_requested = true;
}
if (ms_elapsed > 3000) {
LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
goto deassert_reset_and_exit;
}
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
if (retval != ERROR_OK) {
cnt_ready = 0;
continue;
}
if (!(stat & MDM_STAT_FMEEN)) {
cnt_ready = 0;
cnt_mass_erase_disabled++;
if (cnt_mass_erase_disabled > 10) {
LOG_ERROR("MDM: mass erase is disabled");
goto deassert_reset_and_exit;
}
continue;
}
if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
cnt_ready++;
else
cnt_ready = 0;
} while (cnt_ready < 32);
/*
* ... Write the MDM-AP control register to set the Flash Mass
* Erase in Progress bit. This will start the mass erase
* process...
*/
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to start mass erase");
goto deassert_reset_and_exit;
}
/*
* ... Read the MDM-AP control register until the Flash Mass
* Erase in Progress bit clears...
* Data sheed defines erase time <3.6 sec/512kB flash block.
* The biggest device has 4 pflash blocks => timeout 16 sec.
*/
retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: mass erase timeout");
goto deassert_reset_and_exit;
}
target_poll(target);
/* enable polling in case kinetis_check_flash_security_status disabled it */
jtag_poll_set_enabled(true);
alive_sleep(100);
target->reset_halt = true;
target->type->assert_reset(target);
/*
* ... Negate the RESET signal or clear the System Reset Request
* bit in the MDM-AP control register.
*/
retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (retval != ERROR_OK)
LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
target->type->deassert_reset(target);
return retval;
deassert_reset_and_exit:
kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
if (has_srst)
adapter_deassert_reset();
return retval;
}
static const uint32_t kinetis_known_mdm_ids[] = {
0x001C0000, /* Kinetis-K Series */
0x001C0020, /* Kinetis-L/M/V/E Series */
};
/*
* This function implements the procedure to connect to
* SWD/JTAG on Kinetis K and L series of devices as it is described in
* AN4835 "Production Flash Programming Best Practices for Kinetis K-
* and L-series MCUs" Section 4.1.1
*/
COMMAND_HANDLER(kinetis_check_flash_security_status)
{
struct target *target = get_current_target(CMD_CTX);
struct cortex_m_common *cortex_m = target_to_cm(target);
struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
if (!dap) {
LOG_WARNING("Cannot check flash security status with a high-level adapter");
return ERROR_OK;
}
if (!dap->ops)
return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
uint32_t val;
int retval;
/*
* ... The MDM-AP ID register can be read to verify that the
* connection is working correctly...
*/
retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read ID register");
return ERROR_OK;
}
if (val == 0)
return ERROR_OK; /* dap not yet initialised */
bool found = false;
for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
if (val == kinetis_known_mdm_ids[i]) {
found = true;
break;
}
}
if (!found)
LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
/*
* ... Read the System Security bit to determine if security is enabled.
* If System Security = 0, then proceed. If System Security = 1, then
* communication with the internals of the processor, including the
* flash, will not be possible without issuing a mass erase command or
* unsecuring the part through other means (backdoor key unlock)...
*/
retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
if (retval != ERROR_OK) {
LOG_ERROR("MDM: failed to read MDM_REG_STAT");
return ERROR_OK;
}
/*
* System Security bit is also active for short time during reset.
* If a MCU has blank flash and runs in RESET/WDOG loop,
* System Security bit is active most of time!
* We should observe Flash Ready bit and read status several times
* to avoid false detection of secured MCU
*/
int secured_score = 0, flash_not_ready_score = 0;
if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
uint32_t stats[32];
int i;
for (i = 0; i < 32; i++) {
stats[i] = MDM_STAT_FREADY;
dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
}
retval = dap_run(dap);
if (retval != ERROR_OK) {
LOG_DEBUG("MDM: dap_run failed when validating secured state");
return ERROR_OK;
}
for (i = 0; i < 32; i++) {
if (stats[i] & MDM_STAT_SYSSEC)
secured_score++;
if (!(stats[i] & MDM_STAT_FREADY))
flash_not_ready_score++;
}
}
if (flash_not_ready_score <= 8 && secured_score > 24) {
jtag_poll_set_enabled(false);
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
LOG_WARNING("**** ****");
LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
LOG_WARNING("**** interface will NOT work. In order to restore its ****");
LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
LOG_WARNING("**** ****");
LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
} else if (flash_not_ready_score > 24) {
jtag_poll_set_enabled(false);
LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
LOG_WARNING("**** and configured, use 'reset halt' ****");
LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
} else {
LOG_INFO("MDM: Chip is unsecured. Continuing.");
jtag_poll_set_enabled(true);
}
return ERROR_OK;
}
FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
{
struct kinetis_flash_bank *bank_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_INFO("add flash_bank kinetis %s", bank->name);
bank_info = malloc(sizeof(struct kinetis_flash_bank));
memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
bank->driver_priv = bank_info;
return ERROR_OK;
}
/* Disable the watchdog on Kinetis devices */
int kinetis_disable_wdog(struct target *target, uint32_t sim_sdid)
{
struct working_area *wdog_algorithm;
struct armv7m_algorithm armv7m_info;
uint16_t wdog;
int retval;
static const uint8_t kinetis_unlock_wdog_code[] = {
#include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
};
/* Decide whether the connected device needs watchdog disabling.
