openocd/src/flash/nor/at91sam4l.c

669 lines
19 KiB
C

/***************************************************************************
* Copyright (C) 2013 by Andrey Yurovsky *
* Andrey Yurovsky <yurovsky@gmail.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
/* At this time, the SAM4L Flash is available in these capacities:
* ATSAM4Lx4xx: 256KB (512 pages)
* ATSAM4Lx2xx: 128KB (256 pages)
* ATSAM4Lx8xx: 512KB (1024 pages)
*/
/* There are 16 lockable regions regardless of overall capacity. The number
* of pages per sector is therefore dependant on capacity. */
#define SAM4L_NUM_SECTORS 16
/* Locations in memory map */
#define SAM4L_FLASH 0x00000000 /* Flash region */
#define SAM4L_FLASH_USER 0x00800000 /* Flash user page region */
#define SAM4L_FLASHCALW 0x400A0000 /* Flash controller */
#define SAM4L_CHIPID 0x400E0740 /* Chip Identification */
/* Offsets from SAM4L_FLASHCALW */
#define SAM4L_FCR 0x00 /* Flash Control Register (RW) */
#define SAM4L_FCMD 0x04 /* Flash Command Register (RW) */
#define SAM4L_FSR 0x08 /* Flash Status Register (RO) */
#define SAM4L_FPR 0x0C /* Flash Parameter Register (RO) */
#define SAM4L_FVR 0x10 /* Flash Version Register (RO) */
#define SAM4L_FGPFRHI 0x14 /* Flash General Purpose Register High (RO) */
#define SAM4L_FGPFRLO 0x18 /* Flash General Purpose Register Low (RO) */
/* Offsets from SAM4L_CHIPID */
#define SAM4L_CIDR 0x00 /* Chip ID Register (RO) */
#define SAM4L_EXID 0x04 /* Chip ID Extension Register (RO) */
/* Flash commands (for SAM4L_FCMD), see Table 14-5 */
#define SAM4L_FCMD_NOP 0 /* No Operation */
#define SAM4L_FCMD_WP 1 /* Write Page */
#define SAM4L_FCMD_EP 2 /* Erase Page */
#define SAM4L_FCMD_CPB 3 /* Clear Page Buffer */
#define SAM4L_FCMD_LP 4 /* Lock region containing given page */
#define SAM4L_FCMD_UP 5 /* Unlock region containing given page */
#define SAM4L_FCMD_EA 6 /* Erase All */
#define SAM4L_FCMD_WGPB 7 /* Write general-purpose fuse bit */
#define SAM4L_FCMD_EGPB 8 /* Erase general-purpose fuse bit */
#define SAM4L_FCMD_SSB 9 /* Set security fuses */
#define SAM4L_FCMD_PGPFB 10 /* Program general-purpose fuse byte */
#define SAM4L_FCMD_EAGPF 11 /* Erase all general-purpose fuse bits */
#define SAM4L_FCMD_QPR 12 /* Quick page read */
#define SAM4L_FCMD_WUP 13 /* Write user page */
#define SAM4L_FCMD_EUP 14 /* Erase user page */
#define SAM4L_FCMD_QPRUP 15 /* Quick page read (user page) */
#define SAM4L_FCMD_HSEN 16 /* High speed mode enable */
#define SAM4L_FCMD_HSDIS 17 /* High speed mode disable */
#define SAM4L_FMCD_CMDKEY 0xA5UL /* 'key' to issue commands, see 14.10.2 */
struct sam4l_chip_info {
uint32_t id;
uint32_t exid;
const char *name;
};
/* These are taken from Table 9-1 in 42023E-SAM-07/2013 */
static const struct sam4l_chip_info sam4l_known_chips[] = {
{ 0xAB0B0AE0, 0x1400000F, "ATSAM4LC8C" },
{ 0xAB0A09E0, 0x0400000F, "ATSAM4LC4C" },
{ 0xAB0A07E0, 0x0400000F, "ATSAM4LC2C" },
{ 0xAB0B0AE0, 0x1300000F, "ATSAM4LC8B" },
{ 0xAB0A09E0, 0x0300000F, "ATSAM4LC4B" },
{ 0xAB0A07E0, 0x0300000F, "ATSAM4LC2B" },
{ 0xAB0B0AE0, 0x1200000F, "ATSAM4LC8A" },
{ 0xAB0A09E0, 0x0200000F, "ATSAM4LC4A" },
{ 0xAB0A07E0, 0x0200000F, "ATSAM4LC2A" },
{ 0xAB0B0AE0, 0x14000002, "ATSAM4LS8C" },
{ 0xAB0A09E0, 0x04000002, "ATSAM4LS4C" },
{ 0xAB0A07E0, 0x04000002, "ATSAM4LS2C" },
{ 0xAB0B0AE0, 0x13000002, "ATSAM4LS8B" },
