openocd/src/flash/nor/kinetis.c

1166 lines
35 KiB
C

/***************************************************************************
* Copyright (C) 2011 by Mathias Kuester *
* kesmtp@freenet.de *
* *
* Copyright (C) 2011 sleep(5) ltd *
* tomas@sleepfive.com *
* *
* Copyright (C) 2012 by Christopher D. Kilgour *
* techie at whiterocker.com *
* *
* Copyright (C) 2013 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
/*
* Implementation Notes
*
* The persistent memories in the Kinetis chip families K10 through
* K70 are all manipulated with the Flash Memory Module. Some
* variants call this module the FTFE, others call it the FTFL. To
* indicate that both are considered here, we use FTFX.
*
* Within the module, according to the chip variant, the persistent
* memory is divided into what Freescale terms Program Flash, FlexNVM,
* and FlexRAM. All chip variants have Program Flash. Some chip
* variants also have FlexNVM and FlexRAM, which always appear
* together.
*
* A given Kinetis chip may have 2 or 4 blocks of flash. Here we map
* each block to a separate bank. Each block size varies by chip and
* may be determined by the read-only SIM_FCFG1 register. The sector
* size within each bank/block varies by the chip granularity as
* described below.
*
* Kinetis offers four different of flash granularities applicable
* across the chip families. The granularity is apparently reflected
* by at least the reference manual suffix. For example, for chip
* MK60FN1M0VLQ12, reference manual K60P144M150SF3RM ends in "SF3RM",
* where the "3" indicates there are four flash blocks with 4kiB
* sectors. All possible granularities are indicated below.
*
* The first half of the flash (1 or 2 blocks, depending on the
* granularity) is always Program Flash and always starts at address
* 0x00000000. The "PFLSH" flag, bit 23 of the read-only SIM_FCFG2
* register, determines whether the second half of the flash is also
* Program Flash or FlexNVM+FlexRAM. When PFLSH is set, the second
* half of flash is Program Flash and is contiguous in the memory map
* from the first half. When PFLSH is clear, the second half of flash
* is FlexNVM and always starts at address 0x10000000. FlexRAM, which
* is also present when PFLSH is clear, always starts at address
* 0x14000000.
*
* The Flash Memory Module provides a register set where flash
* commands are loaded to perform flash operations like erase and
* program. Different commands are available depending on whether
* Program Flash or FlexNVM/FlexRAM is being manipulated. Although
* the commands used are quite consistent between flash blocks, the
* parameters they accept differ according to the flash granularity.
* Some Kinetis chips have different granularity between Program Flash
* and FlexNVM/FlexRAM, so flash command arguments may differ between
* blocks in the same chip.
*
*/
static const struct {
unsigned pflash_sector_size_bytes;
unsigned nvm_sector_size_bytes;
unsigned num_blocks;
} kinetis_flash_params[4] = {
{ 1<<10, 1<<10, 2 },
{ 2<<10, 1<<10, 2 },
{ 2<<10, 2<<10, 2 },
{ 4<<10, 4<<10, 4 }
};
/* Addressess */
#define FLEXRAM 0x14000000
#define FTFx_FSTAT 0x40020000
#define FTFx_FCNFG 0x40020001
#define FTFx_FCCOB3 0x40020004
#define FTFx_FPROT3 0x40020010
#define SIM_SDID 0x40048024
#define SIM_FCFG1 0x4004804c
#define SIM_FCFG2 0x40048050
/* Commands */
#define FTFx_CMD_BLOCKSTAT 0x00
#define FTFx_CMD_SECTSTAT 0x01
#define FTFx_CMD_LWORDPROG 0x06
#define FTFx_CMD_SECTERASE 0x09
#define FTFx_CMD_SECTWRITE 0x0b
#define FTFx_CMD_SETFLEXRAM 0x81
#define FTFx_CMD_MASSERASE 0x44
/* The Kinetis K series uses the following SDID layout :
* Bit 31-16 : 0
* Bit 15-12 : REVID
* Bit 11-7 : DIEID
* Bit 6-4 : FAMID
* Bit 3-0 : PINID
*
* The Kinetis KL series uses the following SDID layout :
* Bit 31-28 : FAMID
* Bit 27-24 : SUBFAMID
* Bit 23-20 : SERIESID
* Bit 19-16 : SRAMSIZE
* Bit 15-12 : REVID
* Bit 6-4 : Reserved (0)
* Bit 3-0 : PINID
*
* SERIESID should be 1 for the KL-series so we assume that if
* bits 31-16 are 0 then it's a K-series MCU.
