openocd/src/flash/flash.c
Zachary T Welch 3cb0b56005 add flash/nor/{tcl.c,imp.h} from flash/flash.c
Moves the top-level 'flash' command handlers into flash/nor/tcl.c,
with flash/nor/imp.h providing an internal implementation header
to share non-public API components.
2009-12-04 03:34:33 -08:00

1259 lines
29 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "flash.h"
#include "common.h"
#include <target/image.h>
#include <helper/time_support.h>
static int flash_write_unlock(struct target *target, struct image *image, uint32_t *written, int erase, bool unlock);
/* flash drivers
*/
extern struct flash_driver lpc2000_flash;
extern struct flash_driver lpc288x_flash;
extern struct flash_driver lpc2900_flash;
extern struct flash_driver cfi_flash;
extern struct flash_driver at91sam3_flash;
extern struct flash_driver at91sam7_flash;
extern struct flash_driver str7x_flash;
extern struct flash_driver str9x_flash;
extern struct flash_driver aduc702x_flash;
extern struct flash_driver stellaris_flash;
extern struct flash_driver str9xpec_flash;
extern struct flash_driver stm32x_flash;
extern struct flash_driver tms470_flash;
extern struct flash_driver ecosflash_flash;
extern struct flash_driver ocl_flash;
extern struct flash_driver pic32mx_flash;
extern struct flash_driver avr_flash;
extern struct flash_driver faux_flash;
struct flash_driver *flash_drivers[] = {
&lpc2000_flash,
&lpc288x_flash,
&lpc2900_flash,
&cfi_flash,
&at91sam7_flash,
&at91sam3_flash,
&str7x_flash,
&str9x_flash,
&aduc702x_flash,
&stellaris_flash,
&str9xpec_flash,
&stm32x_flash,
&tms470_flash,
&ecosflash_flash,
&ocl_flash,
&pic32mx_flash,
&avr_flash,
&faux_flash,
NULL,
};
struct flash_bank *flash_banks;
/* wafer thin wrapper for invoking the flash driver */
static int flash_driver_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
{
int retval;
retval = bank->driver->write(bank, buffer, offset, count);
if (retval != ERROR_OK)
{
LOG_ERROR("error writing to flash at address 0x%08" PRIx32 " at offset 0x%8.8" PRIx32 " (%d)",
bank->base, offset, retval);
}
return retval;
}
static int flash_driver_erase(struct flash_bank *bank, int first, int last)
{
int retval;
retval = bank->driver->erase(bank, first, last);
if (retval != ERROR_OK)
{
LOG_ERROR("failed erasing sectors %d to %d (%d)", first, last, retval);
}
return retval;
}
int flash_driver_protect(struct flash_bank *bank, int set, int first, int last)
{
int retval;
retval = bank->driver->protect(bank, set, first, last);
if (retval != ERROR_OK)
{
LOG_ERROR("failed setting protection for areas %d to %d (%d)", first, last, retval);
}
return retval;
}
struct flash_bank *get_flash_bank_by_num_noprobe(int num)
{
struct flash_bank *p;
int i = 0;
for (p = flash_banks; p; p = p->next)
{
if (i++ == num)
{
return p;
}
}
LOG_ERROR("flash bank %d does not exist", num);
return NULL;
}
int flash_get_bank_count(void)
{
struct flash_bank *p;
int i = 0;
for (p = flash_banks; p; p = p->next)
{
i++;
}
return i;
}
struct flash_bank *get_flash_bank_by_name(const char *name)
{
unsigned requested = get_flash_name_index(name);
unsigned found = 0;
struct flash_bank *bank;
for (bank = flash_banks; NULL != bank; bank = bank->next)
{
if (strcmp(bank->name, name) == 0)
return bank;
if (!flash_driver_name_matches(bank->driver->name, name))
continue;
if (++found < requested)
continue;
return bank;
}
return NULL;
}
struct flash_bank *get_flash_bank_by_num(int num)
{
struct flash_bank *p = get_flash_bank_by_num_noprobe(num);
int retval;
if (p == NULL)
return NULL;
retval = p->driver->auto_probe(p);
if (retval != ERROR_OK)
{
LOG_ERROR("auto_probe failed %d\n", retval);
return NULL;
}
return p;
}
COMMAND_HELPER(flash_command_get_bank, unsigned name_index,
struct flash_bank **bank)
{
const char *name = CMD_ARGV[name_index];
*bank = get_flash_bank_by_name(name);
if (*bank)
return ERROR_OK;
unsigned bank_num;
COMMAND_PARSE_NUMBER(uint, name, bank_num);
*bank = get_flash_bank_by_num(bank_num);
if (!*bank)
{
command_print(CMD_CTX, "flash bank '%s' not found", name);
