openocd/src/flash/nor/fespi.c
Antonio Borneo c0c7d6fe8b openocd: fix Yoda conditions with checkpatch
The new checkpatch can automatically fix the code, but this
feature is still error prone and not complete.

Patch generated automatically through the new checkpatch with
flags "--types CONSTANT_COMPARISON --fix-inplace".

Some Yoda condition is detected by checkpatch but not fixed; it
will be fixed manually in a following commit.

Change-Id: Ifaaa1159e63dbd1db6aa3c017125df9874fa9703
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: http://openocd.zylin.com/6355
Tested-by: jenkins
2021-07-24 10:38:31 +01:00

1050 lines
28 KiB
C

/***************************************************************************
* Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
* Modified by Megan Wachs <megan@sifive.com> from the original stmsmi.c *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
/* The Freedom E SPI controller is a SPI bus controller
* specifically designed for SPI Flash Memories on Freedom E platforms.
*
* Two working modes are available:
* - SW mode: the SPI is controlled by SW. Any custom commands can be sent
* on the bus. Writes are only possible in this mode.
* - HW mode: Memory content is directly
* accessible in CPU memory space. CPU can read and execute memory content.
*/
/* ATTENTION:
* To have flash memory mapped in CPU memory space, the controller
* must have "HW mode" enabled.
* 1) The command "reset init" has to initialize the controller and put
* it in HW mode (this is actually the default out of reset for Freedom E systems).
* 2) every command in this file have to return to prompt in HW mode. */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "spi.h"
#include <jtag/jtag.h>
#include <helper/time_support.h>
#include <target/algorithm.h>
#include "target/riscv/riscv.h"
/* Register offsets */
#define FESPI_REG_SCKDIV 0x00
#define FESPI_REG_SCKMODE 0x04
#define FESPI_REG_CSID 0x10
#define FESPI_REG_CSDEF 0x14
#define FESPI_REG_CSMODE 0x18
#define FESPI_REG_DCSSCK 0x28
#define FESPI_REG_DSCKCS 0x2a
#define FESPI_REG_DINTERCS 0x2c
#define FESPI_REG_DINTERXFR 0x2e
#define FESPI_REG_FMT 0x40
#define FESPI_REG_TXFIFO 0x48
#define FESPI_REG_RXFIFO 0x4c
#define FESPI_REG_TXCTRL 0x50
#define FESPI_REG_RXCTRL 0x54
#define FESPI_REG_FCTRL 0x60
#define FESPI_REG_FFMT 0x64
#define FESPI_REG_IE 0x70
#define FESPI_REG_IP 0x74
/* Fields */
#define FESPI_SCK_POL 0x1
#define FESPI_SCK_PHA 0x2
#define FESPI_FMT_PROTO(x) ((x) & 0x3)
#define FESPI_FMT_ENDIAN(x) (((x) & 0x1) << 2)
#define FESPI_FMT_DIR(x) (((x) & 0x1) << 3)
#define FESPI_FMT_LEN(x) (((x) & 0xf) << 16)
/* TXCTRL register */
#define FESPI_TXWM(x) ((x) & 0xffff)
/* RXCTRL register */
#define FESPI_RXWM(x) ((x) & 0xffff)
#define FESPI_IP_TXWM 0x1
#define FESPI_IP_RXWM 0x2
#define FESPI_FCTRL_EN 0x1
#define FESPI_INSN_CMD_EN 0x1
#define FESPI_INSN_ADDR_LEN(x) (((x) & 0x7) << 1)
#define FESPI_INSN_PAD_CNT(x) (((x) & 0xf) << 4)
#define FESPI_INSN_CMD_PROTO(x) (((x) & 0x3) << 8)
#define FESPI_INSN_ADDR_PROTO(x) (((x) & 0x3) << 10)
#define FESPI_INSN_DATA_PROTO(x) (((x) & 0x3) << 12)
#define FESPI_INSN_CMD_CODE(x) (((x) & 0xff) << 16)
#define FESPI_INSN_PAD_CODE(x) (((x) & 0xff) << 24)
/* Values */
#define FESPI_CSMODE_AUTO 0