*/
#define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
#define KINETIS_SDID_DIEID_MASK 0x00000F80
#define KINETIS_SDID_DIEID_K_A 0x00000100
#define KINETIS_SDID_DIEID_K_B 0x00000200
#define KINETIS_SDID_DIEID_KL 0x00000000
/* We can't rely solely on the FAMID field to determine the MCU
* type since some FAMID values identify multiple MCUs with
* different flash sector sizes (K20 and K22 for instance).
* Therefore we combine it with the DIEID bits which may possibly
* break if Freescale bumps the DIEID for a particular MCU. */
#define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
#define KINETIS_K_SDID_K10_M50 0x00000000
#define KINETIS_K_SDID_K10_M72 0x00000080
#define KINETIS_K_SDID_K10_M100 0x00000100
#define KINETIS_K_SDID_K10_M120 0x00000180
#define KINETIS_K_SDID_K11 0x00000220
#define KINETIS_K_SDID_K12 0x00000200
#define KINETIS_K_SDID_K20_M50 0x00000010
#define KINETIS_K_SDID_K20_M72 0x00000090
#define KINETIS_K_SDID_K20_M100 0x00000110
#define KINETIS_K_SDID_K20_M120 0x00000190
#define KINETIS_K_SDID_K21_M50 0x00000230
#define KINETIS_K_SDID_K21_M120 0x00000330
#define KINETIS_K_SDID_K22_M50 0x00000210
#define KINETIS_K_SDID_K22_M120 0x00000310
#define KINETIS_K_SDID_K30_M72 0x000000A0
#define KINETIS_K_SDID_K30_M100 0x00000120
#define KINETIS_K_SDID_K40_M72 0x000000B0
#define KINETIS_K_SDID_K40_M100 0x00000130
#define KINETIS_K_SDID_K50_M72 0x000000E0
#define KINETIS_K_SDID_K51_M72 0x000000F0
#define KINETIS_K_SDID_K53 0x00000170
#define KINETIS_K_SDID_K60_M100 0x00000140
#define KINETIS_K_SDID_K60_M150 0x000001C0
#define KINETIS_K_SDID_K70_M150 0x000001D0
#define KINETIS_KL_SDID_SERIESID_MASK 0x00F00000
#define KINETIS_KL_SDID_SERIESID_KL 0x00100000
struct kinetis_flash_bank {
unsigned granularity;
unsigned bank_ordinal;
uint32_t sector_size;
uint32_t protection_size;
uint32_t klxx;
uint32_t sim_sdid;
uint32_t sim_fcfg1;
uint32_t sim_fcfg2;
enum {
FC_AUTO = 0,
FC_PFLASH,
FC_FLEX_NVM,
FC_FLEX_RAM,
} flash_class;
};
FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
{
struct kinetis_flash_bank *bank_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
LOG_INFO("add flash_bank kinetis %s", bank->name);
bank_info = malloc(sizeof(struct kinetis_flash_bank));
memset(bank_info, 0, sizeof(struct kinetis_flash_bank));
bank->driver_priv = bank_info;
return ERROR_OK;
}
/* Kinetis Program-LongWord Microcodes */
static const uint8_t kinetis_flash_write_code[] = {
/* Params:
* r0 - workarea buffer
* r1 - target address
* r2 - wordcount
* Clobbered:
* r4 - tmp
* r5 - tmp
* r6 - tmp
* r7 - tmp
*/
/* .L1: */
/* for(register uint32_t i=0;i<wcount;i++){ */
0x04, 0x1C, /* mov r4, r0 */
0x00, 0x23, /* mov r3, #0 */
/* .L2: */
0x0E, 0x1A, /* sub r6, r1, r0 */
0xA6, 0x19, /* add r6, r4, r6 */
0x93, 0x42, /* cmp r3, r2 */
0x16, 0xD0, /* beq .L9 */
/* .L5: */
/* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
0x0B, 0x4D, /* ldr r5, .L10 */
0x2F, 0x78, /* ldrb r7, [r5] */
0x7F, 0xB2, /* sxtb r7, r7 */
0x00, 0x2F, /* cmp r7, #0 */
0xFA, 0xDA, /* bge .L5 */
/* FTFx_FSTAT = FTFA_FSTAT_ACCERR_MASK|FTFA_FSTAT_FPVIOL_MASK|FTFA_FSTAT_RDCO */
0x70, 0x27, /* mov r7, #112 */
0x2F, 0x70, /* strb r7, [r5] */
/* FTFx_FCCOB3 = faddr; */
0x09, 0x4F, /* ldr r7, .L10+4 */
0x3E, 0x60, /* str r6, [r7] */
0x06, 0x27, /* mov r7, #6 */
/* FTFx_FCCOB0 = 0x06; */
0x08, 0x4E, /* ldr r6, .L10+8 */
0x37, 0x70, /* strb r7, [r6] */