* Disable for all Kx and KVx devices, return if it is a KLx */
if ((sim_sdid & KINETIS_SDID_SERIESID_MASK) == KINETIS_SDID_SERIESID_KL)
return ERROR_OK;
/* The connected device requires watchdog disabling. */
retval = target_read_u16(target, WDOG_STCTRH, &wdog);
if (retval != ERROR_OK)
return retval;
if ((wdog & 0x1) == 0) {
/* watchdog already disabled */
return ERROR_OK;
}
LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%x)", wdog);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = target_alloc_working_area(target, sizeof(kinetis_unlock_wdog_code), &wdog_algorithm);
if (retval != ERROR_OK)
return retval;
retval = target_write_buffer(target, wdog_algorithm->address,
sizeof(kinetis_unlock_wdog_code), (uint8_t *)kinetis_unlock_wdog_code);
if (retval != ERROR_OK) {
target_free_working_area(target, wdog_algorithm);
return retval;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
retval = target_run_algorithm(target, 0, NULL, 0, NULL, wdog_algorithm->address,
wdog_algorithm->address + (sizeof(kinetis_unlock_wdog_code) - 2),
10000, &armv7m_info);
if (retval != ERROR_OK)
LOG_ERROR("error executing kinetis wdog unlock algorithm");
retval = target_read_u16(target, WDOG_STCTRH, &wdog);
if (retval != ERROR_OK)
return retval;
LOG_INFO("WDOG_STCTRLH = 0x%x", wdog);
target_free_working_area(target, wdog_algorithm);
return retval;
}
COMMAND_HANDLER(kinetis_disable_wdog_handler)
{
int result;
uint32_t sim_sdid;
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC > 0)
return ERROR_COMMAND_SYNTAX_ERROR;
result = target_read_u32(target, SIM_SDID, &sim_sdid);
if (result != ERROR_OK) {
LOG_ERROR("Failed to read SIMSDID");
return result;
}
result = kinetis_disable_wdog(target, sim_sdid);
return result;
}
static int kinetis_ftfx_decode_error(uint8_t fstat)
{
if (fstat & 0x20) {
LOG_ERROR("Flash operation failed, illegal command");
return ERROR_FLASH_OPER_UNSUPPORTED;
} else if (fstat & 0x10)
LOG_ERROR("Flash operation failed, protection violated");
else if (fstat & 0x40)
LOG_ERROR("Flash operation failed, read collision");
else if (fstat & 0x80)
return ERROR_OK;
else
LOG_ERROR("Flash operation timed out");
return ERROR_FLASH_OPERATION_FAILED;
}
static int kinetis_ftfx_prepare(struct target *target)
{
int result, i;
uint8_t fstat;
/* wait until busy */
for (i = 0; i < 50; i++) {
result = target_read_u8(target, FTFx_FSTAT, &fstat);
if (result != ERROR_OK)
return result;
if (fstat & 0x80)
break;
}
if ((fstat & 0x80) == 0) {
LOG_ERROR("Flash controller is busy");
return ERROR_FLASH_OPERATION_FAILED;
}
if (fstat != 0x80) {
/* reset error flags */
result = target_write_u8(target, FTFx_FSTAT, 0x70);
}
return result;
}
/* Kinetis Program-LongWord Microcodes */
static const uint8_t kinetis_flash_write_code[] = {
#include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
};
/* Program LongWord Block Write */
static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t wcount)
{
struct target *target = bank->target;
uint32_t buffer_size = 2048; /* Default minimum value */
struct working_area *write_algorithm;
struct working_area *source;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
uint32_t address = kinfo->prog_base + offset;
uint32_t end_address;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval;
uint8_t fstat;
/* Increase buffer_size if needed */
if (buffer_size < (target->working_area_size/2))
buffer_size = (target->working_area_size/2);
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 4;
if (buffer_size <= 256) {
/* free working area, write algorithm already allocated */
target_free_working_area(target, write_algorithm);
LOG_WARNING("No large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
buf_set_u32(reg_params[1].value, 0, 32, wcount);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT);
retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
end_address = buf_get_u32(reg_params[0].value, 0, 32);
LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
retval = target_read_u8(target, FTFx_FSTAT, &fstat);
if (retval == ERROR_OK) {
retval = kinetis_ftfx_decode_error(fstat);
/* reset error flags */
target_write_u8(target, FTFx_FSTAT, 0x70);
}
} else if (retval != ERROR_OK)
LOG_ERROR("Error executing kinetis Flash programming algorithm");
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
{
int i;
if (allow_fcf_writes) {
LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
return ERROR_FAIL;
}
if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
LOG_ERROR("No protection possible for current bank!");
return ERROR_FLASH_BANK_INVALID;
}
for (i = first; i < bank->num_prot_blocks && i <= last; i++)
bank->prot_blocks[i].is_protected = set;
LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
LOG_INFO("Do not issue 'flash info' command until protection is written,");