return ERROR_INVALID_ARGUMENTS;
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_flash_info_command)
{
struct flash_bank *p;
uint32_t i = 0;
int j = 0;
int retval;
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
unsigned bank_nr;
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], bank_nr);
for (p = flash_banks; p; p = p->next, i++)
{
if (i != bank_nr)
continue;
char buf[1024];
/* attempt auto probe */
if ((retval = p->driver->auto_probe(p)) != ERROR_OK)
return retval;
command_print(CMD_CTX,
"#%" PRIi32 " : %s at 0x%8.8" PRIx32 ", size 0x%8.8" PRIx32 ", buswidth %i, chipwidth %i",
i,
p->driver->name,
p->base,
p->size,
p->bus_width,
p->chip_width);
for (j = 0; j < p->num_sectors; j++)
{
char *protect_state;
if (p->sectors[j].is_protected == 0)
protect_state = "not protected";
else if (p->sectors[j].is_protected == 1)
protect_state = "protected";
else
protect_state = "protection state unknown";
command_print(CMD_CTX,
"\t#%3i: 0x%8.8" PRIx32 " (0x%" PRIx32 " %" PRIi32 "kB) %s",
j,
p->sectors[j].offset,
p->sectors[j].size,
p->sectors[j].size >> 10,
protect_state);
}
*buf = '\0'; /* initialize buffer, otherwise it migh contain garbage if driver function fails */
retval = p->driver->info(p, buf, sizeof(buf));
command_print(CMD_CTX, "%s", buf);
if (retval != ERROR_OK)
LOG_ERROR("error retrieving flash info (%d)", retval);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_flash_probe_command)
{
int retval;
if (CMD_ARGC != 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
unsigned bank_nr;
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], bank_nr);
struct flash_bank *p = get_flash_bank_by_num_noprobe(bank_nr);
if (p)
{
if ((retval = p->driver->probe(p)) == ERROR_OK)
{
command_print(CMD_CTX, "flash '%s' found at 0x%8.8" PRIx32, p->driver->name, p->base);
}
else if (retval == ERROR_FLASH_BANK_INVALID)
{
command_print(CMD_CTX, "probing failed for flash bank '#%s' at 0x%8.8" PRIx32,
CMD_ARGV[0], p->base);
}
else
{
command_print(CMD_CTX, "unknown error when probing flash bank '#%s' at 0x%8.8" PRIx32,
CMD_ARGV[0], p->base);
}
}
else
{
command_print(CMD_CTX, "flash bank '#%s' is out of bounds", CMD_ARGV[0]);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_flash_erase_check_command)
{
if (CMD_ARGC != 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *p;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &p);
if (ERROR_OK != retval)
return retval;
int j;
if ((retval = p->driver->erase_check(p)) == ERROR_OK)
{
command_print(CMD_CTX, "successfully checked erase state");
}
else
{
command_print(CMD_CTX, "unknown error when checking erase state of flash bank #%s at 0x%8.8" PRIx32,
CMD_ARGV[0], p->base);
}
for (j = 0; j < p->num_sectors; j++)
{
char *erase_state;
if (p->sectors[j].is_erased == 0)
erase_state = "not erased";
else if (p->sectors[j].is_erased == 1)
erase_state = "erased";
else
erase_state = "erase state unknown";
command_print(CMD_CTX,
"\t#%3i: 0x%8.8" PRIx32 " (0x%" PRIx32 " %" PRIi32 "kB) %s",
j,
p->sectors[j].offset,
p->sectors[j].size,
p->sectors[j].size >> 10,
erase_state);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_flash_erase_address_command)
{
struct flash_bank *p;
int retval;
int address;
int length;
struct target *target = get_current_target(CMD_CTX);
if (CMD_ARGC != 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], length);
if (length <= 0)
{
command_print(CMD_CTX, "Length must be >0");
return ERROR_COMMAND_SYNTAX_ERROR;
}
p = get_flash_bank_by_addr(target, address);
if (p == NULL)
{
return ERROR_FAIL;
}
/* We can't know if we did a resume + halt, in which case we no longer know the erased state */
flash_set_dirty();
struct duration bench;
duration_start(&bench);
retval = flash_erase_address_range(target, address, length);
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
{
command_print(CMD_CTX, "erased address 0x%8.8x (length %i)"
" in %fs (%0.3f kb/s)", address, length,
duration_elapsed(&bench), duration_kbps(&bench, length));
}
return retval;
}