/* FTFx_FCCOB7 = *pLW; */
0x80, 0xCC, /* ldmia r4!, {r7} */
0x08, 0x4E, /* ldr r6, .L10+12 */
0x37, 0x60, /* str r7, [r6] */
/* FTFx_FSTAT = FTFA_FSTAT_CCIF_MASK; */
0x80, 0x27, /* mov r7, #128 */
0x2F, 0x70, /* strb r7, [r5] */
/* .L4: */
/* while((FTFx_FSTAT&FTFA_FSTAT_CCIF_MASK) != FTFA_FSTAT_CCIF_MASK){}; */
0x2E, 0x78, /* ldrb r6, [r5] */
0x77, 0xB2, /* sxtb r7, r6 */
0x00, 0x2F, /* cmp r7, #0 */
0xFB, 0xDA, /* bge .L4 */
0x01, 0x33, /* add r3, r3, #1 */
0xE4, 0xE7, /* b .L2 */
/* .L9: */
0x00, 0xBE, /* bkpt #0 */
/* .L10: */
0x00, 0x00, 0x02, 0x40, /* .word 1073872896 */
0x04, 0x00, 0x02, 0x40, /* .word 1073872900 */
0x07, 0x00, 0x02, 0x40, /* .word 1073872903 */
0x08, 0x00, 0x02, 0x40, /* .word 1073872904 */
};
/* Program LongWord Block Write */
static int kinetis_write_block(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t wcount)
{
struct target *target = bank->target;
uint32_t buffer_size = 2048; /* Default minimum value */
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[3];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* Params:
* r0 - workarea buffer
* r1 - target address
* r2 - wordcount
* Clobbered:
* r4 - tmp
* r5 - tmp
* r6 - tmp
* r7 - tmp
*/
/* Increase buffer_size if needed */
if (buffer_size < (target->working_area_size/2))
buffer_size = (target->working_area_size/2);
LOG_INFO("Kinetis: FLASH Write ...");
/* check code alignment */
if (offset & 0x1) {
LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 4;
if (buffer_size <= 256) {
/* free working area, write algorithm already allocated */
target_free_working_area(target, write_algorithm);
LOG_WARNING("No large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT); /* *pLW (*buffer) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* faddr */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* number of words to program */
/* write code buffer and use Flash programming code within kinetis */
/* Set breakpoint to 0 with time-out of 1000 ms */
while (wcount > 0) {
uint32_t thisrun_count = (wcount > (buffer_size / 4)) ? (buffer_size / 4) : wcount;
retval = target_write_buffer(target, source->address, thisrun_count * 4, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, thisrun_count);
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
write_algorithm->address, 0, 100000, &armv7m_info);
if (retval != ERROR_OK) {
LOG_ERROR("Error executing kinetis Flash programming algorithm");
retval = ERROR_FLASH_OPERATION_FAILED;
break;
}
buffer += thisrun_count * 4;
address += thisrun_count * 4;
wcount -= thisrun_count;
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
return retval;
}
static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
{
LOG_WARNING("kinetis_protect not supported yet");
/* FIXME: TODO */
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
return ERROR_FLASH_BANK_INVALID;
}
static int kinetis_protect_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (kinfo->flash_class == FC_PFLASH) {
int result;
uint8_t buffer[4];
uint32_t fprot, psec;
int i, b;
/* read protection register */
result = target_read_memory(bank->target, FTFx_FPROT3, 1, 4, buffer);
if (result != ERROR_OK)
return result;
fprot = target_buffer_get_u32(bank->target, buffer);
/*
* Every bit protects 1/32 of the full flash (not necessarily
* just this bank), but we enforce the bank ordinals for
* PFlash to start at zero.