LOG_INFO("doing so would re-read protection status from MCU.");
return ERROR_OK;
}
static int kinetis_protect_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
int result;
int i, b;
uint32_t fprot;
if (kinfo->flash_class == FC_PFLASH) {
/* read protection register */
result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
if (result != ERROR_OK)
return result;
/* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
} else if (kinfo->flash_class == FC_FLEX_NVM) {
uint8_t fdprot;
/* read protection register */
result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
if (result != ERROR_OK)
return result;
fprot = fdprot;
} else {
LOG_ERROR("Protection checks for FlexRAM not supported");
return ERROR_FLASH_BANK_INVALID;
}
b = kinfo->protection_block;
for (i = 0; i < bank->num_prot_blocks; i++) {
if ((fprot >> b) & 1)
bank->prot_blocks[i].is_protected = 0;
else
bank->prot_blocks[i].is_protected = 1;
b++;
}
return ERROR_OK;
}
static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
{
uint32_t fprot = 0xffffffff;
uint8_t fsec = 0xfe; /* set MCU unsecure */
uint8_t fdprot = 0xff;
int i;
uint32_t pflash_bit;
uint8_t dflash_bit;
struct flash_bank *bank_iter;
struct kinetis_flash_bank *kinfo;
memset(fcf, 0xff, FCF_SIZE);
pflash_bit = 1;
dflash_bit = 1;
/* iterate over all kinetis banks */
/* current bank is bank 0, it contains FCF */
for (bank_iter = bank; bank_iter; bank_iter = bank_iter->next) {
if (bank_iter->driver != &kinetis_flash
|| bank_iter->target != bank->target)
continue;
kinetis_auto_probe(bank_iter);
kinfo = bank->driver_priv;
if (!kinfo)
continue;
if (kinfo->flash_class == FC_PFLASH) {
for (i = 0; i < bank_iter->num_prot_blocks; i++) {
if (bank_iter->prot_blocks[i].is_protected == 1)
fprot &= ~pflash_bit;
pflash_bit <<= 1;
}
} else if (kinfo->flash_class == FC_FLEX_NVM) {
for (i = 0; i < bank_iter->num_prot_blocks; i++) {
if (bank_iter->prot_blocks[i].is_protected == 1)
fdprot &= ~dflash_bit;
dflash_bit <<= 1;
}
}
}
target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
fcf[FCF_FSEC] = fsec;
fcf[FCF_FOPT] = fcf_fopt;
fcf[FCF_FDPROT] = fdprot;
return ERROR_OK;
}
static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
uint8_t *ftfx_fstat)
{
uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
fccob7, fccob6, fccob5, fccob4,
fccobb, fccoba, fccob9, fccob8};
int result;
uint8_t fstat;
int64_t ms_timeout = timeval_ms() + 250;
result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
if (result != ERROR_OK)
return result;
/* start command */
result = target_write_u8(target, FTFx_FSTAT, 0x80);
if (result != ERROR_OK)
return result;
/* wait for done */
do {
result = target_read_u8(target, FTFx_FSTAT, &fstat);
if (result != ERROR_OK)
return result;
if (fstat & 0x80)
break;
} while (timeval_ms() < ms_timeout);
if (ftfx_fstat)
*ftfx_fstat = fstat;
if ((fstat & 0xf0) != 0x80) {
LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
fstat, command[3], command[2], command[1], command[0],
command[7], command[6], command[5], command[4],
command[11], command[10], command[9], command[8]);
return kinetis_ftfx_decode_error(fstat);
}
return ERROR_OK;
}
static int kinetis_check_run_mode(struct target *target)
{
int result, i;
uint8_t pmctrl, pmstat;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
result = target_read_u8(target, SMC_PMSTAT, &pmstat);
if (result != ERROR_OK)
return result;
if (pmstat == PM_STAT_RUN)
return ERROR_OK;
if (pmstat == PM_STAT_VLPR) {
/* It is safe to switch from VLPR to RUN mode without changing clock */
LOG_INFO("Switching from VLPR to RUN mode.");
pmctrl = PM_CTRL_RUNM_RUN;
result = target_write_u8(target, SMC_PMCTRL, pmctrl);
if (result != ERROR_OK)
return result;
for (i = 100; i; i--) {
result = target_read_u8(target, SMC_PMSTAT, &pmstat);
if (result != ERROR_OK)
return result;
if (pmstat == PM_STAT_RUN)
return ERROR_OK;
}
}
LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
LOG_ERROR("Issue a 'reset init' command.");
return ERROR_TARGET_NOT_HALTED;
}
static void kinetis_invalidate_flash_cache(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
uint8_t pfb01cr_byte2 = 0xf0;
if (!(kinfo->flash_support & FS_INVALIDATE_CACHE))
return;
target_write_memory(bank->target, FMC_PFB01CR + 2, 1, 1, &pfb01cr_byte2);
return;
}
static int kinetis_erase(struct flash_bank *bank, int first, int last)
{
int result, i;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
result = kinetis_check_run_mode(bank->target);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if ((first > bank->num_sectors) || (last > bank->num_sectors))
return ERROR_FLASH_OPERATION_FAILED;
/*
* FIXME: TODO: use the 'Erase Flash Block' command if the
* requested erase is PFlash or NVM and encompasses the entire
* block. Should be quicker.
