openocd/src/jtag/zy1000/zy1000.c

1551 lines
34 KiB
C

/***************************************************************************
* Copyright (C) 2007-2010 by Øyvind Harboe *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
*
* The zy1000 is a standalone debugger that has a web interface and
* requires no drivers on the developer host as all communication
* is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
* DCC downloads @ 16MHz target) as it has an FPGA to hardware
* accelerate the JTAG commands, while offering *very* low latency
* between OpenOCD and the FPGA registers.
*
* The disadvantage of the zy1000 is that it has a feeble CPU compared to
* a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
* is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
*
* The zy1000 revc hardware is using an Altera Nios CPU, whereas the
* revb is using ARM7 + Xilinx.
*
* See Zylin web pages or contact Zylin for more information.
*
* The reason this code is in OpenOCD rather than OpenOCD linked with the
* ZY1000 code is that OpenOCD is the long road towards getting
* libopenocd into place. libopenocd will support both low performance,
* low latency systems(embedded) and high performance high latency
* systems(PCs).
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <pthread.h>
#include <target/embeddedice.h>
#include <jtag/minidriver.h>
#include <jtag/interface.h>
#include <time.h>
#include <helper/time_support.h>
#include <netinet/tcp.h>
#if BUILD_ECOSBOARD
#include "zy1000_version.h"
#include <cyg/hal/hal_io.h> // low level i/o
#include <cyg/hal/hal_diag.h>
#ifdef CYGPKG_HAL_NIOS2
#include <cyg/hal/io.h>
#include <cyg/firmwareutil/firmwareutil.h>
#define ZYLIN_KHZ 60000
#else
#define ZYLIN_KHZ 64000
#endif
#define ZYLIN_VERSION GIT_ZY1000_VERSION
#define ZYLIN_DATE __DATE__
#define ZYLIN_TIME __TIME__
#define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
#define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
#else
/* Assume we're connecting to a revc w/60MHz clock. */
#define ZYLIN_KHZ 60000
#endif
/* The software needs to check if it's in RCLK mode or not */
static bool zy1000_rclk = false;
static int zy1000_khz(int khz, int *jtag_speed)
{
if (khz == 0)
{
*jtag_speed = 0;
}
else
{
int speed;
/* Round speed up to nearest divisor.
*
* E.g. 16000kHz
* (64000 + 15999) / 16000 = 4
* (4 + 1) / 2 = 2
* 2 * 2 = 4
*
* 64000 / 4 = 16000
*
* E.g. 15999
* (64000 + 15998) / 15999 = 5
* (5 + 1) / 2 = 3
* 3 * 2 = 6
*
* 64000 / 6 = 10666
*
*/
speed = (ZYLIN_KHZ + (khz -1)) / khz;
speed = (speed + 1 ) / 2;
speed *= 2;
if (speed > 8190)
{
/* maximum dividend */
speed = 8190;
}
*jtag_speed = speed;
}
return ERROR_OK;
}
static int zy1000_speed_div(int speed, int *khz)
{
if (speed == 0)
{
*khz = 0;
}
else
{
*khz = ZYLIN_KHZ / speed;
}
return ERROR_OK;
}
static bool readPowerDropout(void)
{
uint32_t state;
// sample and clear power dropout
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
bool powerDropout;
powerDropout = (state & 0x80) != 0;
return powerDropout;
}
static bool readSRST(void)
{
uint32_t state;
// sample and clear SRST sensing
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
bool srstAsserted;
srstAsserted = (state & 0x40) != 0;
return srstAsserted;
}
static int zy1000_srst_asserted(int *srst_asserted)
{
*srst_asserted = readSRST();
return ERROR_OK;
}
static int zy1000_power_dropout(int *dropout)
{
*dropout = readPowerDropout();
return ERROR_OK;
}
/* Wait for SRST to assert or deassert */
static void waitSRST(bool asserted)
{
bool first = true;
long long start = 0;
long total = 0;
const char *mode = asserted ? "assert" : "deassert";
for (;;)
{
bool srstAsserted = readSRST();
if ( (asserted && srstAsserted) || (!asserted && !srstAsserted) )
{
if (total > 1)
{
LOG_USER("SRST took %dms to %s", (int)total, mode);
}
break;
}
if (first)
{
first = false;
start = timeval_ms();
}
total = timeval_ms() - start;
keep_alive();
if (total > 5000)
{
LOG_ERROR("SRST took too long to %s: %dms", mode, (int)total);
break;
}
}
}
void zy1000_reset(int trst, int srst)
{
LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
/* flush the JTAG FIFO. Not flushing the queue before messing with
* reset has such interesting bugs as causing hard to reproduce
* RCLK bugs as RCLK will stop responding when TRST is asserted
*/
waitIdle();
if (!srst)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
}
else
{
/* Danger!!! if clk != 0 when in
* idle in TAP_IDLE, reset halt on str912 will fail.