#define FESPI_CSMODE_HOLD 2
#define FESPI_CSMODE_OFF 3
#define FESPI_DIR_RX 0
#define FESPI_DIR_TX 1
#define FESPI_PROTO_S 0
#define FESPI_PROTO_D 1
#define FESPI_PROTO_Q 2
#define FESPI_ENDIAN_MSB 0
#define FESPI_ENDIAN_LSB 1
/* Timeout in ms */
#define FESPI_CMD_TIMEOUT (100)
#define FESPI_PROBE_TIMEOUT (100)
#define FESPI_MAX_TIMEOUT (3000)
struct fespi_flash_bank {
bool probed;
target_addr_t ctrl_base;
const struct flash_device *dev;
};
struct fespi_target {
char *name;
uint32_t tap_idcode;
uint32_t ctrl_base;
};
/* TODO !!! What is the right naming convention here? */
static const struct fespi_target target_devices[] = {
/* name, tap_idcode, ctrl_base */
{ "Freedom E310-G000 SPI Flash", 0x10e31913, 0x10014000 },
{ "Freedom E310-G002 SPI Flash", 0x20000913, 0x10014000 },
{ NULL, 0, 0 }
};
FLASH_BANK_COMMAND_HANDLER(fespi_flash_bank_command)
{
struct fespi_flash_bank *fespi_info;
LOG_DEBUG("%s", __func__);
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
fespi_info = malloc(sizeof(struct fespi_flash_bank));
if (!fespi_info) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
bank->driver_priv = fespi_info;
fespi_info->probed = false;
fespi_info->ctrl_base = 0;
if (CMD_ARGC >= 7) {
COMMAND_PARSE_ADDRESS(CMD_ARGV[6], fespi_info->ctrl_base);
LOG_DEBUG("ASSUMING FESPI device at ctrl_base = " TARGET_ADDR_FMT,
fespi_info->ctrl_base);
}
return ERROR_OK;
}
static int fespi_read_reg(struct flash_bank *bank, uint32_t *value, target_addr_t address)
{
struct target *target = bank->target;
struct fespi_flash_bank *fespi_info = bank->driver_priv;
int result = target_read_u32(target, fespi_info->ctrl_base + address, value);
if (result != ERROR_OK) {
LOG_ERROR("fespi_read_reg() error at " TARGET_ADDR_FMT,
fespi_info->ctrl_base + address);
return result;
}
return ERROR_OK;
}
static int fespi_write_reg(struct flash_bank *bank, target_addr_t address, uint32_t value)
{
struct target *target = bank->target;
struct fespi_flash_bank *fespi_info = bank->driver_priv;
int result = target_write_u32(target, fespi_info->ctrl_base + address, value);
if (result != ERROR_OK) {
LOG_ERROR("fespi_write_reg() error writing 0x%" PRIx32 " to " TARGET_ADDR_FMT,
value, fespi_info->ctrl_base + address);
return result;
}
return ERROR_OK;
}
static int fespi_disable_hw_mode(struct flash_bank *bank)
{
uint32_t fctrl;
if (fespi_read_reg(bank, &fctrl, FESPI_REG_FCTRL) != ERROR_OK)
return ERROR_FAIL;
return fespi_write_reg(bank, FESPI_REG_FCTRL, fctrl & ~FESPI_FCTRL_EN);
}
static int fespi_enable_hw_mode(struct flash_bank *bank)
{
uint32_t fctrl;
if (fespi_read_reg(bank, &fctrl, FESPI_REG_FCTRL) != ERROR_OK)
return ERROR_FAIL;
return fespi_write_reg(bank, FESPI_REG_FCTRL, fctrl | FESPI_FCTRL_EN);
}
static int fespi_set_dir(struct flash_bank *bank, bool dir)
{
uint32_t fmt;
if (fespi_read_reg(bank, &fmt, FESPI_REG_FMT) != ERROR_OK)
return ERROR_FAIL;
return fespi_write_reg(bank, FESPI_REG_FMT,
(fmt & ~(FESPI_FMT_DIR(0xFFFFFFFF))) | FESPI_FMT_DIR(dir));
}
static int fespi_txwm_wait(struct flash_bank *bank)
{
int64_t start = timeval_ms();
while (1) {
uint32_t ip;
if (fespi_read_reg(bank, &ip, FESPI_REG_IP) != ERROR_OK)
return ERROR_FAIL;
if (ip & FESPI_IP_TXWM)
break;
int64_t now = timeval_ms();
