openocd/src/flash/nor/efm32.c
Antonio Borneo c0c7d6fe8b openocd: fix Yoda conditions with checkpatch
The new checkpatch can automatically fix the code, but this
feature is still error prone and not complete.

Patch generated automatically through the new checkpatch with
flags "--types CONSTANT_COMPARISON --fix-inplace".

Some Yoda condition is detected by checkpatch but not fixed; it
will be fixed manually in a following commit.

Change-Id: Ifaaa1159e63dbd1db6aa3c017125df9874fa9703
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6355
Tested-by: jenkins
2021-07-24 10:38:31 +01:00

1115 lines
32 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
* *
* Copyright (C) 2013 by Roman Dmitrienko *
* me@iamroman.org *
* *
* Copyright (C) 2014 Nemui Trinomius *
* nemuisan_kawausogasuki@live.jp *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
#define EFM_FAMILY_ID_GIANT_GECKO 72
#define EFM_FAMILY_ID_LEOPARD_GECKO 74
#define EFM32_FLASH_ERASE_TMO 100
#define EFM32_FLASH_WDATAREADY_TMO 100
#define EFM32_FLASH_WRITE_TMO 100
/* size in bytes, not words; must fit all Gecko devices */
#define LOCKBITS_PAGE_SZ 512
#define EFM32_MSC_INFO_BASE 0x0fe00000
#define EFM32_MSC_USER_DATA EFM32_MSC_INFO_BASE
#define EFM32_MSC_LOCK_BITS (EFM32_MSC_INFO_BASE+0x4000)
#define EFM32_MSC_DEV_INFO (EFM32_MSC_INFO_BASE+0x8000)
/* PAGE_SIZE is not present in Zero, Happy and the original Gecko MCU */
#define EFM32_MSC_DI_PAGE_SIZE (EFM32_MSC_DEV_INFO+0x1e7)
#define EFM32_MSC_DI_FLASH_SZ (EFM32_MSC_DEV_INFO+0x1f8)
#define EFM32_MSC_DI_RAM_SZ (EFM32_MSC_DEV_INFO+0x1fa)
#define EFM32_MSC_DI_PART_NUM (EFM32_MSC_DEV_INFO+0x1fc)
#define EFM32_MSC_DI_PART_FAMILY (EFM32_MSC_DEV_INFO+0x1fe)
#define EFM32_MSC_DI_PROD_REV (EFM32_MSC_DEV_INFO+0x1ff)
#define EFM32_MSC_REGBASE 0x400c0000
#define EFM32_MSC_REGBASE_SERIES1 0x400e0000
#define EFM32_MSC_REG_WRITECTRL 0x008
#define EFM32_MSC_WRITECTRL_WREN_MASK 0x1
#define EFM32_MSC_REG_WRITECMD 0x00c
#define EFM32_MSC_WRITECMD_LADDRIM_MASK 0x1
#define EFM32_MSC_WRITECMD_ERASEPAGE_MASK 0x2
#define EFM32_MSC_WRITECMD_WRITEONCE_MASK 0x8
#define EFM32_MSC_REG_ADDRB 0x010
#define EFM32_MSC_REG_WDATA 0x018
#define EFM32_MSC_REG_STATUS 0x01c
#define EFM32_MSC_STATUS_BUSY_MASK 0x1
#define EFM32_MSC_STATUS_LOCKED_MASK 0x2
#define EFM32_MSC_STATUS_INVADDR_MASK 0x4
#define EFM32_MSC_STATUS_WDATAREADY_MASK 0x8
#define EFM32_MSC_STATUS_WORDTIMEOUT_MASK 0x10
#define EFM32_MSC_STATUS_ERASEABORTED_MASK 0x20
#define EFM32_MSC_REG_LOCK 0x03c
#define EFM32_MSC_REG_LOCK_SERIES1 0x040
#define EFM32_MSC_LOCK_LOCKKEY 0x1b71
struct efm32_family_data {
int family_id;
const char *name;
/* EFM32 series (EFM32LG995F is the "old" series 0, while EFR32MG12P132
is the "new" series 1). Determines location of MSC registers. */
int series;
/* Page size in bytes, or 0 to read from EFM32_MSC_DI_PAGE_SIZE */
int page_size;
/* MSC register base address, or 0 to use default */
uint32_t msc_regbase;
};
struct efm32x_flash_bank {
bool probed;
uint32_t lb_page[LOCKBITS_PAGE_SZ/4];
uint32_t reg_base;
uint32_t reg_lock;
};
struct efm32_info {
const struct efm32_family_data *family_data;
uint16_t flash_sz_kib;
uint16_t ram_sz_kib;
uint16_t part_num;
uint8_t part_family;
uint8_t prod_rev;
uint16_t page_size;
};
static const struct efm32_family_data efm32_families[] = {