{ 0xAB0A09E0, 0x03000002, "ATSAM4LS4B" },
{ 0xAB0A07E0, 0x03000002, "ATSAM4LS2B" },
{ 0xAB0B0AE0, 0x12000002, "ATSAM4LS8A" },
{ 0xAB0A09E0, 0x02000002, "ATSAM4LS4A" },
{ 0xAB0A07E0, 0x02000002, "ATSAM4LS2A" },
};
/* Meaning of SRAMSIZ field in CHIPID, see 9.3.1 in 42023E-SAM-07/2013 */
static const uint16_t sam4l_ram_sizes[16] = { 48, 1, 2, 6, 24, 4, 80, 160, 8, 16, 32, 64, 128, 256, 96, 512 };
/* Meaning of PSZ field in FPR, see 14.10.4 in 42023E-SAM-07/2013 */
static const uint16_t sam4l_page_sizes[8] = { 32, 64, 128, 256, 512, 1024, 2048, 4096 };
struct sam4l_info {
const struct sam4l_chip_info *details;
uint32_t flash_kb;
uint32_t ram_kb;
uint32_t page_size;
int num_pages;
int sector_size;
int pages_per_sector;
bool probed;
struct target *target;
struct sam4l_info *next;
};
static struct sam4l_info *sam4l_chips;
static int sam4l_flash_wait_until_ready(struct target *target)
{
volatile unsigned int t = 0;
uint32_t st;
int res;
/* Poll the status register until the FRDY bit is set */
do {
res = target_read_u32(target, SAM4L_FLASHCALW + SAM4L_FSR, &st);
} while (res == ERROR_OK && !(st & (1<<0)) && ++t < 10);
return res;
}
static int sam4l_flash_check_error(struct target *target, uint32_t *err)
{
uint32_t st;
int res;
res = target_read_u32(target, SAM4L_FLASHCALW + SAM4L_FSR, &st);
if (res == ERROR_OK)
*err = st & ((1<<3) | (1<<2)); /* grab PROGE and LOCKE bits */
return res;
}
static int sam4l_flash_command(struct target *target, uint8_t cmd, int page)
{
int res;
uint32_t fcmd;
uint32_t err;
res = sam4l_flash_wait_until_ready(target);
if (res != ERROR_OK)
return res;
if (page >= 0) {
/* Set the page number. For some commands, the page number is just an
* argument (ex: fuse bit number). */
fcmd = (SAM4L_FMCD_CMDKEY << 24) | ((page & 0xFFFF) << 8) | (cmd & 0x3F);
} else {
/* Reuse the page number that was read from the flash command register. */
res = target_read_u32(target, SAM4L_FLASHCALW + SAM4L_FCMD, &fcmd);
if (res != ERROR_OK)
return res;
fcmd &= ~0x3F; /* clear out the command code */
fcmd |= (SAM4L_FMCD_CMDKEY << 24) | (cmd & 0x3F);
}
/* Send the command */
res = target_write_u32(target, SAM4L_FLASHCALW + SAM4L_FCMD, fcmd);
if (res != ERROR_OK)
return res;
res = sam4l_flash_check_error(target, &err);
if (res != ERROR_OK)
return res;
if (err != 0)
LOG_ERROR("%s got error status 0x%08" PRIx32, __func__, err);
res = sam4l_flash_wait_until_ready(target);
return res;
}
FLASH_BANK_COMMAND_HANDLER(sam4l_flash_bank_command)
{
struct sam4l_info *chip = sam4l_chips;
while (chip) {
if (chip->target == bank->target)
break;
chip = chip->next;
}
if (!chip) {
/* Create a new chip */
chip = calloc(1, sizeof(*chip));
if (!chip)
return ERROR_FAIL;
chip->target = bank->target;
chip->probed = false;
bank->driver_priv = chip;
/* Insert it into the chips list (at head) */
chip->next = sam4l_chips;
sam4l_chips = chip;
}
if (bank->base != SAM4L_FLASH) {
LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
"[at91sam4l series] )",
bank->base, SAM4L_FLASH);
return ERROR_FAIL;
}
return ERROR_OK;
}
static const struct sam4l_chip_info *sam4l_find_chip_name(uint32_t id, uint32_t exid)
{
unsigned int i;
id &= ~0xF;
for (i = 0; i < ARRAY_SIZE(sam4l_known_chips); i++) {
if (sam4l_known_chips[i].id == id && sam4l_known_chips[i].exid == exid)
return &sam4l_known_chips[i];
}
return NULL;
}