if (now - start > 1000) {
LOG_ERROR("ip.txwm didn't get set.");
return ERROR_TARGET_TIMEOUT;
}
}
return ERROR_OK;
}
static int fespi_tx(struct flash_bank *bank, uint8_t in)
{
int64_t start = timeval_ms();
while (1) {
uint32_t txfifo;
if (fespi_read_reg(bank, &txfifo, FESPI_REG_TXFIFO) != ERROR_OK)
return ERROR_FAIL;
if (!(txfifo >> 31))
break;
int64_t now = timeval_ms();
if (now - start > 1000) {
LOG_ERROR("txfifo stayed negative.");
return ERROR_TARGET_TIMEOUT;
}
}
return fespi_write_reg(bank, FESPI_REG_TXFIFO, in);
}
static int fespi_rx(struct flash_bank *bank, uint8_t *out)
{
int64_t start = timeval_ms();
uint32_t value;
while (1) {
if (fespi_read_reg(bank, &value, FESPI_REG_RXFIFO) != ERROR_OK)
return ERROR_FAIL;
if (!(value >> 31))
break;
int64_t now = timeval_ms();
if (now - start > 1000) {
LOG_ERROR("rxfifo didn't go positive (value=0x%" PRIx32 ").", value);
return ERROR_TARGET_TIMEOUT;
}
}
if (out)
*out = value & 0xff;
return ERROR_OK;
}
/* TODO!!! Why don't we need to call this after writing? */
static int fespi_wip(struct flash_bank *bank, int timeout)
{
int64_t endtime;
fespi_set_dir(bank, FESPI_DIR_RX);
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD) != ERROR_OK)
return ERROR_FAIL;
endtime = timeval_ms() + timeout;
fespi_tx(bank, SPIFLASH_READ_STATUS);
if (fespi_rx(bank, NULL) != ERROR_OK)
return ERROR_FAIL;
do {
alive_sleep(1);
fespi_tx(bank, 0);
uint8_t rx;
if (fespi_rx(bank, &rx) != ERROR_OK)
return ERROR_FAIL;
if ((rx & SPIFLASH_BSY_BIT) == 0) {
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO) != ERROR_OK)
return ERROR_FAIL;
fespi_set_dir(bank, FESPI_DIR_TX);
return ERROR_OK;
}
} while (timeval_ms() < endtime);
LOG_ERROR("timeout");
return ERROR_FAIL;
}
static int fespi_erase_sector(struct flash_bank *bank, int sector)
{
struct fespi_flash_bank *fespi_info = bank->driver_priv;
int retval;
retval = fespi_tx(bank, SPIFLASH_WRITE_ENABLE);
if (retval != ERROR_OK)
return retval;
retval = fespi_txwm_wait(bank);
if (retval != ERROR_OK)
return retval;
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD) != ERROR_OK)
return ERROR_FAIL;
retval = fespi_tx(bank, fespi_info->dev->erase_cmd);
if (retval != ERROR_OK)
return retval;
sector = bank->sectors[sector].offset;
retval = fespi_tx(bank, sector >> 16);
if (retval != ERROR_OK)
return retval;
retval = fespi_tx(bank, sector >> 8);
if (retval != ERROR_OK)
return retval;
retval = fespi_tx(bank, sector);
if (retval != ERROR_OK)
return retval;
retval = fespi_txwm_wait(bank);
if (retval != ERROR_OK)
return retval;
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO) != ERROR_OK)
return ERROR_FAIL;
retval = fespi_wip(bank, FESPI_MAX_TIMEOUT);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int fespi_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct fespi_flash_bank *fespi_info = bank->driver_priv;
int retval = ERROR_OK;
LOG_DEBUG("%s: from sector %u to sector %u", __func__, first, last);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((last < first) || (last >= bank->num_sectors)) {
LOG_ERROR("Flash sector invalid");
return ERROR_FLASH_SECTOR_INVALID;
}
if (!(fespi_info->probed)) {
LOG_ERROR("Flash bank not probed");
return ERROR_FLASH_BANK_NOT_PROBED;
}
for (unsigned int sector = first; sector <= last; sector++) {
