openocd/src/flash/nor/cc3220sf.c
Antonio Borneo c0c7d6fe8b openocd: fix Yoda conditions with checkpatch
The new checkpatch can automatically fix the code, but this
feature is still error prone and not complete.

Patch generated automatically through the new checkpatch with
flags "--types CONSTANT_COMPARISON --fix-inplace".

Some Yoda condition is detected by checkpatch but not fixed; it
will be fixed manually in a following commit.

Change-Id: Ifaaa1159e63dbd1db6aa3c017125df9874fa9703
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6355
Tested-by: jenkins
2021-07-24 10:38:31 +01:00

498 lines
14 KiB
C

/***************************************************************************
* Copyright (C) 2017 by Texas Instruments, Inc. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "cc3220sf.h"
#include <helper/time_support.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#define FLASH_TIMEOUT 5000
struct cc3220sf_bank {
bool probed;
struct armv7m_algorithm armv7m_info;
};
static int cc3220sf_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
bool done;
long long start_ms;
long long elapsed_ms;
uint32_t value;
int retval = ERROR_OK;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Set starting address to erase to zero */
retval = target_write_u32(target, FMA_REGISTER_ADDR, 0);
if (retval != ERROR_OK)
return retval;
/* Write the MERASE bit of the FMC register */
retval = target_write_u32(target, FMC_REGISTER_ADDR, FMC_MERASE_VALUE);
if (retval != ERROR_OK)
return retval;
/* Poll the MERASE bit until the mass erase is complete */
done = false;
start_ms = timeval_ms();
while (!done) {
retval = target_read_u32(target, FMC_REGISTER_ADDR, &value);
if (retval != ERROR_OK)
return retval;
if ((value & FMC_MERASE_BIT) == 0) {
/* Bit clears when mass erase is finished */
done = true;
} else {
elapsed_ms = timeval_ms() - start_ms;
if (elapsed_ms > 500)
keep_alive();
if (elapsed_ms > FLASH_TIMEOUT)
break;
}
}
if (!done) {
/* Mass erase timed out waiting for confirmation */
return ERROR_FAIL;
}
return retval;
}
FLASH_BANK_COMMAND_HANDLER(cc3220sf_flash_bank_command)
{
struct cc3220sf_bank *cc3220sf_bank;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
cc3220sf_bank = malloc(sizeof(struct cc3220sf_bank));
if (!cc3220sf_bank)
return ERROR_FAIL;
/* Initialize private flash information */
cc3220sf_bank->probed = false;
/* Finish initialization of flash bank */
bank->driver_priv = cc3220sf_bank;
bank->next = NULL;
return ERROR_OK;
}
static int cc3220sf_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
bool done;
long long start_ms;
long long elapsed_ms;
uint32_t address;
uint32_t value;
int retval = ERROR_OK;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Do a mass erase if user requested all sectors of flash */
if ((first == 0) && (last == (bank->num_sectors - 1))) {
/* Request mass erase of flash */
return cc3220sf_mass_erase(bank);
}
/* Erase requested sectors one by one */
for (unsigned int i = first; i <= last; i++) {
/* Determine address of sector to erase */
address = FLASH_BASE_ADDR + i * FLASH_SECTOR_SIZE;
/* Set starting address to erase */
retval = target_write_u32(target, FMA_REGISTER_ADDR, address);
if (retval != ERROR_OK)
return retval;
/* Write the ERASE bit of the FMC register */
retval = target_write_u32(target, FMC_REGISTER_ADDR, FMC_ERASE_VALUE);
if (retval != ERROR_OK)
return retval;
/* Poll the ERASE bit until the erase is complete */
done = false;
start_ms = timeval_ms();
while (!done) {
retval = target_read_u32(target, FMC_REGISTER_ADDR, &value);
if (retval != ERROR_OK)
return retval;
if ((value & FMC_ERASE_BIT) == 0) {
/* Bit clears when mass erase is finished */
done = true;
} else {
elapsed_ms = timeval_ms() - start_ms;
if (elapsed_ms > 500)
keep_alive();
if (elapsed_ms > FLASH_TIMEOUT)
break;
}
}
if (!done) {
/* Sector erase timed out waiting for confirmation */
return ERROR_FAIL;
}
}
return retval;
}
static int cc3220sf_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct cc3220sf_bank *cc3220sf_bank = bank->driver_priv;
struct working_area *algo_working_area;
struct working_area *buffer_working_area;
struct reg_param reg_params[3];
uint32_t algo_base_address;
uint32_t algo_buffer_address;