*/
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
waitSRST(true);
}
if (!trst)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
}
else
{
/* assert reset */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
}
if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
{
/* we're now in the RESET state until trst is deasserted */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
} else
{
/* We'll get RCLK failure when we assert TRST, so clear any false positives here */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
}
/* wait for srst to float back up */
if ((!srst && ((jtag_get_reset_config() & RESET_TRST_PULLS_SRST) == 0))||
(!srst && !trst && (jtag_get_reset_config() & RESET_TRST_PULLS_SRST)))
{
waitSRST(false);
}
}
int zy1000_speed(int speed)
{
/* flush JTAG master FIFO before setting speed */
waitIdle();
zy1000_rclk = false;
if (speed == 0)
{
/*0 means RCLK*/
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
zy1000_rclk = true;
LOG_DEBUG("jtag_speed using RCLK");
}
else
{
if (speed > 8190 || speed < 2)
{
LOG_USER("valid ZY1000 jtag_speed=[8190,2]. With divisor is %dkHz / even values between 8190-2, i.e. min %dHz, max %dMHz",
ZYLIN_KHZ, (ZYLIN_KHZ * 1000) / 8190, ZYLIN_KHZ / (2 * 1000));
return ERROR_INVALID_ARGUMENTS;
}
int khz;
speed &= ~1;
zy1000_speed_div(speed, &khz);
LOG_USER("jtag_speed %d => JTAG clk=%d kHz", speed, khz);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed);
}
return ERROR_OK;
}
static bool savePower;
static void setPower(bool power)
{
savePower = power;
if (power)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
} else
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
}
}
COMMAND_HANDLER(handle_power_command)
{
switch (CMD_ARGC)
{
case 1: {
bool enable;
COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
setPower(enable);
// fall through
}
case 0:
LOG_INFO("Target power %s", savePower ? "on" : "off");
break;
default:
return ERROR_INVALID_ARGUMENTS;
}
return ERROR_OK;
}
#if !BUILD_ZY1000_MASTER
static char *tcp_server = "notspecified";
static int jim_zy1000_server(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 2)
return JIM_ERR;
tcp_server = strdup(Jim_GetString(argv[1], NULL));
return JIM_OK;
}
#endif
#if BUILD_ECOSBOARD
/* Give TELNET a way to find out what version this is */
static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if ((argc < 1) || (argc > 3))
return JIM_ERR;
const char *version_str = NULL;
if (argc == 1)
{
version_str = ZYLIN_OPENOCD_VERSION;
} else
{
const char *str = Jim_GetString(argv[1], NULL);
const char *str2 = NULL;
if (argc > 2)
str2 = Jim_GetString(argv[2], NULL);
if (strcmp("openocd", str) == 0)
{
version_str = ZYLIN_OPENOCD;
}
else if (strcmp("zy1000", str) == 0)
{
version_str = ZYLIN_VERSION;
}
else if (strcmp("date", str) == 0)
{
version_str = ZYLIN_DATE;
}
else if (strcmp("time", str) == 0)
{
version_str = ZYLIN_TIME;
}
else if (strcmp("pcb", str) == 0)
{
#ifdef CYGPKG_HAL_NIOS2
version_str="c";
#else
version_str="b";
#endif
}
#ifdef CYGPKG_HAL_NIOS2
else if (strcmp("fpga", str) == 0)
{
/* return a list of 32 bit integers to describe the expected
* and actual FPGA
*/
static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
uint32_t id, timestamp;
HAL_READ_UINT32(SYSID_BASE, id);
HAL_READ_UINT32(SYSID_BASE+4, timestamp);
sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
version_str = fpga_id;
if ((argc>2) && (strcmp("time", str2) == 0))
{
time_t last_mod = timestamp;
char * t = ctime (&last_mod) ;
t[strlen(t)-1] = 0;
version_str = t;
}
}
#endif
else
{
return JIM_ERR;
}
}
Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
return JIM_OK;
}
#endif
#ifdef CYGPKG_HAL_NIOS2
struct info_forward
{
void *data;