if (bank->sectors[sector].is_protected) {
LOG_ERROR("Flash sector %u protected", sector);
return ERROR_FAIL;
}
}
if (fespi_info->dev->erase_cmd == 0x00)
return ERROR_FLASH_OPER_UNSUPPORTED;
if (fespi_write_reg(bank, FESPI_REG_TXCTRL, FESPI_TXWM(1)) != ERROR_OK)
return ERROR_FAIL;
retval = fespi_txwm_wait(bank);
if (retval != ERROR_OK) {
LOG_ERROR("WM Didn't go high before attempting.");
return retval;
}
/* Disable Hardware accesses*/
if (fespi_disable_hw_mode(bank) != ERROR_OK)
return ERROR_FAIL;
/* poll WIP */
retval = fespi_wip(bank, FESPI_PROBE_TIMEOUT);
if (retval != ERROR_OK)
goto done;
for (unsigned int sector = first; sector <= last; sector++) {
retval = fespi_erase_sector(bank, sector);
if (retval != ERROR_OK)
goto done;
keep_alive();
}
/* Switch to HW mode before return to prompt */
done:
if (fespi_enable_hw_mode(bank) != ERROR_OK)
return ERROR_FAIL;
return retval;
}
static int fespi_protect(struct flash_bank *bank, int set,
unsigned int first, unsigned int last)
{
for (unsigned int sector = first; sector <= last; sector++)
bank->sectors[sector].is_protected = set;
return ERROR_OK;
}
static int slow_fespi_write_buffer(struct flash_bank *bank,
const uint8_t *buffer, uint32_t offset, uint32_t len)
{
uint32_t ii;
if (offset & 0xFF000000) {
LOG_ERROR("FESPI interface does not support greater than 3B addressing, can't write to offset 0x%" PRIx32,
offset);
return ERROR_FAIL;
}
/* TODO!!! assert that len < page size */
fespi_tx(bank, SPIFLASH_WRITE_ENABLE);
fespi_txwm_wait(bank);
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD) != ERROR_OK)
return ERROR_FAIL;
fespi_tx(bank, SPIFLASH_PAGE_PROGRAM);
fespi_tx(bank, offset >> 16);
fespi_tx(bank, offset >> 8);
fespi_tx(bank, offset);
for (ii = 0; ii < len; ii++)
fespi_tx(bank, buffer[ii]);
fespi_txwm_wait(bank);
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO) != ERROR_OK)
return ERROR_FAIL;
keep_alive();
return ERROR_OK;
}
static const uint8_t algorithm_bin[] = {
#include "../../../contrib/loaders/flash/fespi/fespi.inc"
};
#define STEP_EXIT 4
#define STEP_TX 8
#define STEP_TXWM_WAIT 12
#define STEP_WRITE_REG 16
#define STEP_WIP_WAIT 20
#define STEP_SET_DIR 24
#define STEP_NOP 0xff
struct algorithm_steps {
unsigned size;
unsigned used;
uint8_t **steps;
};
static struct algorithm_steps *as_new(void)
{
struct algorithm_steps *as = calloc(1, sizeof(struct algorithm_steps));
as->size = 8;
as->steps = malloc(as->size * sizeof(as->steps[0]));
return as;
}
static struct algorithm_steps *as_delete(struct algorithm_steps *as)
{
for (unsigned step = 0; step < as->used; step++) {
free(as->steps[step]);
as->steps[step] = NULL;
}
free(as->steps);
free(as);
return NULL;
}
static int as_empty(struct algorithm_steps *as)
{
for (unsigned s = 0; s < as->used; s++) {
if (as->steps[s][0] != STEP_NOP)
return 0;
}
return 1;
}
/* Return size of compiled program. */
static unsigned as_compile(struct algorithm_steps *as, uint8_t *target,
unsigned target_size)
{
unsigned offset = 0;
bool finish_early = false;
for (unsigned s = 0; s < as->used && !finish_early; s++) {
unsigned bytes_left = target_size - offset;
switch (as->steps[s][0]) {
case STEP_NOP:
break;
case STEP_TX:
{
unsigned size = as->steps[s][1];