*/
b = kinfo->bank_ordinal * (bank->size / kinfo->protection_size);
for (psec = 0, i = 0; i < bank->num_sectors; i++) {
if ((fprot >> b) & 1)
bank->sectors[i].is_protected = 0;
else
bank->sectors[i].is_protected = 1;
psec += bank->sectors[i].size;
if (psec >= kinfo->protection_size) {
psec = 0;
b++;
}
}
} else {
LOG_ERROR("Protection checks for FlexNVM not yet supported");
return ERROR_FLASH_BANK_INVALID;
}
return ERROR_OK;
}
static int kinetis_ftfx_command(struct flash_bank *bank, uint8_t fcmd, uint32_t faddr,
uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
uint8_t *ftfx_fstat)
{
uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
fccob7, fccob6, fccob5, fccob4,
fccobb, fccoba, fccob9, fccob8};
int result, i;
uint8_t buffer;
/* wait for done */
for (i = 0; i < 50; i++) {
result =
target_read_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
if (result != ERROR_OK)
return result;
if (buffer & 0x80)
break;
buffer = 0x00;
}
if (buffer != 0x80) {
/* reset error flags */
buffer = 0x30;
result =
target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
if (result != ERROR_OK)
return result;
}
result = target_write_memory(bank->target, FTFx_FCCOB3, 4, 3, command);
if (result != ERROR_OK)
return result;
/* start command */
buffer = 0x80;
result = target_write_memory(bank->target, FTFx_FSTAT, 1, 1, &buffer);
if (result != ERROR_OK)
return result;
/* wait for done */
for (i = 0; i < 240; i++) { /* Need longtime for "Mass Erase" Command Nemui Changed */
result =
target_read_memory(bank->target, FTFx_FSTAT, 1, 1, ftfx_fstat);
if (result != ERROR_OK)
return result;
if (*ftfx_fstat & 0x80)
break;
}
if ((*ftfx_fstat & 0xf0) != 0x80) {
LOG_ERROR
("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
*ftfx_fstat, command[3], command[2], command[1], command[0],
command[7], command[6], command[5], command[4],
command[11], command[10], command[9], command[8]);
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int kinetis_mass_erase(struct flash_bank *bank)
{
int result;
uint8_t ftfx_fstat;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* check if whole bank is blank */
LOG_INFO("Execute Erase All Blocks");
/* set command and sector address */
result = kinetis_ftfx_command(bank, FTFx_CMD_MASSERASE, 0,
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
/* Anyway Result, write FSEC to unsecure forcely */
/* if (result != ERROR_OK)
return result;*/
/* Write to MCU security status unsecure in Flash security byte(for Kinetis-L need) */
LOG_INFO("Write to MCU security status unsecure Anyway!");
uint8_t padding[4] = {0xFE, 0xFF, 0xFF, 0xFF}; /* Write 0xFFFFFFFE */
result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, (bank->base + 0x0000040C),
padding[3], padding[2], padding[1], padding[0],
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
return ERROR_OK;
}
static int kinetis_erase(struct flash_bank *bank, int first, int last)
{
int result, i;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first > bank->num_sectors) || (last > bank->num_sectors))
return ERROR_FLASH_OPERATION_FAILED;
if ((first == 0) && (last == (bank->num_sectors - 1)))
return kinetis_mass_erase(bank);
/*
* FIXME: TODO: use the 'Erase Flash Block' command if the
* requested erase is PFlash or NVM and encompasses the entire
* block. Should be quicker.