struct cyg_upgrade_info *upgraded_file;
};
static void report_info(void *data, const char * format, va_list args)
{
char *s = alloc_vprintf(format, args);
LOG_USER_N("%s", s);
free(s);
}
struct cyg_upgrade_info firmware_info =
{
(uint8_t *)0x84000000,
"/ram/firmware.phi",
"Firmware",
0x0300000,
0x1f00000 -
0x0300000,
"ZylinNiosFirmware\n",
report_info,
};
// File written to /ram/firmware.phi before arriving at this fn
static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
if (argc != 1)
return JIM_ERR;
if (!cyg_firmware_upgrade(NULL, firmware_info))
return JIM_ERR;
return JIM_OK;
}
#endif
static int
zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
int argc,
Jim_Obj * const *argv)
{
if (argc != 1)
{
Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
return JIM_ERR;
}
bool dropout = readPowerDropout();
Jim_SetResult(interp, Jim_NewIntObj(interp, dropout));
return JIM_OK;
}
int zy1000_quit(void)
{
return ERROR_OK;
}
int interface_jtag_execute_queue(void)
{
uint32_t empty;
waitIdle();
/* We must make sure to write data read back to memory location before we return
* from this fn
*/
zy1000_flush_readqueue();
/* and handle any callbacks... */
zy1000_flush_callbackqueue();
if (zy1000_rclk)
{
/* Only check for errors when using RCLK to speed up
* jtag over TCP/IP
*/
ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
/* clear JTAG error register */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
if ((empty&0x400) != 0)
{
LOG_WARNING("RCLK timeout");
/* the error is informative only as we don't want to break the firmware if there
* is a false positive.
*/
// return ERROR_FAIL;
}
}
return ERROR_OK;
}
static void writeShiftValue(uint8_t *data, int bits);
// here we shuffle N bits out/in
static __inline void scanBits(const uint8_t *out_value, uint8_t *in_value, int num_bits, bool pause_now, tap_state_t shiftState, tap_state_t end_state)
{
tap_state_t pause_state = shiftState;
for (int j = 0; j < num_bits; j += 32)
{
int k = num_bits - j;
if (k > 32)
{
k = 32;
/* we have more to shift out */
} else if (pause_now)
{
/* this was the last to shift out this time */
pause_state = end_state;
}
// we have (num_bits + 7)/8 bytes of bits to toggle out.
// bits are pushed out LSB to MSB
uint32_t value;
value = 0;
if (out_value != NULL)
{
for (int l = 0; l < k; l += 8)
{
value|=out_value[(j + l)/8]<<l;
}
}
/* mask away unused bits for easier debugging */
if (k < 32)
{
value&=~(((uint32_t)0xffffffff) << k);
} else
{
/* Shifting by >= 32 is not defined by the C standard
* and will in fact shift by &0x1f bits on nios */
}
shiftValueInner(shiftState, pause_state, k, value);
if (in_value != NULL)
{
writeShiftValue(in_value + (j/8), k);
}
}
}
static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, tap_state_t end_state)
{
for (int i = 0; i < num_fields; i++)
{
scanBits(fields[i].out_value,
fields[i].in_value,
fields[i].num_bits,
(i == num_fields-1),
shiftState,
end_state);
}
}
int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
{
int scan_size = 0;
struct jtag_tap *tap, *nextTap;
tap_state_t pause_state = TAP_IRSHIFT;
for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
{
nextTap = jtag_tap_next_enabled(tap);
if (nextTap==NULL)
{
pause_state = state;
}
scan_size = tap->ir_length;
/* search the list */
if (tap == active)
{
scanFields(1, fields, TAP_IRSHIFT, pause_state);
/* update device information */
buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
tap->bypass = 0;
} else
{
/* if a device isn't listed, set it to BYPASS */
assert(scan_size <= 32);
shiftValueInner(TAP_IRSHIFT, pause_state, scan_size, 0xffffffff);
/* Optimization code will check what the cur_instr is set to, so
* we must set it to bypass value.