if (size + 3 > bytes_left) {
finish_early = true;
break;
}
memcpy(target + offset, as->steps[s], size + 2);
offset += size + 2;
break;
}
case STEP_WRITE_REG:
if (bytes_left < 4) {
finish_early = true;
break;
}
memcpy(target + offset, as->steps[s], 3);
offset += 3;
break;
case STEP_SET_DIR:
if (bytes_left < 3) {
finish_early = true;
break;
}
memcpy(target + offset, as->steps[s], 2);
offset += 2;
break;
case STEP_TXWM_WAIT:
case STEP_WIP_WAIT:
if (bytes_left < 2) {
finish_early = true;
break;
}
memcpy(target + offset, as->steps[s], 1);
offset += 1;
break;
default:
assert(0);
}
if (!finish_early)
as->steps[s][0] = STEP_NOP;
}
assert(offset + 1 <= target_size);
target[offset++] = STEP_EXIT;
LOG_DEBUG("%d-byte program:", offset);
for (unsigned i = 0; i < offset;) {
char buf[80];
for (unsigned x = 0; i < offset && x < 16; x++, i++)
sprintf(buf + x*3, "%02x ", target[i]);
LOG_DEBUG("%s", buf);
}
return offset;
}
static void as_add_step(struct algorithm_steps *as, uint8_t *step)
{
if (as->used == as->size) {
as->size *= 2;
as->steps = realloc(as->steps, sizeof(as->steps[0]) * as->size);
LOG_DEBUG("Increased size to 0x%x", as->size);
}
as->steps[as->used] = step;
as->used++;
}
static void as_add_tx(struct algorithm_steps *as, unsigned count, const uint8_t *data)
{
LOG_DEBUG("count=%d", count);
while (count > 0) {
unsigned step_count = MIN(count, 255);
uint8_t *step = malloc(step_count + 2);
step[0] = STEP_TX;
step[1] = step_count;
memcpy(step + 2, data, step_count);
as_add_step(as, step);
data += step_count;
count -= step_count;
}
}
static void as_add_tx1(struct algorithm_steps *as, uint8_t byte)
{
uint8_t data[1];
data[0] = byte;
as_add_tx(as, 1, data);
}
static void as_add_write_reg(struct algorithm_steps *as, uint8_t offset, uint8_t data)
{
uint8_t *step = malloc(3);
step[0] = STEP_WRITE_REG;
step[1] = offset;
step[2] = data;
as_add_step(as, step);
}
static void as_add_txwm_wait(struct algorithm_steps *as)
{
uint8_t *step = malloc(1);
step[0] = STEP_TXWM_WAIT;
as_add_step(as, step);
}
static void as_add_wip_wait(struct algorithm_steps *as)
{
uint8_t *step = malloc(1);
step[0] = STEP_WIP_WAIT;
as_add_step(as, step);
}
static void as_add_set_dir(struct algorithm_steps *as, bool dir)
{
uint8_t *step = malloc(2);
step[0] = STEP_SET_DIR;
step[1] = FESPI_FMT_DIR(dir);
as_add_step(as, step);
}
/* This should write something less than or equal to a page.*/
static int steps_add_buffer_write(struct algorithm_steps *as,
const uint8_t *buffer, uint32_t chip_offset, uint32_t len)
{
if (chip_offset & 0xFF000000) {
LOG_ERROR("FESPI interface does not support greater than 3B addressing, can't write to offset 0x%" PRIx32,
chip_offset);
return ERROR_FAIL;
}
as_add_tx1(as, SPIFLASH_WRITE_ENABLE);
as_add_txwm_wait(as);
as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);
uint8_t setup[] = {
SPIFLASH_PAGE_PROGRAM,
chip_offset >> 16,
chip_offset >> 8,
chip_offset,
};
as_add_tx(as, sizeof(setup), setup);
as_add_tx(as, len, buffer);
as_add_txwm_wait(as);
as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);
/* fespi_wip() */
as_add_set_dir(as, FESPI_DIR_RX);
as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);
as_add_wip_wait(as);
as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);