*/
for (i = first; i <= last; i++) {
uint8_t ftfx_fstat;
/* set command and sector address */
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTERASE, bank->base + bank->sectors[i].offset,
0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK) {
LOG_WARNING("erase sector %d failed", i);
return ERROR_FLASH_OPERATION_FAILED;
}
bank->sectors[i].is_erased = 1;
}
if (first == 0) {
LOG_WARNING
("flash configuration field erased, please reset the device");
}
return ERROR_OK;
}
static int kinetis_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
unsigned int i, result, fallback = 0;
uint8_t buf[8];
uint32_t wc;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
uint8_t *new_buffer = NULL;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (kinfo->klxx) {
/* fallback to longword write */
fallback = 1;
LOG_WARNING("Kinetis L Series supports Program Longword execution only.");
LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
} else if (kinfo->flash_class == FC_FLEX_NVM) {
uint8_t ftfx_fstat;
LOG_DEBUG("flash write into FlexNVM @%08" PRIX32, offset);
/* make flex ram available */
result = kinetis_ftfx_command(bank, FTFx_CMD_SETFLEXRAM, 0x00ff0000, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
/* check if ram ready */
result = target_read_memory(bank->target, FTFx_FCNFG, 1, 1, buf);
if (result != ERROR_OK)
return result;
if (!(buf[0] & (1 << 1))) {
/* fallback to longword write */
fallback = 1;
LOG_WARNING("ram not ready, fallback to slow longword write (FCNFG: %02X)", buf[0]);
}
} else {
LOG_DEBUG("flash write into PFLASH @08%" PRIX32, offset);
}
/* program section command */
if (fallback == 0) {
/*
* Kinetis uses different terms for the granularity of
* sector writes, e.g. "phrase" or "128 bits". We use
* the generic term "chunk". The largest possible
* Kinetis "chunk" is 16 bytes (128 bits).
*/
unsigned prog_section_chunk_bytes = kinfo->sector_size >> 8;
/* assume the NVM sector size is half the FlexRAM size */
unsigned prog_size_bytes = MIN(kinfo->sector_size,
kinetis_flash_params[kinfo->granularity].nvm_sector_size_bytes);
for (i = 0; i < count; i += prog_size_bytes) {
uint8_t residual_buffer[16];
uint8_t ftfx_fstat;
uint32_t section_count = prog_size_bytes / prog_section_chunk_bytes;
uint32_t residual_wc = 0;
/*
* Assume the word count covers an entire
* sector.
*/
wc = prog_size_bytes / 4;
/*
* If bytes to be programmed are less than the
* full sector, then determine the number of
* full-words to program, and put together the
* residual buffer so that a full "section"
* may always be programmed.
*/
if ((count - i) < prog_size_bytes) {
/* number of bytes to program beyond full section */
unsigned residual_bc = (count-i) % prog_section_chunk_bytes;
/* number of complete words to copy directly from buffer */
wc = (count - i) / 4;
/* number of total sections to write, including residual */
section_count = DIV_ROUND_UP((count-i), prog_section_chunk_bytes);
/* any residual bytes delivers a whole residual section */
residual_wc = (residual_bc ? prog_section_chunk_bytes : 0)/4;
/* clear residual buffer then populate residual bytes */
(void) memset(residual_buffer, 0xff, prog_section_chunk_bytes);
(void) memcpy(residual_buffer, &buffer[i+4*wc], residual_bc);
}
LOG_DEBUG("write section @ %08" PRIX32 " with length %" PRIu32 " bytes",
offset + i, (uint32_t)wc*4);
/* write data to flexram as whole-words */
result = target_write_memory(bank->target, FLEXRAM, 4, wc,
buffer + i);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
return result;
}
/* write the residual words to the flexram */
if (residual_wc) {
result = target_write_memory(bank->target,
FLEXRAM+4*wc,
4, residual_wc,
residual_buffer);
if (result != ERROR_OK) {
LOG_ERROR("target_write_memory failed");
return result;
}
}