static int sam4l_check_page_erased(struct flash_bank *bank, uint32_t pn,
bool *is_erased_p)
{
int res;
uint32_t st;
/* Issue a quick page read to verify that we've erased this page */
res = sam4l_flash_command(bank->target, SAM4L_FCMD_QPR, pn);
if (res != ERROR_OK) {
LOG_ERROR("Quick page read %d failed", pn);
return res;
}
/* Retrieve the flash status */
res = target_read_u32(bank->target, SAM4L_FLASHCALW + SAM4L_FSR, &st);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read erase status");
return res;
}
/* Is the page in question really erased? */
*is_erased_p = !!(st & (1<<5));
return ERROR_OK;
}
static int sam4l_probe(struct flash_bank *bank)
{
uint32_t id, exid, param;
int res;
struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv;
if (chip->probed)
return ERROR_OK;
res = target_read_u32(bank->target, SAM4L_CHIPID + SAM4L_CIDR, &id);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read chip ID");
return res;
}
res = target_read_u32(bank->target, SAM4L_CHIPID + SAM4L_EXID, &exid);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read extended chip ID");
return res;
}
chip->details = sam4l_find_chip_name(id, exid);
/* The RAM capacity is in a lookup table. */
chip->ram_kb = sam4l_ram_sizes[0xF & (id >> 16)];
switch (0xF & (id >> 8)) {
case 0x07:
chip->flash_kb = 128;
break;
case 0x09:
chip->flash_kb = 256;
break;
case 0x0A:
chip->flash_kb = 512;
break;
default:
LOG_ERROR("Unknown flash size (chip ID is %08X), assuming 128K", id);
chip->flash_kb = 128;
break;
}
/* Retrieve the Flash parameters */
res = target_read_u32(bank->target, SAM4L_FLASHCALW + SAM4L_FPR, &param);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read Flash parameters");
return res;
}
/* Fetch the page size from the parameter register. Technically the flash
* capacity is there too though the manual mentions that not all parts will
* have it set so we use the Chip ID capacity information instead. */
chip->page_size = sam4l_page_sizes[0x7 & (param >> 8)];
assert(chip->page_size);
chip->num_pages = chip->flash_kb * 1024 / chip->page_size;
chip->sector_size = (chip->flash_kb * 1024) / SAM4L_NUM_SECTORS;
chip->pages_per_sector = chip->sector_size / chip->page_size;
/* Make sure the bank size is correct */
bank->size = chip->flash_kb * 1024;
/* Allocate the sector table. */
bank->num_sectors = SAM4L_NUM_SECTORS;
bank->sectors = calloc(bank->num_sectors, (sizeof((bank->sectors)[0])));
if (!bank->sectors)
return ERROR_FAIL;
/* Fill out the sector information: all SAM4L sectors are the same size and
* there is always a fixed number of them. */
for (int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].size = chip->sector_size;
bank->sectors[i].offset = i * chip->sector_size;
/* mark as unknown */
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
/* Done */
chip->probed = true;
LOG_INFO("SAM4L MCU: %s (Rev %c) (%uKB Flash with %d %dB pages, %uKB RAM)",
chip->details ? chip->details->name : "unknown", 'A' + (id & 0xF),
chip->flash_kb, chip->num_pages, chip->page_size, chip->ram_kb);
return ERROR_OK;
}
static int sam4l_protect_check(struct flash_bank *bank)
{
int res;
uint32_t st;
struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (sam4l_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
res = target_read_u32(bank->target, SAM4L_FLASHCALW + SAM4L_FSR, &st);
if (res != ERROR_OK)
return res;