as_add_set_dir(as, FESPI_DIR_TX);
return ERROR_OK;
}
static int steps_execute(struct algorithm_steps *as,
struct flash_bank *bank, struct working_area *algorithm_wa,
struct working_area *data_wa)
{
struct target *target = bank->target;
struct fespi_flash_bank *fespi_info = bank->driver_priv;
uint32_t ctrl_base = fespi_info->ctrl_base;
int xlen = riscv_xlen(target);
struct reg_param reg_params[2];
init_reg_param(&reg_params[0], "a0", xlen, PARAM_OUT);
init_reg_param(&reg_params[1], "a1", xlen, PARAM_OUT);
buf_set_u64(reg_params[0].value, 0, xlen, ctrl_base);
buf_set_u64(reg_params[1].value, 0, xlen, data_wa->address);
int retval = ERROR_OK;
while (!as_empty(as)) {
keep_alive();
uint8_t *data_buf = malloc(data_wa->size);
unsigned bytes = as_compile(as, data_buf, data_wa->size);
retval = target_write_buffer(target, data_wa->address, bytes,
data_buf);
free(data_buf);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to write data to " TARGET_ADDR_FMT ": %d",
data_wa->address, retval);
goto exit;
}
retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
algorithm_wa->address, algorithm_wa->address + 4,
10000, NULL);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to execute algorithm at " TARGET_ADDR_FMT ": %d",
algorithm_wa->address, retval);
goto exit;
}
}
exit:
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[0]);
return retval;
}
static int fespi_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct fespi_flash_bank *fespi_info = bank->driver_priv;
uint32_t cur_count, page_size, page_offset;
int retval = ERROR_OK;
LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32,
__func__, offset, count);
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset + count > fespi_info->dev->size_in_bytes) {
LOG_WARNING("Write past end of flash. Extra data discarded.");
count = fespi_info->dev->size_in_bytes - offset;
}
/* Check sector protection */
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
/* Start offset in or before this sector? */
/* End offset in or behind this sector? */
if ((offset <
(bank->sectors[sector].offset + bank->sectors[sector].size))
&& ((offset + count - 1) >= bank->sectors[sector].offset)
&& bank->sectors[sector].is_protected) {
LOG_ERROR("Flash sector %u protected", sector);
return ERROR_FAIL;
}
}
struct working_area *algorithm_wa;
if (target_alloc_working_area(target, sizeof(algorithm_bin),
&algorithm_wa) != ERROR_OK) {
LOG_WARNING("Couldn't allocate %zd-byte working area.",
sizeof(algorithm_bin));
algorithm_wa = NULL;
} else {
retval = target_write_buffer(target, algorithm_wa->address,
sizeof(algorithm_bin), algorithm_bin);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to write code to " TARGET_ADDR_FMT ": %d",
algorithm_wa->address, retval);
target_free_working_area(target, algorithm_wa);
algorithm_wa = NULL;
}
}
struct working_area *data_wa = NULL;
unsigned data_wa_size = 2 * count;
while (1) {
if (data_wa_size < 128) {
LOG_WARNING("Couldn't allocate data working area.");
target_free_working_area(target, algorithm_wa);
algorithm_wa = NULL;
}
if (target_alloc_working_area_try(target, data_wa_size, &data_wa) ==
ERROR_OK) {
break;
}
data_wa_size /= 2;
}
/* If no valid page_size, use reasonable default. */
page_size = fespi_info->dev->pagesize ?