*/
for (i = first; i <= last; i++) {
/* set command and sector address */
result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, kinfo->prog_base + bank->sectors[i].offset,
0, 0, 0, 0, 0, 0, 0, 0, NULL);
if (result != ERROR_OK) {
LOG_WARNING("erase sector %d failed", i);
return ERROR_FLASH_OPERATION_FAILED;
}
bank->sectors[i].is_erased = 1;
if (bank->base == 0
&& bank->sectors[i].offset <= FCF_ADDRESS
&& bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
if (allow_fcf_writes) {
LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
} else {
uint8_t fcf_buffer[FCF_SIZE];
kinetis_fill_fcf(bank, fcf_buffer);
result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
if (result != ERROR_OK)
LOG_WARNING("Flash Configuration Field write failed");
bank->sectors[i].is_erased = 0;
}
}
}
kinetis_invalidate_flash_cache(bank);
return ERROR_OK;
}
static int kinetis_make_ram_ready(struct target *target)
{
int result;
uint8_t ftfx_fcnfg;
/* check if ram ready */
result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
if (result != ERROR_OK)
return result;
if (ftfx_fcnfg & (1 << 1))
return ERROR_OK; /* ram ready */
/* make flex ram available */
result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
0, 0, 0, 0, 0, 0, 0, 0, NULL);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
/* check again */
result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
if (result != ERROR_OK)
return result;
if (ftfx_fcnfg & (1 << 1))
return ERROR_OK; /* ram ready */
return ERROR_FLASH_OPERATION_FAILED;
}
static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result = ERROR_OK;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
uint8_t *buffer_aligned = NULL;
/*
* Kinetis uses different terms for the granularity of
* sector writes, e.g. "phrase" or "128 bits". We use
* the generic term "chunk". The largest possible
* Kinetis "chunk" is 16 bytes (128 bits).
*/
uint32_t prog_section_chunk_bytes = kinfo->sector_size >> 8;
uint32_t prog_size_bytes = kinfo->max_flash_prog_size;
while (count > 0) {
uint32_t size = prog_size_bytes - offset % prog_size_bytes;
uint32_t align_begin = offset % prog_section_chunk_bytes;
uint32_t align_end;
uint32_t size_aligned;
uint16_t chunk_count;
uint8_t ftfx_fstat;
if (size > count)
size = count;
align_end = (align_begin + size) % prog_section_chunk_bytes;
if (align_end)
align_end = prog_section_chunk_bytes - align_end;
size_aligned = align_begin + size + align_end;
chunk_count = size_aligned / prog_section_chunk_bytes;
if (size != size_aligned) {
/* aligned section: the first, the last or the only */
if (!buffer_aligned)
buffer_aligned = malloc(prog_size_bytes);
memset(buffer_aligned, 0xff, size_aligned);
memcpy(buffer_aligned + align_begin, buffer, size);
result = target_write_memory(bank->target, FLEXRAM,
4, size_aligned / 4, buffer_aligned);
LOG_DEBUG("section @ %08" PRIx32 " aligned begin %" PRIu32 ", end %" PRIu32,
bank->base + offset, align_begin, align_end);
} else
result = target_write_memory(bank->target, FLEXRAM,
4, size_aligned / 4, buffer);
LOG_DEBUG("write section @ %08" PRIx32 " with length %" PRIu32 " bytes",
bank->base + offset, size);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
break;
}
/* execute section-write command */
result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
kinfo->prog_base + offset - align_begin,
chunk_count>>8, chunk_count, 0, 0,
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_ERROR("Error writing section at %08" PRIx32, bank->base + offset);
break;
}
if (ftfx_fstat & 0x01)
LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
buffer += size;
offset += size;
count -= size;
}
free(buffer_aligned);
return result;
}
static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result, fallback = 0;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (!(kinfo->flash_support & FS_PROGRAM_SECTOR)) {
/* fallback to longword write */
fallback = 1;
LOG_WARNING("This device supports Program Longword execution only.");
} else {
result = kinetis_make_ram_ready(bank->target);
if (result != ERROR_OK) {
fallback = 1;
LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
}
}
LOG_DEBUG("flash write @08%" PRIx32, bank->base + offset);
if (fallback == 0) {
/* program section command */
kinetis_write_sections(bank, buffer, offset, count);
}
else if (kinfo->flash_support & FS_PROGRAM_LONGWORD) {
/* program longword command, not supported in FTFE */
uint8_t *new_buffer = NULL;
/* check word alignment */
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (new_buffer == NULL) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
"and padding with 0xff", old_count, count);
memset(new_buffer + old_count, 0xff, count - old_count);
buffer = memcpy(new_buffer, buffer, old_count);
}
uint32_t words_remaining = count / 4;
kinetis_disable_wdog(bank->target, kinfo->sim_sdid);
/* try using a block write */
result = kinetis_write_block(bank, buffer, offset, words_remaining);
if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single word accesses */
LOG_WARNING("couldn't use block writes, falling back to single "
"memory accesses");
while (words_remaining) {
uint8_t ftfx_fstat;
LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, kinfo->prog_base + offset,
buffer[3], buffer[2], buffer[1], buffer[0],
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_ERROR("Error writing longword at %08" PRIx32, bank->base + offset);
break;
}
if (ftfx_fstat & 0x01)
LOG_ERROR("Flash write error at %08" PRIx32, bank->base + offset);
buffer += 4;
offset += 4;
words_remaining--;
}
}
free(new_buffer);
} else {
LOG_ERROR("Flash write strategy not implemented");
return ERROR_FLASH_OPERATION_FAILED;
}