{ 16, "EFR32MG1P Mighty", .series = 1 },
{ 17, "EFR32MG1B Mighty", .series = 1 },
{ 18, "EFR32MG1V Mighty", .series = 1 },
{ 19, "EFR32MG1P Blue", .series = 1 },
{ 20, "EFR32MG1B Blue", .series = 1 },
{ 21, "EFR32MG1V Blue", .series = 1 },
{ 25, "EFR32FG1P Flex", .series = 1 },
{ 26, "EFR32FG1B Flex", .series = 1 },
{ 27, "EFR32FG1V Flex", .series = 1 },
{ 28, "EFR32MG2P Mighty", .series = 1 },
{ 29, "EFR32MG2B Mighty", .series = 1 },
{ 30, "EFR32MG2V Mighty", .series = 1 },
{ 31, "EFR32BG12P Blue", .series = 1 },
{ 32, "EFR32BG12B Blue", .series = 1 },
{ 33, "EFR32BG12V Blue", .series = 1 },
{ 37, "EFR32FG12P Flex", .series = 1 },
{ 38, "EFR32FG12B Flex", .series = 1 },
{ 39, "EFR32FG12V Flex", .series = 1 },
{ 40, "EFR32MG13P Mighty", .series = 1 },
{ 41, "EFR32MG13B Mighty", .series = 1 },
{ 42, "EFR32MG13V Mighty", .series = 1 },
{ 43, "EFR32BG13P Blue", .series = 1 },
{ 44, "EFR32BG13B Blue", .series = 1 },
{ 45, "EFR32BG13V Blue", .series = 1 },
{ 46, "EFR32ZG13P Zen", .series = 1 },
{ 49, "EFR32FG13P Flex", .series = 1 },
{ 50, "EFR32FG13B Flex", .series = 1 },
{ 51, "EFR32FG13V Flex", .series = 1 },
{ 52, "EFR32MG14P Mighty", .series = 1 },
{ 53, "EFR32MG14B Mighty", .series = 1 },
{ 54, "EFR32MG14V Mighty", .series = 1 },
{ 55, "EFR32BG14P Blue", .series = 1 },
{ 56, "EFR32BG14B Blue", .series = 1 },
{ 57, "EFR32BG14V Blue", .series = 1 },
{ 58, "EFR32ZG14P Zen", .series = 1 },
{ 61, "EFR32FG14P Flex", .series = 1 },
{ 62, "EFR32FG14B Flex", .series = 1 },
{ 63, "EFR32FG14V Flex", .series = 1 },
{ 71, "EFM32G", .series = 0, .page_size = 512 },
{ 72, "EFM32GG Giant", .series = 0 },
{ 73, "EFM32TG Tiny", .series = 0, .page_size = 512 },
{ 74, "EFM32LG Leopard", .series = 0 },
{ 75, "EFM32WG Wonder", .series = 0 },
{ 76, "EFM32ZG Zero", .series = 0, .page_size = 1024 },
{ 77, "EFM32HG Happy", .series = 0, .page_size = 1024 },
{ 81, "EFM32PG1B Pearl", .series = 1 },
{ 83, "EFM32JG1B Jade", .series = 1 },
{ 85, "EFM32PG12B Pearl", .series = 1 },
{ 87, "EFM32JG12B Jade", .series = 1 },
{ 89, "EFM32PG13B Pearl", .series = 1 },
{ 91, "EFM32JG13B Jade", .series = 1 },
{ 100, "EFM32GG11B Giant", .series = 1, .msc_regbase = 0x40000000 },
{ 103, "EFM32TG11B Tiny", .series = 1, .msc_regbase = 0x40000000 },
{ 106, "EFM32GG12B Giant", .series = 1, .msc_regbase = 0x40000000 },
{ 120, "EZR32WG Wonder", .series = 0 },
{ 121, "EZR32LG Leopard", .series = 0 },
{ 122, "EZR32HG Happy", .series = 0, .page_size = 1024 },
};
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count);
static int efm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_sz)
{
return target_read_u16(bank->target, EFM32_MSC_DI_FLASH_SZ, flash_sz);
}
static int efm32x_get_ram_size(struct flash_bank *bank, uint16_t *ram_sz)
{
return target_read_u16(bank->target, EFM32_MSC_DI_RAM_SZ, ram_sz);
}
static int efm32x_get_part_num(struct flash_bank *bank, uint16_t *pnum)
{
return target_read_u16(bank->target, EFM32_MSC_DI_PART_NUM, pnum);
}
static int efm32x_get_part_family(struct flash_bank *bank, uint8_t *pfamily)
{
return target_read_u8(bank->target, EFM32_MSC_DI_PART_FAMILY, pfamily);
}
static int efm32x_get_prod_rev(struct flash_bank *bank, uint8_t *prev)
{
return target_read_u8(bank->target, EFM32_MSC_DI_PROD_REV, prev);
}