fespi_info->dev->pagesize : SPIFLASH_DEF_PAGESIZE;
fespi_txwm_wait(bank);
/* Disable Hardware accesses*/
if (fespi_disable_hw_mode(bank) != ERROR_OK)
return ERROR_FAIL;
struct algorithm_steps *as = as_new();
/* poll WIP */
retval = fespi_wip(bank, FESPI_PROBE_TIMEOUT);
if (retval != ERROR_OK)
goto err;
page_offset = offset % page_size;
/* central part, aligned words */
while (count > 0) {
/* clip block at page boundary */
if (page_offset + count > page_size)
cur_count = page_size - page_offset;
else
cur_count = count;
if (algorithm_wa)
retval = steps_add_buffer_write(as, buffer, offset, cur_count);
else
retval = slow_fespi_write_buffer(bank, buffer, offset, cur_count);
if (retval != ERROR_OK)
goto err;
page_offset = 0;
buffer += cur_count;
offset += cur_count;
count -= cur_count;
}
if (algorithm_wa)
retval = steps_execute(as, bank, algorithm_wa, data_wa);
err:
if (algorithm_wa) {
target_free_working_area(target, data_wa);
target_free_working_area(target, algorithm_wa);
}
as_delete(as);
/* Switch to HW mode before return to prompt */
if (fespi_enable_hw_mode(bank) != ERROR_OK)
return ERROR_FAIL;
return retval;
}
/* Return ID of flash device */
/* On exit, SW mode is kept */
static int fespi_read_flash_id(struct flash_bank *bank, uint32_t *id)
{
struct target *target = bank->target;
int retval;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
fespi_txwm_wait(bank);
/* poll WIP */
retval = fespi_wip(bank, FESPI_PROBE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
fespi_set_dir(bank, FESPI_DIR_RX);
/* Send SPI command "read ID" */
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD) != ERROR_OK)
return ERROR_FAIL;
fespi_tx(bank, SPIFLASH_READ_ID);
/* Send dummy bytes to actually read the ID.*/
fespi_tx(bank, 0);
fespi_tx(bank, 0);
fespi_tx(bank, 0);
/* read ID from Receive Register */
*id = 0;
if (fespi_rx(bank, NULL) != ERROR_OK)
return ERROR_FAIL;
uint8_t rx;
if (fespi_rx(bank, &rx) != ERROR_OK)
return ERROR_FAIL;
*id = rx;
if (fespi_rx(bank, &rx) != ERROR_OK)
return ERROR_FAIL;
*id |= (rx << 8);
if (fespi_rx(bank, &rx) != ERROR_OK)
return ERROR_FAIL;
*id |= (rx << 16);
if (fespi_write_reg(bank, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO) != ERROR_OK)
return ERROR_FAIL;
fespi_set_dir(bank, FESPI_DIR_TX);
return ERROR_OK;
}
static int fespi_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct fespi_flash_bank *fespi_info = bank->driver_priv;
struct flash_sector *sectors;
uint32_t id = 0; /* silence uninitialized warning */
const struct fespi_target *target_device;
int retval;
uint32_t sectorsize;
if (fespi_info->probed)
free(bank->sectors);
fespi_info->probed = false;
if (fespi_info->ctrl_base == 0) {
for (target_device = target_devices ; target_device->name ; ++target_device)
if (target_device->tap_idcode == target->tap->idcode)
break;
if (!target_device->name) {
LOG_ERROR("Device ID 0x%" PRIx32 " is not known as FESPI capable",
target->tap->idcode);
return ERROR_FAIL;
}
fespi_info->ctrl_base = target_device->ctrl_base;
LOG_DEBUG("Valid FESPI on device %s at address " TARGET_ADDR_FMT,