/* execute section-write command */
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTWRITE, bank->base + offset + i,
section_count>>8, section_count, 0, 0,
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
}
}
/* program longword command, not supported in "SF3" devices */
else if ((kinfo->granularity != 3) || (kinfo->klxx)) {
if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (new_buffer == NULL) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
"and padding with 0xff", old_count, count);
memset(buffer, 0xff, count);
buffer = memcpy(new_buffer, buffer, old_count);
}
uint32_t words_remaining = count / 4;
/* try using a block write */
int retval = kinetis_write_block(bank, buffer, offset, words_remaining);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single word accesses */
LOG_WARNING("couldn't use block writes, falling back to single "
"memory accesses");
for (i = 0; i < count; i += 4) {
uint8_t ftfx_fstat;
LOG_DEBUG("write longword @ %08" PRIX32, (uint32_t)(offset + i));
uint8_t padding[4] = {0xff, 0xff, 0xff, 0xff};
memcpy(padding, buffer + i, MIN(4, count-i));
result = kinetis_ftfx_command(bank, FTFx_CMD_LWORDPROG, bank->base + offset + i,
padding[3], padding[2], padding[1], padding[0],
0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return ERROR_FLASH_OPERATION_FAILED;
}
}
} else {
LOG_ERROR("Flash write strategy not implemented");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int kinetis_read_part_info(struct flash_bank *bank)
{
int result, i;
uint32_t offset = 0;
uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg2_pflsh;
uint32_t nvm_size = 0, pf_size = 0, ee_size = 0;
unsigned granularity, num_blocks = 0, num_pflash_blocks = 0, num_nvm_blocks = 0,
first_nvm_bank = 0, reassign = 0;
struct target *target = bank->target;
struct kinetis_flash_bank *kinfo = bank->driver_priv;
result = target_read_u32(target, SIM_SDID, &kinfo->sim_sdid);
if (result != ERROR_OK)
return result;
kinfo->klxx = 0;
/* K-series MCU? */
if ((kinfo->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
uint32_t mcu_type = kinfo->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
switch (mcu_type) {
case KINETIS_K_SDID_K10_M50:
case KINETIS_K_SDID_K20_M50:
/* 1kB sectors */
granularity = 0;
break;
case KINETIS_K_SDID_K10_M72:
case KINETIS_K_SDID_K20_M72:
case KINETIS_K_SDID_K30_M72:
case KINETIS_K_SDID_K30_M100:
case KINETIS_K_SDID_K40_M72:
case KINETIS_K_SDID_K40_M100:
case KINETIS_K_SDID_K50_M72:
/* 2kB sectors, 1kB FlexNVM sectors */
granularity = 1;
break;
case KINETIS_K_SDID_K10_M100:
case KINETIS_K_SDID_K20_M100:
case KINETIS_K_SDID_K11:
case KINETIS_K_SDID_K12:
case KINETIS_K_SDID_K21_M50:
case KINETIS_K_SDID_K22_M50:
case KINETIS_K_SDID_K51_M72:
case KINETIS_K_SDID_K53:
case KINETIS_K_SDID_K60_M100:
/* 2kB sectors */
granularity = 2;
break;
case KINETIS_K_SDID_K10_M120:
case KINETIS_K_SDID_K20_M120:
case KINETIS_K_SDID_K21_M120:
case KINETIS_K_SDID_K22_M120:
case KINETIS_K_SDID_K60_M150:
case KINETIS_K_SDID_K70_M150:
/* 4kB sectors */
granularity = 3;
break;
default:
LOG_ERROR("Unsupported K-family FAMID");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
}
/* KL-series? */
else if ((kinfo->sim_sdid & KINETIS_KL_SDID_SERIESID_MASK) == KINETIS_KL_SDID_SERIESID_KL) {
kinfo->klxx = 1;
granularity = 0;
} else {
LOG_ERROR("MCU is unsupported");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
result = target_read_u32(target, SIM_FCFG1, &kinfo->sim_fcfg1);
if (result != ERROR_OK)
return result;
result = target_read_u32(target, SIM_FCFG2, &kinfo->sim_fcfg2);
if (result != ERROR_OK)
return result;
fcfg2_pflsh = (kinfo->sim_fcfg2 >> 23) & 0x01;
LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, kinfo->sim_sdid,
kinfo->sim_fcfg1, kinfo->sim_fcfg2);