kinetis_invalidate_flash_cache(bank);
return result;
}
static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int result;
bool set_fcf = false;
int sect = 0;
result = kinetis_check_run_mode(bank->target);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if (bank->base == 0 && !allow_fcf_writes) {
if (bank->sectors[1].offset <= FCF_ADDRESS)
sect = 1; /* 1kb sector, FCF in 2nd sector */
if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
&& offset + count > bank->sectors[sect].offset)
set_fcf = true; /* write to any part of sector with FCF */
}
if (set_fcf) {
uint8_t fcf_buffer[FCF_SIZE];
uint8_t fcf_current[FCF_SIZE];
kinetis_fill_fcf(bank, fcf_buffer);
if (offset < FCF_ADDRESS) {
/* write part preceding FCF */
result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
if (result != ERROR_OK)
return result;
}
result = target_read_memory(bank->target, FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
set_fcf = false;
if (set_fcf) {
/* write FCF if differs from flash - eliminate multiple writes */
result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
if (result != ERROR_OK)
return result;
}
LOG_WARNING("Flash Configuration Field written.");
LOG_WARNING("Reset or power off the device to make settings effective.");
if (offset + count > FCF_ADDRESS + FCF_SIZE) {
uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
/* write part after FCF */
result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
}
return result;
} else
/* no FCF fiddling, normal write */
return kinetis_write_inner(bank, buffer, offset, count);
}
static int kinetis_probe(struct flash_bank *bank)
{
int result, i;
uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
uint32_t nvm_size = 0, pf_size = 0, df_size = 0, ee_size = 0;
unsigned num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0, first_nvm_bank = 0,
pflash_sector_size_bytes = 0, nvm_sector_size_bytes = 0;
struct target *target = bank->target;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
kinfo->probed = false;
result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
if (result != ERROR_OK)
return result;
if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
/* older K-series MCU */
uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
switch (mcu_type) {
case KINETIS_K_SDID_K10_M50:
case KINETIS_K_SDID_K20_M50:
/* 1kB sectors */
pflash_sector_size_bytes = 1<<10;
nvm_sector_size_bytes = 1<<10;
num_blocks = 2;
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
break;
case KINETIS_K_SDID_K10_M72:
case KINETIS_K_SDID_K20_M72:
case KINETIS_K_SDID_K30_M72:
case KINETIS_K_SDID_K30_M100:
case KINETIS_K_SDID_K40_M72:
case KINETIS_K_SDID_K40_M100:
case KINETIS_K_SDID_K50_M72:
/* 2kB sectors, 1kB FlexNVM sectors */
pflash_sector_size_bytes = 2<<10;
nvm_sector_size_bytes = 1<<10;
num_blocks = 2;
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
kinfo->max_flash_prog_size = 1<<10;
break;
case KINETIS_K_SDID_K10_M100:
case KINETIS_K_SDID_K20_M100:
case KINETIS_K_SDID_K11:
case KINETIS_K_SDID_K12:
case KINETIS_K_SDID_K21_M50:
case KINETIS_K_SDID_K22_M50:
case KINETIS_K_SDID_K51_M72:
case KINETIS_K_SDID_K53:
case KINETIS_K_SDID_K60_M100:
/* 2kB sectors */
pflash_sector_size_bytes = 2<<10;
nvm_sector_size_bytes = 2<<10;
num_blocks = 2;
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
break;
case KINETIS_K_SDID_K21_M120:
case KINETIS_K_SDID_K22_M120:
/* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
pflash_sector_size_bytes = 4<<10;
kinfo->max_flash_prog_size = 1<<10;
nvm_sector_size_bytes = 4<<10;
num_blocks = 2;
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
break;
case KINETIS_K_SDID_K10_M120:
case KINETIS_K_SDID_K20_M120:
case KINETIS_K_SDID_K60_M150:
case KINETIS_K_SDID_K70_M150:
/* 4kB sectors */
pflash_sector_size_bytes = 4<<10;
nvm_sector_size_bytes = 4<<10;
num_blocks = 4;
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
break;
default:
LOG_ERROR("Unsupported K-family FAMID");
}
} else {
/* Newer K-series or KL series MCU */
switch (kinfo->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
case KINETIS_SDID_SERIESID_K:
switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
/* K02FN64, K02FN128: FTFA, 2kB sectors */
pflash_sector_size_bytes = 2<<10;
num_blocks = 1;
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
/* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
uint32_t sopt1;
result = target_read_u32(target, SIM_SOPT1, &sopt1);
if (result != ERROR_OK)
return result;
if (((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
/* MK24FN1M */
pflash_sector_size_bytes = 4<<10;
num_blocks = 2;
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
kinfo->max_flash_prog_size = 1<<10;
break;
}
if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
|| (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
|| (kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
/* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
pflash_sector_size_bytes = 2<<10;
/* autodetect 1 or 2 blocks */
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
break;
}
LOG_ERROR("Unsupported Kinetis K22 DIEID");
break;
}
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
pflash_sector_size_bytes = 4<<10;
if ((kinfo->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
/* K24FN256 - smaller pflash with FTFA */
num_blocks = 1;
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
break;
}
/* K24FN1M without errata 7534 */
num_blocks = 2;
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
kinfo->max_flash_prog_size = 1<<10;
break;
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
/* K63FN1M0 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