uint32_t algo_buffer_size;
uint32_t address;
uint32_t remaining;
uint32_t words;
uint32_t result;
int retval = ERROR_OK;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Obtain working area to use for flash helper algorithm */
retval = target_alloc_working_area(target, sizeof(cc3220sf_algo),
&algo_working_area);
if (retval != ERROR_OK)
return retval;
/* Obtain working area to use for flash buffer */
retval = target_alloc_working_area(target,
target_get_working_area_avail(target), &buffer_working_area);
if (retval != ERROR_OK) {
target_free_working_area(target, algo_working_area);
return retval;
}
algo_base_address = algo_working_area->address;
algo_buffer_address = buffer_working_area->address;
algo_buffer_size = buffer_working_area->size;
/* Make sure buffer size is a multiple of 32 word (0x80 byte) chunks */
/* (algo runs more efficiently if it operates on 32 words at a time) */
if (algo_buffer_size > 0x80)
algo_buffer_size &= ~0x7f;
/* Write flash helper algorithm into target memory */
retval = target_write_buffer(target, algo_base_address,
sizeof(cc3220sf_algo), cc3220sf_algo);
if (retval != ERROR_OK) {
target_free_working_area(target, algo_working_area);
target_free_working_area(target, buffer_working_area);
return retval;
}
/* Initialize the ARMv7m specific info to run the algorithm */
cc3220sf_bank->armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
cc3220sf_bank->armv7m_info.core_mode = ARM_MODE_THREAD;
/* Initialize register params for flash helper algorithm */
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
/* Prepare to write to flash */
address = FLASH_BASE_ADDR + offset;
remaining = count;
/* The flash hardware can only write complete words to flash. If
* an unaligned address is passed in, we must do a read-modify-write
* on a word with enough bytes to align the rest of the buffer. And
* if less than a whole word remains at the end, we must also do a
* read-modify-write on a final word to finish up.
*/
/* Do one word write to align address on 32-bit boundary if needed */
if (0 != (address & 0x3)) {
uint8_t head[4];
/* Get starting offset for data to write (will be 1 to 3) */
uint32_t head_offset = address & 0x03;
/* Get the aligned address to write this first word to */
uint32_t head_address = address & 0xfffffffc;
/* Retrieve what is already in flash at the head address */
retval = target_read_buffer(target, head_address, sizeof(head), head);
if (retval == ERROR_OK) {
/* Substitute in the new data to write */
while ((remaining > 0) && (head_offset < 4)) {
head[head_offset] = *buffer;
head_offset++;
address++;
buffer++;
remaining--;
}
}
if (retval == ERROR_OK) {
/* Helper parameters are passed in registers R0-R2 */
/* Set start of data buffer, address to write to, and word count */
buf_set_u32(reg_params[0].value, 0, 32, algo_buffer_address);
buf_set_u32(reg_params[1].value, 0, 32, head_address);
buf_set_u32(reg_params[2].value, 0, 32, 1);
/* Write head value into buffer to flash */
retval = target_write_buffer(target, algo_buffer_address,
sizeof(head), head);
}
if (retval == ERROR_OK) {
/* Execute the flash helper algorithm */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
algo_base_address, 0, FLASH_TIMEOUT,
&cc3220sf_bank->armv7m_info);
if (retval != ERROR_OK)
LOG_ERROR("cc3220sf: Flash algorithm failed to run");
/* Check that the head value was written to flash */
result = buf_get_u32(reg_params[2].value, 0, 32);
if (result != 0) {
retval = ERROR_FAIL;
LOG_ERROR("cc3220sf: Flash operation failed");
}
}
}
/* Check if there's data at end of buffer that isn't a full word */
uint32_t tail_count = remaining & 0x03;
/* Adjust remaining so it is a multiple of whole words */
remaining -= tail_count;
while ((retval == ERROR_OK) && (remaining > 0)) {
/* Set start of data buffer and address to write to */
buf_set_u32(reg_params[0].value, 0, 32, algo_buffer_address);
buf_set_u32(reg_params[1].value, 0, 32, address);
/* Download data to write into memory buffer */
if (remaining >= algo_buffer_size) {
/* Fill up buffer with data to flash */
retval = target_write_buffer(target, algo_buffer_address,
algo_buffer_size, buffer);
if (retval != ERROR_OK)
break;
/* Count to write is in 32-bit words */