st >>= 16; /* There are 16 lock region bits in the upper half word */
for (int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = !!(st & (1<<i));
return ERROR_OK;
}
static int sam4l_protect(struct flash_bank *bank, int set, int first, int last)
{
struct sam4l_info *chip = sam4l_chips;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (sam4l_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
/* Make sure the pages make sense. */
if (first >= bank->num_sectors || last >= bank->num_sectors) {
LOG_ERROR("Protect range %d - %d not valid (%d sectors total)", first, last,
bank->num_sectors);
return ERROR_FAIL;
}
/* Try to lock or unlock each sector in the range. This is done by locking
* a region containing one page in that sector, we arbitrarily choose the 0th
* page in the sector. */
for (int i = first; i <= last; i++) {
int res;
res = sam4l_flash_command(bank->target,
set ? SAM4L_FCMD_LP : SAM4L_FCMD_UP, i * chip->pages_per_sector);
if (res != ERROR_OK) {
LOG_ERROR("Can't %slock region containing page %d", set ? "" : "un", i);
return res;
}
}
return ERROR_OK;
}
static int sam4l_erase(struct flash_bank *bank, int first, int last)
{
int ret;
struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (sam4l_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
/* Make sure the pages make sense. */
if (first >= bank->num_sectors || last >= bank->num_sectors) {
LOG_ERROR("Erase range %d - %d not valid (%d sectors total)", first, last,
bank->num_sectors);
return ERROR_FAIL;
}
/* Erase */
if ((first == 0) && ((last + 1) == bank->num_sectors)) {
LOG_DEBUG("Erasing the whole chip");
ret = sam4l_flash_command(bank->target, SAM4L_FCMD_EA, -1);
if (ret != ERROR_OK) {
LOG_ERROR("Erase All failed");
return ret;
}
} else {
LOG_DEBUG("Erasing sectors %d through %d...\n", first, last);
/* For each sector... */
for (int i = first; i <= last; i++) {
/* For each page in that sector... */
for (int j = 0; j < chip->pages_per_sector; j++) {
int pn = i * chip->pages_per_sector + j;
bool is_erased = false;
/* Issue the page erase */
ret = sam4l_flash_command(bank->target, SAM4L_FCMD_EP, pn);
if (ret != ERROR_OK) {
LOG_ERROR("Erasing page %d failed", pn);
return ret;
}
ret = sam4l_check_page_erased(bank, pn, &is_erased);
if (ret != ERROR_OK)
return ret;
if (!is_erased) {
LOG_DEBUG("Page %d was not erased.", pn);
return ERROR_FAIL;
}
}
/* This sector is definitely erased. */
bank->sectors[i].is_erased = 1;
}
}
return ERROR_OK;
}
/* Write an entire page from host buffer 'buf' to page-aligned 'address' in the
* Flash. */
static int sam4l_write_page(struct sam4l_info *chip, struct target *target,
uint32_t address, uint8_t *buf)
{
int res;
/* Clear the page buffer before we write to it */
res = sam4l_flash_command(target, SAM4L_FCMD_CPB, -1);
if (res != ERROR_OK) {
LOG_ERROR("%s: can't clear page buffer", __func__);
return res;
}
/* Write the modified page back to the target's page buffer */
res = target_write_memory(target, address, 4, chip->page_size / 4, buf);
if (res != ERROR_OK) {
LOG_ERROR("%s: %d", __func__, __LINE__);
return res;
}
/* Commit the page contents to Flash: erase the current page and then
* write it out. */
res = sam4l_flash_command(target, SAM4L_FCMD_EP, -1);
if (res != ERROR_OK)
return res;
res = sam4l_flash_command(target, SAM4L_FCMD_WP, -1);
return res;
}