fcfg1_nvmsize = (uint8_t)((kinfo->sim_fcfg1 >> 28) & 0x0f);
fcfg1_pfsize = (uint8_t)((kinfo->sim_fcfg1 >> 24) & 0x0f);
fcfg1_eesize = (uint8_t)((kinfo->sim_fcfg1 >> 16) & 0x0f);
/* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
if (!fcfg2_pflsh) {
switch (fcfg1_nvmsize) {
case 0x03:
case 0x07:
case 0x09:
case 0x0b:
nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
break;
case 0x0f:
if (granularity == 3)
nvm_size = 512<<10;
else
nvm_size = 256<<10;
break;
default:
nvm_size = 0;
break;
}
switch (fcfg1_eesize) {
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
ee_size = (16 << (10 - fcfg1_eesize));
break;
default:
ee_size = 0;
break;
}
}
switch (fcfg1_pfsize) {
case 0x03:
case 0x05:
case 0x07:
case 0x09:
case 0x0b:
case 0x0d:
pf_size = 1 << (14 + (fcfg1_pfsize >> 1));
break;
case 0x0f:
if (granularity == 3)
pf_size = 1024<<10;
else if (fcfg2_pflsh)
pf_size = 512<<10;
else
pf_size = 256<<10;
break;
default:
pf_size = 0;
break;
}
LOG_DEBUG("FlexNVM: %" PRIu32 " PFlash: %" PRIu32 " FlexRAM: %" PRIu32 " PFLSH: %d",
nvm_size, pf_size, ee_size, fcfg2_pflsh);
if (kinfo->klxx)
num_blocks = 1;
else
num_blocks = kinetis_flash_params[granularity].num_blocks;
num_pflash_blocks = num_blocks / (2 - fcfg2_pflsh);
first_nvm_bank = num_pflash_blocks;
num_nvm_blocks = num_blocks - num_pflash_blocks;
LOG_DEBUG("%d blocks total: %d PFlash, %d FlexNVM",
num_blocks, num_pflash_blocks, num_nvm_blocks);
/*
* If the flash class is already assigned, verify the
* parameters.
*/
if (kinfo->flash_class != FC_AUTO) {
if (kinfo->bank_ordinal != (unsigned) bank->bank_number) {
LOG_WARNING("Flash ordinal/bank number mismatch");
reassign = 1;
} else if (kinfo->granularity != granularity) {
LOG_WARNING("Flash granularity mismatch");
reassign = 1;
} else {
switch (kinfo->flash_class) {
case FC_PFLASH:
if (kinfo->bank_ordinal >= first_nvm_bank) {
LOG_WARNING("Class mismatch, bank %d is not PFlash", bank->bank_number);
reassign = 1;
} else if (bank->size != (pf_size / num_pflash_blocks)) {
LOG_WARNING("PFlash size mismatch");
reassign = 1;
} else if (bank->base !=
(0x00000000 + bank->size * kinfo->bank_ordinal)) {
LOG_WARNING("PFlash address range mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].pflash_sector_size_bytes) {
LOG_WARNING("PFlash sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("PFlash bank %d already configured okay",
kinfo->bank_ordinal);
}
break;
case FC_FLEX_NVM:
if ((kinfo->bank_ordinal >= num_blocks) ||
(kinfo->bank_ordinal < first_nvm_bank)) {
LOG_WARNING("Class mismatch, bank %d is not FlexNVM", bank->bank_number);
reassign = 1;
} else if (bank->size != (nvm_size / num_nvm_blocks)) {
LOG_WARNING("FlexNVM size mismatch");
reassign = 1;
} else if (bank->base !=
(0x10000000 + bank->size * kinfo->bank_ordinal)) {
LOG_WARNING("FlexNVM address range mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].nvm_sector_size_bytes) {
LOG_WARNING("FlexNVM sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("FlexNVM bank %d already configured okay",
kinfo->bank_ordinal);
}
break;
case FC_FLEX_RAM:
if (kinfo->bank_ordinal != num_blocks) {
LOG_WARNING("Class mismatch, bank %d is not FlexRAM", bank->bank_number);
reassign = 1;
} else if (bank->size != ee_size) {
LOG_WARNING("FlexRAM size mismatch");
reassign = 1;
} else if (bank->base != FLEXRAM) {
LOG_WARNING("FlexRAM address mismatch");
reassign = 1;
} else if (kinfo->sector_size !=
kinetis_flash_params[granularity].nvm_sector_size_bytes) {
LOG_WARNING("FlexRAM sector size mismatch");
reassign = 1;
} else {
LOG_DEBUG("FlexRAM bank %d already configured okay", kinfo->bank_ordinal);
}
break;
default:
LOG_WARNING("Unknown or inconsistent flash class");
reassign = 1;
break;
}
}
} else {
LOG_INFO("Probing flash info for bank %d", bank->bank_number);
reassign = 1;
}
if (!reassign)