COMMAND_HANDLER(handle_flash_protect_check_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *p;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &p);
if (ERROR_OK != retval)
return retval;
if ((retval = p->driver->protect_check(p)) == ERROR_OK)
{
command_print(CMD_CTX, "successfully checked protect state");
}
else if (retval == ERROR_FLASH_OPERATION_FAILED)
{
command_print(CMD_CTX, "checking protection state failed (possibly unsupported) by flash #%s at 0x%8.8" PRIx32, CMD_ARGV[0], p->base);
}
else
{
command_print(CMD_CTX, "unknown error when checking protection state of flash bank '#%s' at 0x%8.8" PRIx32, CMD_ARGV[0], p->base);
}
return ERROR_OK;
}
static int flash_check_sector_parameters(struct command_context *cmd_ctx,
uint32_t first, uint32_t last, uint32_t num_sectors)
{
if (!(first <= last)) {
command_print(cmd_ctx, "ERROR: "
"first sector must be <= last sector");
return ERROR_FAIL;
}
if (!(last <= (num_sectors - 1))) {
command_print(cmd_ctx, "ERROR: last sector must be <= %d",
(int) num_sectors - 1);
return ERROR_FAIL;
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_flash_erase_command)
{
if (CMD_ARGC != 3)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t bank_nr;
uint32_t first;
uint32_t last;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], bank_nr);
struct flash_bank *p = get_flash_bank_by_num(bank_nr);
if (!p)
return ERROR_OK;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], first);
if (strcmp(CMD_ARGV[2], "last") == 0)
last = p->num_sectors - 1;
else
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], last);
int retval;
if ((retval = flash_check_sector_parameters(CMD_CTX,
first, last, p->num_sectors)) != ERROR_OK)
return retval;
struct duration bench;
duration_start(&bench);
retval = flash_driver_erase(p, first, last);
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
{
command_print(CMD_CTX, "erased sectors %" PRIu32 " "
"through %" PRIu32" on flash bank %" PRIu32 " "
"in %fs", first, last, bank_nr, duration_elapsed(&bench));
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_flash_protect_command)
{
if (CMD_ARGC != 4)
return ERROR_COMMAND_SYNTAX_ERROR;
uint32_t bank_nr;
uint32_t first;
uint32_t last;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], bank_nr);
struct flash_bank *p = get_flash_bank_by_num(bank_nr);
if (!p)
return ERROR_OK;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], first);
if (strcmp(CMD_ARGV[2], "last") == 0)
last = p->num_sectors - 1;
else
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], last);
bool set;
COMMAND_PARSE_ON_OFF(CMD_ARGV[3], set);
int retval;
if ((retval = flash_check_sector_parameters(CMD_CTX,
first, last, p->num_sectors)) != ERROR_OK)
return retval;
retval = flash_driver_protect(p, set, first, last);
if (retval == ERROR_OK) {
command_print(CMD_CTX, "%s protection for sectors %i "
"through %i on flash bank %i",
(set) ? "set" : "cleared", (int) first,
(int) last, (int) bank_nr);
}
return ERROR_OK;
}
COMMAND_HANDLER(handle_flash_write_image_command)
{
struct target *target = get_current_target(CMD_CTX);
struct image image;
uint32_t written;
int retval;
if (CMD_ARGC < 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* flash auto-erase is disabled by default*/
int auto_erase = 0;
bool auto_unlock = false;
for (;;)
{
if (strcmp(CMD_ARGV[0], "erase") == 0)
{
auto_erase = 1;
CMD_ARGV++;
CMD_ARGC--;
command_print(CMD_CTX, "auto erase enabled");
} else if (strcmp(CMD_ARGV[0], "unlock") == 0)
{
auto_unlock = true;
CMD_ARGV++;
CMD_ARGC--;
command_print(CMD_CTX, "auto unlock enabled");
} else
{
break;
}
}
if (CMD_ARGC < 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (!target)
{
LOG_ERROR("no target selected");
return ERROR_FAIL;
}
struct duration bench;
duration_start(&bench);
if (CMD_ARGC >= 2)
{
image.base_address_set = 1;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], image.base_address);
}
else
{
image.base_address_set = 0;
image.base_address = 0x0;
}
image.start_address_set = 0;
retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