static int efm32x_read_reg_u32(struct flash_bank *bank, target_addr_t offset,
uint32_t *value)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t base = efm32x_info->reg_base;
return target_read_u32(bank->target, base + offset, value);
}
static int efm32x_write_reg_u32(struct flash_bank *bank, target_addr_t offset,
uint32_t value)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t base = efm32x_info->reg_base;
return target_write_u32(bank->target, base + offset, value);
}
static int efm32x_read_info(struct flash_bank *bank,
struct efm32_info *efm32_info)
{
int ret;
uint32_t cpuid = 0;
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
memset(efm32_info, 0, sizeof(struct efm32_info));
ret = target_read_u32(bank->target, CPUID, &cpuid);
if (ret != ERROR_OK)
return ret;
if (((cpuid >> 4) & 0xfff) == 0xc23) {
/* Cortex-M3 device */
} else if (((cpuid >> 4) & 0xfff) == 0xc24) {
/* Cortex-M4 device (WONDER GECKO) */
} else if (((cpuid >> 4) & 0xfff) == 0xc60) {
/* Cortex-M0+ device */
} else {
LOG_ERROR("Target is not Cortex-Mx Device");
return ERROR_FAIL;
}
ret = efm32x_get_flash_size(bank, &(efm32_info->flash_sz_kib));
if (ret != ERROR_OK)
return ret;
ret = efm32x_get_ram_size(bank, &(efm32_info->ram_sz_kib));
if (ret != ERROR_OK)
return ret;
ret = efm32x_get_part_num(bank, &(efm32_info->part_num));
if (ret != ERROR_OK)
return ret;
ret = efm32x_get_part_family(bank, &(efm32_info->part_family));
if (ret != ERROR_OK)
return ret;
ret = efm32x_get_prod_rev(bank, &(efm32_info->prod_rev));
if (ret != ERROR_OK)
return ret;
for (size_t i = 0; i < ARRAY_SIZE(efm32_families); i++) {
if (efm32_families[i].family_id == efm32_info->part_family)
efm32_info->family_data = &efm32_families[i];
}
if (!efm32_info->family_data) {
LOG_ERROR("Unknown MCU family %d", efm32_info->part_family);
return ERROR_FAIL;
}
switch (efm32_info->family_data->series) {
case 0:
efm32x_info->reg_base = EFM32_MSC_REGBASE;
efm32x_info->reg_lock = EFM32_MSC_REG_LOCK;
break;
case 1:
efm32x_info->reg_base = EFM32_MSC_REGBASE_SERIES1;
efm32x_info->reg_lock = EFM32_MSC_REG_LOCK_SERIES1;
break;
}
if (efm32_info->family_data->msc_regbase != 0)
efm32x_info->reg_base = efm32_info->family_data->msc_regbase;
if (efm32_info->family_data->page_size != 0) {
efm32_info->page_size = efm32_info->family_data->page_size;
} else {
uint8_t pg_size = 0;
ret = target_read_u8(bank->target, EFM32_MSC_DI_PAGE_SIZE,
&pg_size);
if (ret != ERROR_OK)
return ret;
efm32_info->page_size = (1 << ((pg_size+10) & 0xff));
if (efm32_info->part_family == EFM_FAMILY_ID_GIANT_GECKO ||
efm32_info->part_family == EFM_FAMILY_ID_LEOPARD_GECKO) {
/* Giant or Leopard Gecko */
if (efm32_info->prod_rev < 18) {
/* EFM32 GG/LG errata: MEM_INFO_PAGE_SIZE is invalid
for MCUs with PROD_REV < 18 */
if (efm32_info->flash_sz_kib < 512)
efm32_info->page_size = 2048;
else
efm32_info->page_size = 4096;
}
}
if ((efm32_info->page_size != 2048) &&
(efm32_info->page_size != 4096)) {
LOG_ERROR("Invalid page size %u", efm32_info->page_size);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
/* flash bank efm32 <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(efm32x_flash_bank_command)
{
struct efm32x_flash_bank *efm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
efm32x_info = malloc(sizeof(struct efm32x_flash_bank));