*/
buf_set_ones(tap->cur_instr, tap->ir_length);
tap->bypass = 1;
}
}
return ERROR_OK;
}
int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
{
scanBits(out_bits, in_bits, num_bits, true, TAP_IRSHIFT, state);
return ERROR_OK;
}
int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
{
struct jtag_tap *tap, *nextTap;
tap_state_t pause_state = TAP_DRSHIFT;
for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
{
nextTap = jtag_tap_next_enabled(tap);
if (nextTap==NULL)
{
pause_state = state;
}
/* Find a range of fields to write to this tap */
if (tap == active)
{
assert(!tap->bypass);
scanFields(num_fields, fields, TAP_DRSHIFT, pause_state);
} else
{
/* Shift out a 0 for disabled tap's */
assert(tap->bypass);
shiftValueInner(TAP_DRSHIFT, pause_state, 1, 0);
}
}
return ERROR_OK;
}
int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
{
scanBits(out_bits, in_bits, num_bits, true, TAP_DRSHIFT, state);
return ERROR_OK;
}
int interface_jtag_add_tlr()
{
setCurrentState(TAP_RESET);
return ERROR_OK;
}
int interface_jtag_add_reset(int req_trst, int req_srst)
{
zy1000_reset(req_trst, req_srst);
return ERROR_OK;
}
static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
{
/* num_cycles can be 0 */
setCurrentState(clockstate);
/* execute num_cycles, 32 at the time. */
int i;
for (i = 0; i < num_cycles; i += 32)
{
int num;
num = 32;
if (num_cycles-i < num)
{
num = num_cycles-i;
}
shiftValueInner(clockstate, clockstate, num, 0);
}
#if !TEST_MANUAL()
/* finish in end_state */
setCurrentState(state);
#else
tap_state_t t = TAP_IDLE;
/* test manual drive code on any target */
int tms;
uint8_t tms_scan = tap_get_tms_path(t, state);
int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
for (i = 0; i < tms_count; i++)
{
tms = (tms_scan >> i) & 1;
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
#endif
return ERROR_OK;
}
int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
{
return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
}
int interface_jtag_add_clocks(int num_cycles)
{
return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
}
int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
{
/*wait for the fifo to be empty*/
waitIdle();
for (unsigned i = 0; i < num_bits; i++)
{
int tms;
if (((seq[i/8] >> (i % 8)) & 1) == 0)
{
tms = 0;
}
else
{
tms = 1;
}
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
}
waitIdle();
if (state != TAP_INVALID)
{
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
} else
{
/* this would be normal if we are switching to SWD mode */
}
return ERROR_OK;
}
int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
{
int state_count;
int tms = 0;
state_count = 0;
tap_state_t cur_state = cmd_queue_cur_state;
uint8_t seq[16];
memset(seq, 0, sizeof(seq));
assert(num_states < (int)((sizeof(seq) * 8)));
while (num_states)
{
if (tap_state_transition(cur_state, false) == path[state_count])
{
tms = 0;
}
else if (tap_state_transition(cur_state, true) == path[state_count])
{
tms = 1;
}
else
{
LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
exit(-1);
}
seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
cur_state = path[state_count];
state_count++;
num_states--;
}
return interface_add_tms_seq(state_count, seq, cur_state);
}
static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
{
/* bypass bits before and after */
int pre_bits = 0;
int post_bits = 0;
bool found = false;
struct jtag_tap *cur_tap, *nextTap;
for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
{
nextTap = jtag_tap_next_enabled(cur_tap);
if (cur_tap == tap)
{
found = true;
} else
{
if (found)
{
post_bits++;
} else
{
pre_bits++;
}
}
}
*pre = pre_bits;
*post = post_bits;
}
/*
static const int embeddedice_num_bits[] = {32, 6};
uint32_t values[2];
values[0] = value;
values[1] = (1 << 5) | reg_addr;
jtag_add_dr_out(tap,
2,
embeddedice_num_bits,
values,
TAP_IDLE);
*/
void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, const uint8_t *buffer, int little, int count)
{
#if 0
int i;
for (i = 0; i < count; i++)
{
embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
#else
int pre_bits;
int post_bits;
jtag_pre_post_bits(tap, &pre_bits, &post_bits);
if ((pre_bits > 32) || (post_bits + 6 > 32))
{
int i;
for (i = 0; i < count; i++)
{
embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
buffer += 4;
}
} else
{
int i;
for (i = 0; i < count; i++)
{
/* Fewer pokes means we get to use the FIFO more efficiently */
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
/* Danger! here we need to exit into the TAP_IDLE state to make
* DCC pick up this value.