target_device->name, bank->base);
} else {
LOG_DEBUG("Assuming FESPI as specified at address " TARGET_ADDR_FMT
" with ctrl at " TARGET_ADDR_FMT, fespi_info->ctrl_base,
bank->base);
}
/* read and decode flash ID; returns in SW mode */
if (fespi_write_reg(bank, FESPI_REG_TXCTRL, FESPI_TXWM(1)) != ERROR_OK)
return ERROR_FAIL;
fespi_set_dir(bank, FESPI_DIR_TX);
/* Disable Hardware accesses*/
if (fespi_disable_hw_mode(bank) != ERROR_OK)
return ERROR_FAIL;
retval = fespi_read_flash_id(bank, &id);
if (fespi_enable_hw_mode(bank) != ERROR_OK)
return ERROR_FAIL;
if (retval != ERROR_OK)
return retval;
fespi_info->dev = NULL;
for (const struct flash_device *p = flash_devices; p->name ; p++)
if (p->device_id == id) {
fespi_info->dev = p;
break;
}
if (!fespi_info->dev) {
LOG_ERROR("Unknown flash device (ID 0x%08" PRIx32 ")", id);
return ERROR_FAIL;
}
LOG_INFO("Found flash device \'%s\' (ID 0x%08" PRIx32 ")",
fespi_info->dev->name, fespi_info->dev->device_id);
/* Set correct size value */
bank->size = fespi_info->dev->size_in_bytes;
if (bank->size <= (1UL << 16))
LOG_WARNING("device needs 2-byte addresses - not implemented");
if (bank->size > (1UL << 24))
LOG_WARNING("device needs paging or 4-byte addresses - not implemented");
/* if no sectors, treat whole bank as single sector */
sectorsize = fespi_info->dev->sectorsize ?
fespi_info->dev->sectorsize : fespi_info->dev->size_in_bytes;
/* create and fill sectors array */
bank->num_sectors = fespi_info->dev->size_in_bytes / sectorsize;
sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
if (!sectors) {
LOG_ERROR("not enough memory");
return ERROR_FAIL;
}
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
sectors[sector].offset = sector * sectorsize;
sectors[sector].size = sectorsize;
sectors[sector].is_erased = -1;
sectors[sector].is_protected = 0;
}
bank->sectors = sectors;
fespi_info->probed = true;
return ERROR_OK;
}
static int fespi_auto_probe(struct flash_bank *bank)
{
struct fespi_flash_bank *fespi_info = bank->driver_priv;
if (fespi_info->probed)
return ERROR_OK;
return fespi_probe(bank);
}
static int fespi_protect_check(struct flash_bank *bank)
{
/* Nothing to do. Protection is only handled in SW. */
return ERROR_OK;
}
static int get_fespi_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct fespi_flash_bank *fespi_info = bank->driver_priv;
if (!(fespi_info->probed)) {
command_print_sameline(cmd, "\nFESPI flash bank not probed yet\n");
return ERROR_OK;
}
command_print_sameline(cmd, "\nFESPI flash information:\n"
" Device \'%s\' (ID 0x%08" PRIx32 ")\n",
fespi_info->dev->name, fespi_info->dev->device_id);
return ERROR_OK;
}
const struct flash_driver fespi_flash = {
.name = "fespi",
.flash_bank_command = fespi_flash_bank_command,
.erase = fespi_erase,
.protect = fespi_protect,
.write = fespi_write,
.read = default_flash_read,
.probe = fespi_probe,
.auto_probe = fespi_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = fespi_protect_check,
.info = get_fespi_info,
.free_driver_priv = default_flash_free_driver_priv
};