return ERROR_OK;
kinfo->granularity = granularity;
if ((unsigned)bank->bank_number < num_pflash_blocks) {
/* pflash, banks start at address zero */
kinfo->flash_class = FC_PFLASH;
bank->size = (pf_size / num_pflash_blocks);
bank->base = 0x00000000 + bank->size * bank->bank_number;
kinfo->sector_size = kinetis_flash_params[granularity].pflash_sector_size_bytes;
kinfo->protection_size = pf_size / 32;
} else if ((unsigned)bank->bank_number < num_blocks) {
/* nvm, banks start at address 0x10000000 */
kinfo->flash_class = FC_FLEX_NVM;
bank->size = (nvm_size / num_nvm_blocks);
bank->base = 0x10000000 + bank->size * (bank->bank_number - first_nvm_bank);
kinfo->sector_size = kinetis_flash_params[granularity].nvm_sector_size_bytes;
kinfo->protection_size = 0; /* FIXME: TODO: depends on DEPART bits, chip */
} else if ((unsigned)bank->bank_number == num_blocks) {
LOG_ERROR("FlexRAM support not yet implemented");
return ERROR_FLASH_OPER_UNSUPPORTED;
} else {
LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
bank->bank_number, num_blocks);
return ERROR_FLASH_BANK_INVALID;
}
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->num_sectors = bank->size / kinfo->sector_size;
assert(bank->num_sectors > 0);
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
for (i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = offset;
bank->sectors[i].size = kinfo->sector_size;
offset += kinfo->sector_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
return ERROR_OK;
}
static int kinetis_probe(struct flash_bank *bank)
{
if (bank->target->state != TARGET_HALTED) {
LOG_WARNING("Cannot communicate... target not halted.");
return ERROR_TARGET_NOT_HALTED;
}
return kinetis_read_part_info(bank);
}
static int kinetis_auto_probe(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (kinfo->sim_sdid)
return ERROR_OK;
return kinetis_probe(bank);
}
static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
{
const char *bank_class_names[] = {
"(ANY)", "PFlash", "FlexNVM", "FlexRAM"
};
struct kinetis_flash_bank *kinfo = bank->driver_priv;
(void) snprintf(buf, buf_size,
"%s driver for %s flash bank %s at 0x%8.8" PRIx32 "",
bank->driver->name, bank_class_names[kinfo->flash_class],
bank->name, bank->base);
return ERROR_OK;
}
static int kinetis_blank_check(struct flash_bank *bank)
{
struct kinetis_flash_bank *kinfo = bank->driver_priv;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (kinfo->flash_class == FC_PFLASH) {
int result;
uint8_t ftfx_fstat;
/* check if whole bank is blank */
result = kinetis_ftfx_command(bank, FTFx_CMD_BLOCKSTAT, bank->base, 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result != ERROR_OK)
return result;
if (ftfx_fstat & 0x01) {
/* the whole bank is not erased, check sector-by-sector */
int i;
for (i = 0; i < bank->num_sectors; i++) {
/* normal margin */
result = kinetis_ftfx_command(bank, FTFx_CMD_SECTSTAT, bank->base + bank->sectors[i].offset,
1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
if (result == ERROR_OK) {
bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
} else {
LOG_DEBUG("Ignoring errored PFlash sector blank-check");
bank->sectors[i].is_erased = -1;
}
}
} else {
/* the whole bank is erased, update all sectors */
int i;
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
}
} else {
LOG_WARNING("kinetis_blank_check not supported yet for FlexNVM");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
struct flash_driver kinetis_flash = {
.name = "kinetis",
.flash_bank_command = kinetis_flash_bank_command,
.erase = kinetis_erase,
.protect = kinetis_protect,
.write = kinetis_write,
.read = default_flash_read,
.probe = kinetis_probe,
.auto_probe = kinetis_auto_probe,
.erase_check = kinetis_blank_check,
.protect_check = kinetis_protect_check,
.info = kinetis_info,
};