/* K64FN1M0, K64FX512 */
pflash_sector_size_bytes = 4<<10;
nvm_sector_size_bytes = 4<<10;
kinfo->max_flash_prog_size = 1<<10;
num_blocks = 2;
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
break;
case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
/* K26FN2M0 */
case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
/* K66FN2M0, K66FX1M0 */
pflash_sector_size_bytes = 4<<10;
nvm_sector_size_bytes = 4<<10;
kinfo->max_flash_prog_size = 1<<10;
num_blocks = 4;
kinfo->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_INVALIDATE_CACHE;
break;
default:
LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
}
break;
case KINETIS_SDID_SERIESID_KL:
/* KL-series */
pflash_sector_size_bytes = 1<<10;
nvm_sector_size_bytes = 1<<10;
/* autodetect 1 or 2 blocks */
kinfo->flash_support = FS_PROGRAM_LONGWORD;
break;
case KINETIS_SDID_SERIESID_KV:
/* KV-series */
switch (kinfo->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
/* KV10: FTFA, 1kB sectors */
pflash_sector_size_bytes = 1<<10;
num_blocks = 1;
kinfo->flash_support = FS_PROGRAM_LONGWORD;
break;
case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
/* KV11: FTFA, 2kB sectors */
pflash_sector_size_bytes = 2<<10;
num_blocks = 1;
kinfo->flash_support = FS_PROGRAM_LONGWORD;
break;
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
/* KV30: FTFA, 2kB sectors, 1 block */
case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
/* KV31: FTFA, 2kB sectors, 2 blocks */
pflash_sector_size_bytes = 2<<10;
/* autodetect 1 or 2 blocks */
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
break;
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
/* KV4x: FTFA, 4kB sectors */
pflash_sector_size_bytes = 4<<10;
num_blocks = 1;
kinfo->flash_support = FS_PROGRAM_LONGWORD | FS_INVALIDATE_CACHE;
break;
default:
LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
}
break;
default:
LOG_ERROR("Unsupported K-series");
}
}
if (pflash_sector_size_bytes == 0) {
LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, kinfo->sim_sdid);
return ERROR_FLASH_OPER_UNSUPPORTED;
}
result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
if (result != ERROR_OK)
return result;
result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
if (result != ERROR_OK)
return result;
LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
kinfo->sim_fcfg1, kinfo->sim_fcfg2);
fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
fcfg2_pflsh = (uint8_t)((kinfo->sim_fcfg2 >> 23) & 0x01);
fcfg2_maxaddr0 = (uint8_t)((kinfo->sim_fcfg2 >> 24) & 0x7f);
fcfg2_maxaddr1 = (uint8_t)((kinfo->sim_fcfg2 >> 16) & 0x7f);
if (num_blocks == 0)
num_blocks = fcfg2_maxaddr1 ? 2 : 1;
else if (fcfg2_maxaddr1 == 0 && num_blocks >= 2) {
num_blocks = 1;
LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
} else if (fcfg2_maxaddr1 != 0 && num_blocks == 1) {
num_blocks = 2;
LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
}
/* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
if (!fcfg2_pflsh) {
switch (fcfg1_nvmsize) {
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
break;
case 0x0f:
if (pflash_sector_size_bytes >= 4<<10)
nvm_size = 512<<10;
else
/* K20_100 */
nvm_size = 256<<10;
break;
default:
nvm_size = 0;
break;
}
switch (fcfg1_eesize) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
ee_size = (16 << (10 - fcfg1_eesize));
break;
default:
ee_size = 0;
break;
}
switch (fcfg1_depart) {
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
df_size = nvm_size - (4096 << fcfg1_depart);
break;
case 0x08:
df_size = 0;
break;
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
df_size = 4096 << (fcfg1_depart & 0x7);
break;
default:
df_size = nvm_size;
break;
}
}
switch (fcfg1_pfsize) {
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
case 0x0d:
pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
break;
case 0x0f:
/* a peculiar case: Freescale states different sizes for 0xf
* K02P64M100SFARM 128 KB ... duplicate of code 0x7
* K22P121M120SF8RM 256 KB ... duplicate of code 0x9
* K22P121M120SF7RM 512 KB ... duplicate of code 0xb
* K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
* K26P169M180SF5RM 2048 KB ... the only unique value
* fcfg2_maxaddr0 seems to be the only clue to pf_size
* Checking fcfg2_maxaddr0 later in this routine is pointless then
*/
if (fcfg2_pflsh)
pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks;
else
pf_size = ((uint32_t)fcfg2_maxaddr0 << 13) * num_blocks / 2;
if (pf_size != 2048<<10)
LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", pf_size>>10);
break;
default:
pf_size = 0;
break;
}
LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
nvm_size, pf_size, ee_size, fcfg2_pflsh);
num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
first_nvm_bank = num_pflash_blocks;
num_nvm_blocks = num_blocks - num_pflash_blocks;
LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
num_blocks, num_pflash_blocks, num_nvm_blocks);
LOG_INFO("Probing flash info for bank %d", bank->bank_number);
if ((unsigned)bank->bank_number < num_pflash_blocks) {
/* pflash, banks start at address zero */
kinfo->flash_class = FC_PFLASH;
bank->size = (pf_size / num_pflash_blocks);
bank->base = 0x00000000 + bank->size * bank->bank_number;
kinfo->prog_base = bank->base;
kinfo->sector_size = pflash_sector_size_bytes;
/* pflash is divided into 32 protection areas for
* parts with more than 32K of PFlash. For parts with
* less the protection unit is set to 1024 bytes */
kinfo->protection_size = MAX(pf_size / 32, 1024);
bank->num_prot_blocks = 32 / num_pflash_blocks;
kinfo->protection_block = bank->num_prot_blocks * bank->bank_number;
} else if ((unsigned)bank->bank_number < num_blocks) {