bank->driver_priv = efm32x_info;
efm32x_info->probed = false;
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ);
return ERROR_OK;
}
/* set or reset given bits in a register */
static int efm32x_set_reg_bits(struct flash_bank *bank, uint32_t reg,
uint32_t bitmask, int set)
{
int ret = 0;
uint32_t reg_val = 0;
ret = efm32x_read_reg_u32(bank, reg, &reg_val);
if (ret != ERROR_OK)
return ret;
if (set)
reg_val |= bitmask;
else
reg_val &= ~bitmask;
return efm32x_write_reg_u32(bank, reg, reg_val);
}
static int efm32x_set_wren(struct flash_bank *bank, int write_enable)
{
return efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECTRL,
EFM32_MSC_WRITECTRL_WREN_MASK, write_enable);
}
static int efm32x_msc_lock(struct flash_bank *bank, int lock)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
return efm32x_write_reg_u32(bank, efm32x_info->reg_lock,
(lock ? 0 : EFM32_MSC_LOCK_LOCKKEY));
}
static int efm32x_wait_status(struct flash_bank *bank, int timeout,
uint32_t wait_mask, int wait_for_set)
{
int ret = 0;
uint32_t status = 0;
while (1) {
ret = efm32x_read_reg_u32(bank, EFM32_MSC_REG_STATUS, &status);
if (ret != ERROR_OK)
break;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if (((status & wait_mask) == 0) && (wait_for_set == 0))
break;
else if (((status & wait_mask) != 0) && wait_for_set)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for MSC status");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & EFM32_MSC_STATUS_ERASEABORTED_MASK)
LOG_WARNING("page erase was aborted");
return ret;
}
static int efm32x_erase_page(struct flash_bank *bank, uint32_t addr)
{
/* this function DOES NOT set WREN; must be set already */
/* 1. write address to ADDRB
2. write LADDRIM
3. check status (INVADDR, LOCKED)
4. write ERASEPAGE
5. wait until !STATUS_BUSY
*/
int ret = 0;
uint32_t status = 0;
addr += bank->base;
LOG_DEBUG("erasing flash page at 0x%08" PRIx32, addr);
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_ADDRB, addr);
if (ret != ERROR_OK)
return ret;
ret = efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECMD,
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
if (ret != ERROR_OK)
return ret;
ret = efm32x_read_reg_u32(bank, EFM32_MSC_REG_STATUS, &status);
if (ret != ERROR_OK)
return ret;
LOG_DEBUG("status 0x%" PRIx32, status);
if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("Page is locked");
return ERROR_FAIL;
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("Invalid address 0x%" PRIx32, addr);
return ERROR_FAIL;
}
ret = efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECMD,
EFM32_MSC_WRITECMD_ERASEPAGE_MASK, 1);
if (ret != ERROR_OK)
return ret;
return efm32x_wait_status(bank, EFM32_FLASH_ERASE_TMO,
EFM32_MSC_STATUS_BUSY_MASK, 0);
}
static int efm32x_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
int ret = 0;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
efm32x_msc_lock(bank, 0);
ret = efm32x_set_wren(bank, 1);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to enable MSC write");
return ret;
}
for (unsigned int i = first; i <= last; i++) {
ret = efm32x_erase_page(bank, bank->sectors[i].offset);
if (ret != ERROR_OK)
LOG_ERROR("Failed to erase page %d", i);
}
ret = efm32x_set_wren(bank, 0);
efm32x_msc_lock(bank, 1);
return ret;
}