words = algo_buffer_size / 4;
/* Bump variables to next data */
address += algo_buffer_size;
buffer += algo_buffer_size;
remaining -= algo_buffer_size;
} else {
/* Fill buffer with what's left of the data */
retval = target_write_buffer(target, algo_buffer_address,
remaining, buffer);
if (retval != ERROR_OK)
break;
/* Calculate the final word count to write */
words = remaining / 4;
if (0 != (remaining % 4))
words++;
/* Bump variables to any final data */
address += remaining;
buffer += remaining;
remaining = 0;
}
/* Set number of words to write */
buf_set_u32(reg_params[2].value, 0, 32, words);
/* Execute the flash helper algorithm */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
algo_base_address, 0, FLASH_TIMEOUT,
&cc3220sf_bank->armv7m_info);
if (retval != ERROR_OK) {
LOG_ERROR("cc3220sf: Flash algorithm failed to run");
break;
}
/* Check that all words were written to flash */
result = buf_get_u32(reg_params[2].value, 0, 32);
if (result != 0) {
retval = ERROR_FAIL;
LOG_ERROR("cc3220sf: Flash operation failed");
break;
}
keep_alive();
}
/* Do one word write for any final bytes less than a full word */
if ((retval == ERROR_OK) && (tail_count != 0)) {
uint8_t tail[4];
/* Set starting byte offset for data to write */
uint32_t tail_offset = 0;
/* Retrieve what is already in flash at the tail address */
retval = target_read_buffer(target, address, sizeof(tail), tail);
if (retval == ERROR_OK) {
/* Substitute in the new data to write */
while (tail_count > 0) {
tail[tail_offset] = *buffer;
tail_offset++;
buffer++;
tail_count--;
}
}
if (retval == ERROR_OK) {
/* Set start of data buffer, address to write to, and word count */
buf_set_u32(reg_params[0].value, 0, 32, algo_buffer_address);
buf_set_u32(reg_params[1].value, 0, 32, address);
buf_set_u32(reg_params[2].value, 0, 32, 1);
/* Write tail value into buffer to flash */
retval = target_write_buffer(target, algo_buffer_address,
sizeof(tail), tail);
}
if (retval == ERROR_OK) {
/* Execute the flash helper algorithm */
retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
algo_base_address, 0, FLASH_TIMEOUT,
&cc3220sf_bank->armv7m_info);
if (retval != ERROR_OK)
LOG_ERROR("cc3220sf: Flash algorithm failed to run");
/* Check that the tail was written to flash */
result = buf_get_u32(reg_params[2].value, 0, 32);
if (result != 0) {
retval = ERROR_FAIL;
LOG_ERROR("cc3220sf: Flash operation failed");
}
}
}
/* Free resources */
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
target_free_working_area(target, algo_working_area);
target_free_working_area(target, buffer_working_area);
return retval;
}
static int cc3220sf_probe(struct flash_bank *bank)
{
struct cc3220sf_bank *cc3220sf_bank = bank->driver_priv;
uint32_t base;
uint32_t size;
unsigned int num_sectors;
base = FLASH_BASE_ADDR;
size = FLASH_NUM_SECTORS * FLASH_SECTOR_SIZE;
num_sectors = FLASH_NUM_SECTORS;
free(bank->sectors);
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
bank->base = base;
bank->size = size;
bank->write_start_alignment = 0;
bank->write_end_alignment = 0;
bank->num_sectors = num_sectors;
for (unsigned int i = 0; i < num_sectors; i++) {
bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
bank->sectors[i].size = FLASH_SECTOR_SIZE;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 0;
}
/* We've successfully recorded the stats on this flash bank */
cc3220sf_bank->probed = true;
/* If we fall through to here, then all went well */
return ERROR_OK;
}
static int cc3220sf_auto_probe(struct flash_bank *bank)
{
struct cc3220sf_bank *cc3220sf_bank = bank->driver_priv;
int retval = ERROR_OK;
if (!cc3220sf_bank->probed)
retval = cc3220sf_probe(bank);
return retval;
}
static int cc3220sf_info(struct flash_bank *bank, struct command_invocation *cmd)
{
command_print_sameline(cmd, "CC3220SF with 1MB internal flash\n");
return ERROR_OK;
}
const struct flash_driver cc3220sf_flash = {
.name = "cc3220sf",
.flash_bank_command = cc3220sf_flash_bank_command,
.erase = cc3220sf_erase,
.write = cc3220sf_write,
.read = default_flash_read,
.probe = cc3220sf_probe,
.auto_probe = cc3220sf_auto_probe,
.erase_check = default_flash_blank_check,
.info = cc3220sf_info,
.free_driver_priv = default_flash_free_driver_priv,
};