*/
shiftValueInner(TAP_DRSHIFT, TAP_IDLE, 6 + post_bits, (reg_addr | (1 << 5)));
buffer += 4;
}
}
#endif
}
int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, const uint32_t * data, size_t count)
{
/* bypass bits before and after */
int pre_bits;
int post_bits;
jtag_pre_post_bits(tap, &pre_bits, &post_bits);
post_bits+=2;
if ((pre_bits > 32) || (post_bits > 32))
{
int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap *, uint32_t, const uint32_t *, size_t);
return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
} else
{
static const int bits[] = {32, 2};
uint32_t values[] = {0, 0};
/* FIX!!!!!! the target_write_memory() API started this nasty problem
* with unaligned uint32_t * pointers... */
const uint8_t *t = (const uint8_t *)data;
while (--count > 0)
{
#if 1
/* Danger! This code doesn't update cmd_queue_cur_state, so
* invoking jtag_add_pathmove() before jtag_add_dr_out() after
* this loop would fail!
*/
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
uint32_t value;
value = *t++;
value |= (*t++<<8);
value |= (*t++<<16);
value |= (*t++<<24);
shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
/* minimum 2 bits */
shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
/* copy & paste from arm11_dbgtap.c */
//TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
/* KLUDGE! we have to flush the fifo or the Nios CPU locks up.
* This is probably a bug in the Avalon bus(cross clocking bridge?)
* or in the jtag registers module.
*/
waitIdle();
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
/* we don't have to wait for the queue to empty here */
ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
waitIdle();
#else
static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
{
TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
};
values[0] = *t++;
values[0] |= (*t++<<8);
values[0] |= (*t++<<16);
values[0] |= (*t++<<24);
jtag_add_dr_out(tap,
2,
bits,
values,
TAP_IDLE);
jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
#endif
}
values[0] = *t++;
values[0] |= (*t++<<8);
values[0] |= (*t++<<16);
values[0] |= (*t++<<24);
/* This will happen on the last iteration updating cmd_queue_cur_state
* so we don't have to track it during the common code path
*/
jtag_add_dr_out(tap,
2,
bits,
values,
TAP_IDLE);
return jtag_execute_queue();
}
}
static const struct command_registration zy1000_commands[] = {
{
.name = "power",
.handler = handle_power_command,
.mode = COMMAND_ANY,
.help = "Turn power switch to target on/off. "
"With no arguments, prints status.",
.usage = "('on'|'off)",
},
#if BUILD_ZY1000_MASTER
#if BUILD_ECOSBOARD
{
.name = "zy1000_version",
.mode = COMMAND_ANY,
.jim_handler = jim_zy1000_version,
.help = "Print version info for zy1000.",
.usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
},
#endif
#else
{
.name = "zy1000_server",
.mode = COMMAND_ANY,
.jim_handler = jim_zy1000_server,
.help = "Tcpip address for ZY1000 server.",
.usage = "address",
},
#endif
{
.name = "powerstatus",
.mode = COMMAND_ANY,
.jim_handler = zylinjtag_Jim_Command_powerstatus,
.help = "Returns power status of target",
},
#ifdef CYGPKG_HAL_NIOS2
{
.name = "updatezy1000firmware",
.mode = COMMAND_ANY,
.jim_handler = jim_zy1000_writefirmware,
.help = "writes firmware to flash",
/* .usage = "some_string", */
},
#endif
COMMAND_REGISTRATION_DONE
};
#if !BUILD_ZY1000_MASTER
static int tcp_ip = -1;
/* Write large packets if we can */
static size_t out_pos;
static uint8_t out_buffer[16384];
static size_t in_pos;
static size_t in_write;
static uint8_t in_buffer[16384];
static bool flush_writes(void)
{
bool ok = (write(tcp_ip, out_buffer, out_pos) == (int)out_pos);
out_pos = 0;
return ok;
}
static bool writeLong(uint32_t l)
{
int i;
for (i = 0; i < 4; i++)
{
uint8_t c = (l >> (i*8))&0xff;
out_buffer[out_pos++] = c;
if (out_pos >= sizeof(out_buffer))
{
if (!flush_writes())
{
return false;
}
}
}
return true;
}