/* nvm, banks start at address 0x10000000 */
unsigned nvm_ord = bank->bank_number - first_nvm_bank;
uint32_t limit;
kinfo->flash_class = FC_FLEX_NVM;
bank->size = (nvm_size / num_nvm_blocks);
bank->base = 0x10000000 + bank->size * nvm_ord;
kinfo->prog_base = 0x00800000 + bank->size * nvm_ord;
kinfo->sector_size = nvm_sector_size_bytes;
if (df_size == 0) {
kinfo->protection_size = 0;
} else {
for (i = df_size; ~i & 1; i >>= 1)
;
if (i == 1)
kinfo->protection_size = df_size / 8; /* data flash size = 2^^n */
else
kinfo->protection_size = nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
}
bank->num_prot_blocks = 8 / num_nvm_blocks;
kinfo->protection_block = bank->num_prot_blocks * nvm_ord;
/* EEPROM backup part of FlexNVM is not accessible, use df_size as a limit */
if (df_size > bank->size * nvm_ord)
limit = df_size - bank->size * nvm_ord;
else
limit = 0;
if (bank->size > limit) {
bank->size = limit;
LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
bank->bank_number, limit);
}
} else if ((unsigned)bank->bank_number == num_blocks) {
LOG_ERROR("FlexRAM support not yet implemented");
return ERROR_FLASH_OPER_UNSUPPORTED;
} else {
LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
bank->bank_number, num_blocks);
return ERROR_FLASH_BANK_INVALID;
}
if (bank->bank_number == 0 && ((uint32_t)fcfg2_maxaddr0 << 13) != bank->size)
LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr0);
if (fcfg2_pflsh) {
if (bank->bank_number == 1 && ((uint32_t)fcfg2_maxaddr1 << 13) != bank->size)
LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr1);
} else {
if ((unsigned)bank->bank_number == first_nvm_bank
&& ((uint32_t)fcfg2_maxaddr1 << 13) != df_size)
LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
" please report to OpenOCD mailing list", fcfg2_maxaddr1);
}
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
if (bank->prot_blocks) {
free(bank->prot_blocks);
bank->prot_blocks = NULL;
}
if (kinfo->sector_size == 0) {
LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
return ERROR_FLASH_BANK_INVALID;
}
if (kinfo->flash_support & FS_PROGRAM_SECTOR
&& kinfo->max_flash_prog_size == 0) {
kinfo->max_flash_prog_size = kinfo->sector_size;
/* Program section size is equal to sector size by default */
}
bank->num_sectors = bank->size / kinfo->sector_size;
if (bank->num_sectors > 0) {
/* FlexNVM bank can be used for EEPROM backup therefore zero sized */
bank->sectors = alloc_block_array(0, kinfo->sector_size, bank->num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
bank->prot_blocks = alloc_block_array(0, kinfo->protection_size, bank->num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
} else {
bank->num_prot_blocks = 0;
}
kinfo->probed = true;
return ERROR_OK;
}
static int kinetis_auto_probe(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (kinfo && kinfo->probed)
return ERROR_OK;
return kinetis_probe(bank);
}
static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
{
const char *bank_class_names[] = {
"(ANY)", "PFlash", "FlexNVM", "FlexRAM"
};
struct kinetis_flash_bank *kinfo = bank->driver_priv;
(void) snprintf(buf, buf_size,
"%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
bank->driver->name, bank_class_names[kinfo->flash_class],
bank->name, bank->base);
return ERROR_OK;
}
static int kinetis_blank_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
int result;
/* suprisingly blank check does not work in VLPR and HSRUN modes */
result = kinetis_check_run_mode(bank->target);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(bank->target);
if (result != ERROR_OK)
return result;
if (kinfo->flash_class == FC_PFLASH || kinfo->flash_class == FC_FLEX_NVM) {
bool block_dirty = false;
uint8_t ftfx_fstat;
if (kinfo->flash_class == FC_FLEX_NVM) {
uint8_t fcfg1_depart = (uint8_t)((kinfo->sim_fcfg1 >> 8) & 0x0f);
/* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
if (fcfg1_depart != 0xf && fcfg1_depart != 0)
block_dirty = true;
}
if (!block_dirty) {
/* check if whole bank is blank */
result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, kinfo->prog_base,
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK || (ftfx_fstat & 0x01))
block_dirty = true;
}
if (block_dirty) {
/* the whole bank is not erased, check sector-by-sector */
int i;
for (i = 0; i < bank->num_sectors; i++) {
/* normal margin */
result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
kinfo->prog_base + bank->sectors[i].offset,
1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result == ERROR_OK) {
bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
} else {
LOG_DEBUG("Ignoring errored PFlash sector blank-check");
bank->sectors[i].is_erased = -1;
}
}
} else {
/* the whole bank is erased, update all sectors */
int i;
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
}
} else {
LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_nvm_partition)
{
int result, i;
unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
bool enable;
uint8_t load_flex_ram = 1;
uint8_t ee_size_code = 0x3f;
uint8_t flex_nvm_partition_code = 0;
uint8_t ee_split = 3;
struct target *target = get_current_target(CMD_CTX);
struct flash_bank *bank;
struct kinetis_flash_bank *kinfo;
uint32_t sim_fcfg1;
if (CMD_ARGC >= 2) {
if (strcmp(CMD_ARGV[0], "dataflash") == 0)
sz_type = DF_SIZE;
else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
sz_type = EEBKP_SIZE;
par = strtoul(CMD_ARGV[1], NULL, 10);
while (par >> (log2 + 3))
log2++;
}
switch (sz_type) {
case SHOW_INFO:
result = target_read_u32(target, SIM_FCFG1, &sim_fcfg1);
if (result != ERROR_OK)
return result;
flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
switch (flex_nvm_partition_code) {
case 0:
command_print(CMD_CTX, "No EEPROM backup, data flash only");
break;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
command_print(CMD_CTX, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
break;
case 8:
command_print(CMD_CTX, "No data flash, EEPROM backup only");
break;
case 0x9:
case 0xA:
case 0xB:
case 0xC:
case 0xD:
case 0xE:
command_print(CMD_CTX, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
break;
case 0xf:
command_print(CMD_CTX, "No EEPROM backup, data flash only (DEPART not set)");
break;
default:
command_print(CMD_CTX, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
}
return ERROR_OK;
case DF_SIZE:
flex_nvm_partition_code = 0x8 | log2;
break;
case EEBKP_SIZE:
flex_nvm_partition_code = log2;
break;
}
if (CMD_ARGC == 3)
ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
else if (CMD_ARGC >= 4) {
ee1 = strtoul(CMD_ARGV[2], NULL, 10);
ee2 = strtoul(CMD_ARGV[3], NULL, 10);
}
enable = ee1 + ee2 > 0;
if (enable) {
for (log2 = 2; ; log2++) {
if (ee1 + ee2 == (16u << 10) >> log2)
break;
if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
LOG_ERROR("Unsupported EEPROM size");
return ERROR_FLASH_OPERATION_FAILED;
}
}
if (ee1 * 3 == ee2)
ee_split = 1;
else if (ee1 * 7 == ee2)
ee_split = 0;
else if (ee1 != ee2) {
LOG_ERROR("Unsupported EEPROM sizes ratio");
return ERROR_FLASH_OPERATION_FAILED;
}
ee_size_code = log2 | ee_split << 4;
}
if (CMD_ARGC >= 5)
COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
if (enable)
load_flex_ram = 0;
LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
flex_nvm_partition_code, ee_size_code);
result = kinetis_check_run_mode(target);
if (result != ERROR_OK)
return result;
/* reset error flags */
result = kinetis_ftfx_prepare(target);
if (result != ERROR_OK)
return result;
result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
ee_size_code, flex_nvm_partition_code, 0, 0,
0, 0, 0, 0, NULL);
if (result != ERROR_OK)
return result;
command_print(CMD_CTX, "FlexNVM partition set. Please reset MCU.");
for (i = 1; i < 4; i++) {
bank = get_flash_bank_by_num_noprobe(i);
if (bank == NULL)
break;
kinfo = bank->driver_priv;
if (kinfo && kinfo->flash_class == FC_FLEX_NVM)
kinfo->probed = false; /* re-probe before next use */
}
command_print(CMD_CTX, "FlexNVM banks will be re-probed to set new data flash size.");
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_fcf_source_handler)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 1) {
if (strcmp(CMD_ARGV[0], "write") == 0)
allow_fcf_writes = true;
else if (strcmp(CMD_ARGV[0], "protection") == 0)
allow_fcf_writes = false;
else
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (allow_fcf_writes) {
command_print(CMD_CTX, "Arbitrary Flash Configuration Field writes enabled.");
command_print(CMD_CTX, "Protection info writes to FCF disabled.");
LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
} else {
command_print(CMD_CTX, "Protection info writes to Flash Configuration Field enabled.");
command_print(CMD_CTX, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
}
return ERROR_OK;
}
COMMAND_HANDLER(kinetis_fopt_handler)
{
if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
if (CMD_ARGC == 1)
fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
else
command_print(CMD_CTX, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
return ERROR_OK;
}
static const struct command_registration kinetis_security_command_handlers[] = {
{
.name = "check_security",
.mode = COMMAND_EXEC,
.help = "Check status of device security lock",
.usage = "",
.handler = kinetis_check_flash_security_status,
},
{
.name = "halt",
.mode = COMMAND_EXEC,
.help = "Issue a halt via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_halt,
},
{
.name = "mass_erase",
.mode = COMMAND_EXEC,
.help = "Issue a complete flash erase via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_mass_erase,
},
{ .name = "reset",
.mode = COMMAND_EXEC,
.help = "Issue a reset via the MDM-AP",
.usage = "",
.handler = kinetis_mdm_reset,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_exec_command_handlers[] = {
{
.name = "mdm",
.mode = COMMAND_ANY,
.help = "MDM-AP command group",
.usage = "",
.chain = kinetis_security_command_handlers,
},
{
.name = "disable_wdog",
.mode = COMMAND_EXEC,
.help = "Disable the watchdog timer",
.usage = "",
.handler = kinetis_disable_wdog_handler,
},
{
.name = "nvm_partition",
.mode = COMMAND_EXEC,
.help = "Show/set data flash or EEPROM backup size in kilobytes,"
" set two EEPROM sizes in bytes and FlexRAM loading during reset",
.usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
.handler = kinetis_nvm_partition,
},
{
.name = "fcf_source",
.mode = COMMAND_EXEC,
.help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
" Mode 'protection' is safe from unwanted locking of the device.",
.usage = "['protection'|'write']",
.handler = kinetis_fcf_source_handler,
},
{
.name = "fopt",
.mode = COMMAND_EXEC,
.help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
.usage = "[num]",
.handler = kinetis_fopt_handler,
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration kinetis_command_handler[] = {
{
.name = "kinetis",
.mode = COMMAND_ANY,
.help = "Kinetis flash controller commands",
.usage = "",
.chain = kinetis_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver kinetis_flash = {
.name = "kinetis",
.commands = kinetis_command_handler,
.flash_bank_command = kinetis_flash_bank_command,
.erase = kinetis_erase,
.protect = kinetis_protect,
.write = kinetis_write,
.read = default_flash_read,
.probe = kinetis_probe,
.auto_probe = kinetis_auto_probe,
.erase_check = kinetis_blank_check,
.protect_check = kinetis_protect_check,
.info = kinetis_info,
};