static int efm32x_read_lock_data(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
struct target *target = bank->target;
int data_size = 0;
uint32_t *ptr = NULL;
int ret = 0;
assert(bank->num_sectors > 0);
/* calculate the number of 32-bit words to read (one lock bit per sector) */
data_size = (bank->num_sectors + 31) / 32;
ptr = efm32x_info->lb_page;
for (int i = 0; i < data_size; i++, ptr++) {
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+i*4, ptr);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read PLW %d", i);
return ret;
}
}
/* also, read ULW, DLW, MLW, ALW and CLW words */
/* ULW, word 126 */
ptr = efm32x_info->lb_page + 126;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+126*4, ptr);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read ULW");
return ret;
}
/* DLW, word 127 */
ptr = efm32x_info->lb_page + 127;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+127*4, ptr);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read DLW");
return ret;
}
/* MLW, word 125, present in GG, LG, PG, JG, EFR32 */
ptr = efm32x_info->lb_page + 125;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+125*4, ptr);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read MLW");
return ret;
}
/* ALW, word 124, present in GG, LG, PG, JG, EFR32 */
ptr = efm32x_info->lb_page + 124;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+124*4, ptr);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read ALW");
return ret;
}
/* CLW1, word 123, present in EFR32 */
ptr = efm32x_info->lb_page + 123;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+123*4, ptr);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read CLW1");
return ret;
}
/* CLW0, word 122, present in GG, LG, PG, JG, EFR32 */
ptr = efm32x_info->lb_page + 122;
ret = target_read_u32(target, EFM32_MSC_LOCK_BITS+122*4, ptr);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read CLW0");
return ret;
}
return ERROR_OK;
}
static int efm32x_write_lock_data(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
int ret = 0;
ret = efm32x_erase_page(bank, EFM32_MSC_LOCK_BITS);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to erase LB page");
return ret;
}
return efm32x_write(bank, (uint8_t *)efm32x_info->lb_page, EFM32_MSC_LOCK_BITS,
LOCKBITS_PAGE_SZ);
}
static int efm32x_get_page_lock(struct flash_bank *bank, size_t page)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t dw = efm32x_info->lb_page[page >> 5];
uint32_t mask = 0;
mask = 1 << (page & 0x1f);
return (dw & mask) ? 0 : 1;
}
static int efm32x_set_page_lock(struct flash_bank *bank, size_t page, int set)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
uint32_t *dw = &efm32x_info->lb_page[page >> 5];
uint32_t mask = 0;
mask = 1 << (page & 0x1f);
if (!set)
*dw |= mask;
else
*dw &= ~mask;
return ERROR_OK;
}
static int efm32x_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
int ret = 0;
if (!set) {
LOG_ERROR("Erase device data to reset page locks");
return ERROR_FAIL;
}
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (unsigned int i = first; i <= last; i++) {
ret = efm32x_set_page_lock(bank, i, set);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to set lock on page %d", i);
return ret;
}
}
ret = efm32x_write_lock_data(bank);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to write LB page");