static bool readLong(uint32_t *out_data)
{
uint32_t data = 0;
int i;
for (i = 0; i < 4; i++)
{
uint8_t c;
if (in_pos == in_write)
{
/* If we have some data that we can send, send them before
* we wait for more data
*/
if (out_pos > 0)
{
if (!flush_writes())
{
return false;
}
}
/* read more */
int t;
t = read(tcp_ip, in_buffer, sizeof(in_buffer));
if (t < 1)
{
return false;
}
in_write = (size_t) t;
in_pos = 0;
}
c = in_buffer[in_pos++];
data |= (c << (i*8));
}
*out_data = data;
return true;
}
enum ZY1000_CMD
{
ZY1000_CMD_POKE = 0x0,
ZY1000_CMD_PEEK = 0x8,
ZY1000_CMD_SLEEP = 0x1,
ZY1000_CMD_WAITIDLE = 2
};
#include <sys/socket.h> /* for socket(), connect(), send(), and recv() */
#include <arpa/inet.h> /* for sockaddr_in and inet_addr() */
/* We initialize this late since we need to know the server address
* first.
*/
static void tcpip_open(void)
{
if (tcp_ip >= 0)
return;
struct sockaddr_in echoServAddr; /* Echo server address */
/* Create a reliable, stream socket using TCP */
if ((tcp_ip = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
{
fprintf(stderr, "Failed to connect to zy1000 server\n");
exit(-1);
}
/* Construct the server address structure */
memset(&echoServAddr, 0, sizeof(echoServAddr)); /* Zero out structure */
echoServAddr.sin_family = AF_INET; /* Internet address family */
echoServAddr.sin_addr.s_addr = inet_addr(tcp_server); /* Server IP address */
echoServAddr.sin_port = htons(7777); /* Server port */
/* Establish the connection to the echo server */
if (connect(tcp_ip, (struct sockaddr *) &echoServAddr, sizeof(echoServAddr)) < 0)
{
fprintf(stderr, "Failed to connect to zy1000 server\n");
exit(-1);
}
int flag = 1;
setsockopt(tcp_ip, /* socket affected */
IPPROTO_TCP, /* set option at TCP level */
TCP_NODELAY, /* name of option */
(char *)&flag, /* the cast is historical cruft */
sizeof(int)); /* length of option value */
}
/* send a poke */
void zy1000_tcpout(uint32_t address, uint32_t data)
{
tcpip_open();
if (!writeLong((ZY1000_CMD_POKE << 24) | address)||
!writeLong(data))
{
fprintf(stderr, "Could not write to zy1000 server\n");
exit(-1);
}
}
/* By sending the wait to the server, we avoid a readback
* of status. Radically improves performance for this operation
* with long ping times.
*/
void waitIdle(void)
{
tcpip_open();
if (!writeLong((ZY1000_CMD_WAITIDLE << 24)))
{
fprintf(stderr, "Could not write to zy1000 server\n");
exit(-1);
}
}
uint32_t zy1000_tcpin(uint32_t address)
{
tcpip_open();
zy1000_flush_readqueue();
uint32_t data;
if (!writeLong((ZY1000_CMD_PEEK << 24) | address)||
!readLong(&data))
{
fprintf(stderr, "Could not read from zy1000 server\n");
exit(-1);
}
return data;
}
int interface_jtag_add_sleep(uint32_t us)
{
tcpip_open();
if (!writeLong((ZY1000_CMD_SLEEP << 24))||
!writeLong(us))
{
fprintf(stderr, "Could not read from zy1000 server\n");
exit(-1);
}
return ERROR_OK;
}
/* queue a readback */
#define readqueue_size 16384
static struct
{
uint8_t *dest;
int bits;
} readqueue[readqueue_size];
static int readqueue_pos = 0;
/* flush the readqueue, this means reading any data that
* we're expecting and store them into the final position
*/
void zy1000_flush_readqueue(void)
{
if (readqueue_pos == 0)
{
/* simply debugging by allowing easy breakpoints when there
* is something to do. */
return;
}
int i;
tcpip_open();
for (i = 0; i < readqueue_pos; i++)
{
uint32_t value;
if (!readLong(&value))
{
fprintf(stderr, "Could not read from zy1000 server\n");
exit(-1);
}
uint8_t *in_value = readqueue[i].dest;
int k = readqueue[i].bits;
// we're shifting in data to MSB, shift data to be aligned for returning the value
value >>= 32-k;
for (int l = 0; l < k; l += 8)
{
in_value[l/8]=(value >> l)&0xff;
}
}
readqueue_pos = 0;
}
/* By queuing the callback's we avoid flushing the
read queue until jtag_execute_queue(). This can
reduce latency dramatically for cases where
callbacks are used extensively.