/* Write partial contents into page-aligned 'address' on the Flash from host
* buffer 'buf' by writing 'nb' of 'buf' at 'offset' into the Flash page. */
static int sam4l_write_page_partial(struct sam4l_info *chip,
struct flash_bank *bank, uint32_t address, uint8_t *buf,
uint32_t page_offset, uint32_t nb)
{
int res;
uint8_t *pg = malloc(chip->page_size);
if (!pg)
return ERROR_FAIL;
assert(page_offset + nb < chip->page_size);
assert((address % chip->page_size) == 0);
/* Retrieve the full page contents from Flash */
res = target_read_memory(bank->target, address, 4,
chip->page_size / 4, pg);
if (res != ERROR_OK) {
free(pg);
return res;
}
/* Insert our partial page over the data from Flash */
memcpy(pg + (page_offset % chip->page_size), buf, nb);
/* Write the page back out */
res = sam4l_write_page(chip, bank->target, address, pg);
free(pg);
return res;
}
static int sam4l_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int res;
uint32_t nb = 0;
struct sam4l_info *chip = (struct sam4l_info *)bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!chip->probed) {
if (sam4l_probe(bank) != ERROR_OK)
return ERROR_FLASH_BANK_NOT_PROBED;
}
if (offset % chip->page_size) {
/* We're starting at an unaligned offset so we'll write a partial page
* comprising that offset and up to the end of that page. */
nb = chip->page_size - (offset % chip->page_size);
if (nb > count)
nb = count;
} else if (count < chip->page_size) {
/* We're writing an aligned but partial page. */
nb = count;
}
if (nb > 0) {
res = sam4l_write_page_partial(chip, bank,
(offset / chip->page_size) * chip->page_size + bank->base,
buffer,
offset % chip->page_size, nb);
if (res != ERROR_OK)
return res;
/* We're done with the page contents */
count -= nb;
offset += nb;
}
/* There's at least one aligned page to write out. */
if (count >= chip->page_size) {
int np = count / chip->page_size + ((count % chip->page_size) ? 1 : 0);
for (int i = 0; i < np; i++) {
if (count >= chip->page_size) {
res = sam4l_write_page(chip, bank->target,
bank->base + (i * chip->page_size),
buffer + (i * chip->page_size));
/* Advance one page */
offset += chip->page_size;
count -= chip->page_size;
} else {
res = sam4l_write_page_partial(chip, bank,
bank->base + (i * chip->page_size),
buffer + (i * chip->page_size), 0, count);
/* We're done after this. */
offset += count;
count = 0;
}
if (res != ERROR_OK)
return res;
}
}
return ERROR_OK;
}
COMMAND_HANDLER(sam4l_handle_info_command)
{
return ERROR_OK;
}
static const struct command_registration at91sam4l_exec_command_handlers[] = {
{
.name = "info",
.handler = sam4l_handle_info_command,
.mode = COMMAND_EXEC,
.help = "Print information about the current at91sam4l chip"
"and its flash configuration.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration at91sam4l_command_handlers[] = {
{
.name = "at91sam4l",
.mode = COMMAND_ANY,
.help = "at91sam4l flash command group",
.usage = "",
.chain = at91sam4l_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver at91sam4l_flash = {
.name = "at91sam4l",
.commands = at91sam4l_command_handlers,
.flash_bank_command = sam4l_flash_bank_command,
.erase = sam4l_erase,
.protect = sam4l_protect,
.write = sam4l_write,
.read = default_flash_read,
.probe = sam4l_probe,
.auto_probe = sam4l_probe,
.erase_check = default_flash_blank_check,
.protect_check = sam4l_protect_check,
};