return ret;
}
return ERROR_OK;
}
static int efm32x_write_block(struct flash_bank *bank, const uint8_t *buf,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
int ret = ERROR_OK;
/* see contrib/loaders/flash/efm32.S for src */
static const uint8_t efm32x_flash_write_code[] = {
/* #define EFM32_MSC_WRITECTRL_OFFSET 0x008 */
/* #define EFM32_MSC_WRITECMD_OFFSET 0x00c */
/* #define EFM32_MSC_ADDRB_OFFSET 0x010 */
/* #define EFM32_MSC_WDATA_OFFSET 0x018 */
/* #define EFM32_MSC_STATUS_OFFSET 0x01c */
0x01, 0x26, /* movs r6, #1 */
0x86, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECTRL_OFFSET] */
/* wait_fifo: */
0x16, 0x68, /* ldr r6, [r2, #0] */
0x00, 0x2e, /* cmp r6, #0 */
0x22, 0xd0, /* beq exit */
0x55, 0x68, /* ldr r5, [r2, #4] */
0xb5, 0x42, /* cmp r5, r6 */
0xf9, 0xd0, /* beq wait_fifo */
0x04, 0x61, /* str r4, [r0, #EFM32_MSC_ADDRB_OFFSET] */
0x01, 0x26, /* movs r6, #1 */
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x06, 0x27, /* movs r7, #6 */
0x3e, 0x42, /* tst r6, r7 */
0x16, 0xd1, /* bne error */
/* wait_wdataready: */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x08, 0x27, /* movs r7, #8 */
0x3e, 0x42, /* tst r6, r7 */
0xfb, 0xd0, /* beq wait_wdataready */
0x2e, 0x68, /* ldr r6, [r5] */
0x86, 0x61, /* str r6, [r0, #EFM32_MSC_WDATA_OFFSET] */
0x08, 0x26, /* movs r6, #8 */
0xc6, 0x60, /* str r6, [r0, #EFM32_MSC_WRITECMD_OFFSET] */
0x04, 0x35, /* adds r5, #4 */
0x04, 0x34, /* adds r4, #4 */
/* busy: */
0xc6, 0x69, /* ldr r6, [r0, #EFM32_MSC_STATUS_OFFSET] */
0x01, 0x27, /* movs r7, #1 */
0x3e, 0x42, /* tst r6, r7 */
0xfb, 0xd1, /* bne busy */
0x9d, 0x42, /* cmp r5, r3 */
0x01, 0xd3, /* bcc no_wrap */
0x15, 0x46, /* mov r5, r2 */
0x08, 0x35, /* adds r5, #8 */
/* no_wrap: */
0x55, 0x60, /* str r5, [r2, #4] */
0x01, 0x39, /* subs r1, r1, #1 */
0x00, 0x29, /* cmp r1, #0 */
0x02, 0xd0, /* beq exit */
0xdb, 0xe7, /* b wait_fifo */
/* error: */
0x00, 0x20, /* movs r0, #0 */
0x50, 0x60, /* str r0, [r2, #4] */
/* exit: */
0x30, 0x46, /* mov r0, r6 */
0x00, 0xbe, /* bkpt #0 */
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(efm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
ret = target_write_buffer(target, write_algorithm->address,
sizeof(efm32x_flash_write_code), efm32x_flash_write_code);
if (ret != ERROR_OK)
return ret;
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (word-32bit) */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
buf_set_u32(reg_params[0].value, 0, 32, efm32x_info->reg_base);
buf_set_u32(reg_params[1].value, 0, 32, count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
ret = target_run_flash_async_algorithm(target, buf, count, 4,
0, NULL,
5, reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (ret == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));
if (buf_get_u32(reg_params[0].value, 0, 32) &
EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("flash memory write protected");
}
if (buf_get_u32(reg_params[0].value, 0, 32) &
EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("invalid flash memory write address");
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return ret;
}
static int efm32x_write_word(struct flash_bank *bank, uint32_t addr,
uint32_t val)
{
/* this function DOES NOT set WREN; must be set already */
/* 1. write address to ADDRB