*/
#define callbackqueue_size 128
static struct callbackentry
{
jtag_callback_t callback;
jtag_callback_data_t data0;
jtag_callback_data_t data1;
jtag_callback_data_t data2;
jtag_callback_data_t data3;
} callbackqueue[callbackqueue_size];
static int callbackqueue_pos = 0;
void zy1000_jtag_add_callback4(jtag_callback_t callback, jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
{
if (callbackqueue_pos >= callbackqueue_size)
{
zy1000_flush_callbackqueue();
}
callbackqueue[callbackqueue_pos].callback = callback;
callbackqueue[callbackqueue_pos].data0 = data0;
callbackqueue[callbackqueue_pos].data1 = data1;
callbackqueue[callbackqueue_pos].data2 = data2;
callbackqueue[callbackqueue_pos].data3 = data3;
callbackqueue_pos++;
/* KLUDGE!
* make callbacks synchronous for now as minidriver requires callback
* to be synchronous.
*
* We can get away with making read and writes asynchronous so we
* don't completely kill performance.
*/
zy1000_flush_callbackqueue();
}
static int zy1000_jtag_convert_to_callback4(jtag_callback_data_t data0, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3)
{
((jtag_callback1_t)data1)(data0);
return ERROR_OK;
}
void zy1000_jtag_add_callback(jtag_callback1_t callback, jtag_callback_data_t data0)
{
zy1000_jtag_add_callback4(zy1000_jtag_convert_to_callback4, data0, (jtag_callback_data_t)callback, 0, 0);
}
void zy1000_flush_callbackqueue(void)
{
/* we have to flush the read queue so we have access to
the data the callbacks will use
*/
zy1000_flush_readqueue();
int i;
for (i = 0; i < callbackqueue_pos; i++)
{
struct callbackentry *entry = &callbackqueue[i];
jtag_set_error(entry->callback(entry->data0, entry->data1, entry->data2, entry->data3));
}
callbackqueue_pos = 0;
}
static void writeShiftValue(uint8_t *data, int bits)
{
waitIdle();
if (!writeLong((ZY1000_CMD_PEEK << 24) | (ZY1000_JTAG_BASE + 0xc)))
{
fprintf(stderr, "Could not read from zy1000 server\n");
exit(-1);
}
if (readqueue_pos >= readqueue_size)
{
zy1000_flush_readqueue();
}
readqueue[readqueue_pos].dest = data;
readqueue[readqueue_pos].bits = bits;
readqueue_pos++;
/* KLUDGE!!! minidriver requires readqueue to be synchronous */
zy1000_flush_readqueue();
}
#else
static void writeShiftValue(uint8_t *data, int bits)
{
uint32_t value;
waitIdle();
ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
VERBOSE(LOG_INFO("getShiftValue %08x", value));
// data in, LSB to MSB
// we're shifting in data to MSB, shift data to be aligned for returning the value
value >>= 32 - bits;
for (int l = 0; l < bits; l += 8)
{
data[l/8]=(value >> l)&0xff;
}
}
#endif
#if BUILD_ZY1000_MASTER
#if BUILD_ECOSBOARD
static char watchdog_stack[2048];
static cyg_thread watchdog_thread_object;
static cyg_handle_t watchdog_thread_handle;
#endif
#ifdef WATCHDOG_BASE
/* If we connect to port 8888 we must send a char every 10s or the board resets itself */
static void watchdog_server(cyg_addrword_t data)
{
int so_reuseaddr_option = 1;
int fd;
if ((fd = socket(AF_INET, SOCK_STREAM, 0)) == -1)
{
LOG_ERROR("error creating socket: %s", strerror(errno));
exit(-1);
}
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (void*) &so_reuseaddr_option,
sizeof(int));
struct sockaddr_in sin;
unsigned int address_size;
address_size = sizeof(sin);
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR_ANY;
sin.sin_port = htons(8888);
if (bind(fd, (struct sockaddr *) &sin, sizeof(sin)) == -1)
{
LOG_ERROR("couldn't bind to socket: %s", strerror(errno));
exit(-1);
}
if (listen(fd, 1) == -1)
{
LOG_ERROR("couldn't listen on socket: %s", strerror(errno));
exit(-1);
}
for (;;)
{
int watchdog_ip = accept(fd, (struct sockaddr *) &sin, &address_size);
/* Start watchdog, must be reset every 10 seconds. */
HAL_WRITE_UINT32(WATCHDOG_BASE + 4, 4);
if (watchdog_ip < 0)
{
LOG_ERROR("couldn't open watchdog socket: %s", strerror(errno));
exit(-1);
}
int flag = 1;
setsockopt(watchdog_ip, /* socket affected */
IPPROTO_TCP, /* set option at TCP level */
TCP_NODELAY, /* name of option */
(char *)&flag, /* the cast is historical cruft */
sizeof(int)); /* length of option value */
char buf;
for (;;)
{
if (read(watchdog_ip, &buf, 1) == 1)
{
/* Reset timer */
HAL_WRITE_UINT32(WATCHDOG_BASE + 8, 0x1234);
/* Echo so we can telnet in and see that resetting works */
write(watchdog_ip, &buf, 1);
} else
{
/* Stop tickling the watchdog, the CPU will reset in < 10 seconds
* now.
*/
return;
}
}
/* Never reached */
}
}
#endif
#endif
#if BUILD_ZY1000_MASTER
int interface_jtag_add_sleep(uint32_t us)
{
jtag_sleep(us);
return ERROR_OK;
}
#endif
#if BUILD_ZY1000_MASTER && !BUILD_ECOSBOARD
volatile void *zy1000_jtag_master;
#include <sys/mman.h>
#endif
int zy1000_init(void)
{
#if BUILD_ECOSBOARD
LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
#elif BUILD_ZY1000_MASTER
int fd;
if((fd = open("/dev/mem", O_RDWR | O_SYNC)) == -1)
{
LOG_ERROR("No access to /dev/mem");
return ERROR_FAIL;
}
#ifndef REGISTERS_BASE
#define REGISTERS_BASE 0x9002000
#define REGISTERS_SPAN 128
#endif
zy1000_jtag_master = mmap(0, REGISTERS_SPAN, PROT_READ | PROT_WRITE, MAP_SHARED, fd, REGISTERS_BASE);
if(zy1000_jtag_master == (void *) -1)
{
close(fd);
LOG_ERROR("No access to /dev/mem");
return ERROR_FAIL;
}
#endif
ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
setPower(true); // on by default
/* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
zy1000_reset(0, 0);
#if BUILD_ZY1000_MASTER
#if BUILD_ECOSBOARD
#ifdef WATCHDOG_BASE
cyg_thread_create(1, watchdog_server, (cyg_addrword_t) 0, "watchdog tcip/ip server",
(void *) watchdog_stack, sizeof(watchdog_stack),
&watchdog_thread_handle, &watchdog_thread_object);
cyg_thread_resume(watchdog_thread_handle);
#endif
#endif
#endif
return ERROR_OK;
}
struct jtag_interface zy1000_interface =
{
.name = "ZY1000",
.supported = DEBUG_CAP_TMS_SEQ,
.execute_queue = NULL,
.speed = zy1000_speed,
.commands = zy1000_commands,
.init = zy1000_init,
.quit = zy1000_quit,
.khz = zy1000_khz,
.speed_div = zy1000_speed_div,
.power_dropout = zy1000_power_dropout,
.srst_asserted = zy1000_srst_asserted,
};