2. write LADDRIM
3. check status (INVADDR, LOCKED)
4. wait for WDATAREADY
5. write data to WDATA
6. write WRITECMD_WRITEONCE to WRITECMD
7. wait until !STATUS_BUSY
*/
/* FIXME: EFM32G ref states (7.3.2) that writes should be
* performed twice per dword */
int ret = 0;
uint32_t status = 0;
/* if not called, GDB errors will be reported during large writes */
keep_alive();
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_ADDRB, addr);
if (ret != ERROR_OK)
return ret;
ret = efm32x_set_reg_bits(bank, EFM32_MSC_REG_WRITECMD,
EFM32_MSC_WRITECMD_LADDRIM_MASK, 1);
if (ret != ERROR_OK)
return ret;
ret = efm32x_read_reg_u32(bank, EFM32_MSC_REG_STATUS, &status);
if (ret != ERROR_OK)
return ret;
LOG_DEBUG("status 0x%" PRIx32, status);
if (status & EFM32_MSC_STATUS_LOCKED_MASK) {
LOG_ERROR("Page is locked");
return ERROR_FAIL;
} else if (status & EFM32_MSC_STATUS_INVADDR_MASK) {
LOG_ERROR("Invalid address 0x%" PRIx32, addr);
return ERROR_FAIL;
}
ret = efm32x_wait_status(bank, EFM32_FLASH_WDATAREADY_TMO,
EFM32_MSC_STATUS_WDATAREADY_MASK, 1);
if (ret != ERROR_OK) {
LOG_ERROR("Wait for WDATAREADY failed");
return ret;
}
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_WDATA, val);
if (ret != ERROR_OK) {
LOG_ERROR("WDATA write failed");
return ret;
}
ret = efm32x_write_reg_u32(bank, EFM32_MSC_REG_WRITECMD,
EFM32_MSC_WRITECMD_WRITEONCE_MASK);
if (ret != ERROR_OK) {
LOG_ERROR("WRITECMD write failed");
return ret;
}
ret = efm32x_wait_status(bank, EFM32_FLASH_WRITE_TMO,
EFM32_MSC_STATUS_BUSY_MASK, 0);
if (ret != ERROR_OK) {
LOG_ERROR("Wait for BUSY failed");
return ret;
}
return ERROR_OK;
}
static int efm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint8_t *new_buffer = NULL;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte "
"alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (count & 0x3) {
uint32_t old_count = count;
count = (old_count | 3) + 1;
new_buffer = malloc(count);
if (!new_buffer) {
LOG_ERROR("odd number of bytes to write and no memory "
"for padding buffer");
return ERROR_FAIL;
}
LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
"and padding with 0xff", old_count, count);
memset(new_buffer, 0xff, count);
buffer = memcpy(new_buffer, buffer, old_count);
}
uint32_t words_remaining = count / 4;
int retval, retval2;
/* unlock flash registers */
efm32x_msc_lock(bank, 0);
retval = efm32x_set_wren(bank, 1);
if (retval != ERROR_OK)
goto cleanup;
/* try using a block write */
retval = efm32x_write_block(bank, buffer, offset, words_remaining);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single word accesses */
LOG_WARNING("couldn't use block writes, falling back to single "
"memory accesses");
while (words_remaining > 0) {
uint32_t value;
memcpy(&value, buffer, sizeof(uint32_t));
retval = efm32x_write_word(bank, offset, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
words_remaining--;
buffer += 4;
offset += 4;
}
}
reset_pg_and_lock:
retval2 = efm32x_set_wren(bank, 0);
efm32x_msc_lock(bank, 1);
if (retval == ERROR_OK)
retval = retval2;
cleanup:
free(new_buffer);
return retval;
}
static int efm32x_probe(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
struct efm32_info efm32_mcu_info;
int ret;
uint32_t base_address = 0x00000000;
efm32x_info->probed = false;
memset(efm32x_info->lb_page, 0xff, LOCKBITS_PAGE_SZ);
ret = efm32x_read_info(bank, &efm32_mcu_info);
if (ret != ERROR_OK)
return ret;
LOG_INFO("detected part: %s Gecko, rev %d",
efm32_mcu_info.family_data->name, efm32_mcu_info.prod_rev);
LOG_INFO("flash size = %dkbytes", efm32_mcu_info.flash_sz_kib);
LOG_INFO("flash page size = %dbytes", efm32_mcu_info.page_size);
assert(efm32_mcu_info.page_size != 0);
int num_pages = efm32_mcu_info.flash_sz_kib * 1024 /
efm32_mcu_info.page_size;
assert(num_pages > 0);
free(bank->sectors);
bank->sectors = NULL;
bank->base = base_address;
bank->size = (num_pages * efm32_mcu_info.page_size);
bank->num_sectors = num_pages;
ret = efm32x_read_lock_data(bank);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read LB data");
return ret;
}
bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
for (int i = 0; i < num_pages; i++) {
bank->sectors[i].offset = i * efm32_mcu_info.page_size;
bank->sectors[i].size = efm32_mcu_info.page_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
efm32x_info->probed = true;
return ERROR_OK;
}
static int efm32x_auto_probe(struct flash_bank *bank)
{
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
if (efm32x_info->probed)
return ERROR_OK;
return efm32x_probe(bank);
}
static int efm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
int ret = 0;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
ret = efm32x_read_lock_data(bank);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read LB data");
return ret;
}
assert(bank->sectors);
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = efm32x_get_page_lock(bank, i);
return ERROR_OK;
}
static int get_efm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct efm32_info info;
int ret;
ret = efm32x_read_info(bank, &info);
if (ret != ERROR_OK) {
LOG_ERROR("Failed to read EFM32 info");
return ret;
}
command_print_sameline(cmd, "%s Gecko, rev %d", info.family_data->name, info.prod_rev);
return ERROR_OK;
}
COMMAND_HANDLER(efm32x_handle_debuglock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
struct efm32x_flash_bank *efm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint32_t *ptr;
ptr = efm32x_info->lb_page + 127;
*ptr = 0;
retval = efm32x_write_lock_data(bank);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to write LB page");
return retval;
}
command_print(CMD, "efm32x debug interface locked, reset the device to apply");
return ERROR_OK;
}
static const struct command_registration efm32x_exec_command_handlers[] = {
{
.name = "debuglock",
.handler = efm32x_handle_debuglock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock the debug interface of the device.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration efm32x_command_handlers[] = {
{
.name = "efm32",
.mode = COMMAND_ANY,
.help = "efm32 flash command group",
.usage = "",
.chain = efm32x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver efm32_flash = {
.name = "efm32",
.commands = efm32x_command_handlers,
.flash_bank_command = efm32x_flash_bank_command,
.erase = efm32x_erase,
.protect = efm32x_protect,
.write = efm32x_write,
.read = default_flash_read,
.probe = efm32x_probe,
.auto_probe = efm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = efm32x_protect_check,
.info = get_efm32x_info,
.free_driver_priv = default_flash_free_driver_priv,
};