if (retval != ERROR_OK)
{
return retval;
}
retval = flash_write_unlock(target, &image, &written, auto_erase, auto_unlock);
if (retval != ERROR_OK)
{
image_close(&image);
return retval;
}
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
{
command_print(CMD_CTX, "wrote %" PRIu32 " byte from file %s "
"in %fs (%0.3f kb/s)", written, CMD_ARGV[0],
duration_elapsed(&bench), duration_kbps(&bench, written));
}
image_close(&image);
return retval;
}
COMMAND_HANDLER(handle_flash_fill_command)
{
int err = ERROR_OK;
uint32_t address;
uint32_t pattern;
uint32_t count;
uint32_t wrote = 0;
uint32_t cur_size = 0;
uint32_t chunk_count;
struct target *target = get_current_target(CMD_CTX);
uint32_t i;
uint32_t wordsize;
int retval = ERROR_OK;
static size_t const chunksize = 1024;
uint8_t *chunk = malloc(chunksize);
if (chunk == NULL)
return ERROR_FAIL;
uint8_t *readback = malloc(chunksize);
if (readback == NULL)
{
free(chunk);
return ERROR_FAIL;
}
if (CMD_ARGC != 3)
{
retval = ERROR_COMMAND_SYNTAX_ERROR;
goto done;
}
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], pattern);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], count);
if (count == 0)
goto done;
switch (CMD_NAME[4])
{
case 'w':
wordsize = 4;
break;
case 'h':
wordsize = 2;
break;
case 'b':
wordsize = 1;
break;
default:
retval = ERROR_COMMAND_SYNTAX_ERROR;
goto done;
}
chunk_count = MIN(count, (chunksize / wordsize));
switch (wordsize)
{
case 4:
for (i = 0; i < chunk_count; i++)
{
target_buffer_set_u32(target, chunk + i * wordsize, pattern);
}
break;
case 2:
for (i = 0; i < chunk_count; i++)
{
target_buffer_set_u16(target, chunk + i * wordsize, pattern);
}
break;
case 1:
memset(chunk, pattern, chunk_count);
break;
default:
LOG_ERROR("BUG: can't happen");
exit(-1);
}
struct duration bench;
duration_start(&bench);
for (wrote = 0; wrote < (count*wordsize); wrote += cur_size)
{
cur_size = MIN((count*wordsize - wrote), sizeof(chunk));
struct flash_bank *bank;
bank = get_flash_bank_by_addr(target, address);
if (bank == NULL)
{
retval = ERROR_FAIL;
goto done;
}
err = flash_driver_write(bank, chunk, address - bank->base + wrote, cur_size);
if (err != ERROR_OK)
{
retval = err;
goto done;
}
err = target_read_buffer(target, address + wrote, cur_size, readback);
if (err != ERROR_OK)
{
retval = err;
goto done;
}
unsigned i;
for (i = 0; i < cur_size; i++)
{
if (readback[i]!=chunk[i])
{
LOG_ERROR("Verfication error address 0x%08" PRIx32 ", read back 0x%02x, expected 0x%02x",
address + wrote + i, readback[i], chunk[i]);
retval = ERROR_FAIL;
goto done;
}
}
}
if (duration_measure(&bench) == ERROR_OK)
{
command_print(CMD_CTX, "wrote %" PRIu32 " bytes to 0x%8.8" PRIx32
" in %fs (%0.3f kb/s)", wrote, address,
duration_elapsed(&bench), duration_kbps(&bench, wrote));
}
done:
free(readback);
free(chunk);
return retval;
}
COMMAND_HANDLER(handle_flash_write_bank_command)
{
uint32_t offset;
uint8_t *buffer;
struct fileio fileio;
if (CMD_ARGC != 3)
return ERROR_COMMAND_SYNTAX_ERROR;
struct duration bench;
duration_start(&bench);
struct flash_bank *p;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &p);
if (ERROR_OK != retval)
return retval;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], offset);
if (fileio_open(&fileio, CMD_ARGV[1], FILEIO_READ, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
buffer = malloc(fileio.size);
size_t buf_cnt;
if (fileio_read(&fileio, fileio.size, buffer, &buf_cnt) != ERROR_OK)
{
free(buffer);
fileio_close(&fileio);
return ERROR_OK;
}
retval = flash_driver_write(p, buffer, offset, buf_cnt);
free(buffer);
buffer = NULL;
if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
{
command_print(CMD_CTX, "wrote %zu byte from file %s to flash bank %u"
" at offset 0x%8.8" PRIx32 " in %fs (%0.3f kb/s)",
fileio.size, CMD_ARGV[1], p->bank_number, offset,
duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
}
fileio_close(&fileio);
return retval;
}
void flash_set_dirty(void)
{
struct flash_bank *c;
int i;
/* set all flash to require erasing */
for (c = flash_banks; c; c = c->next)
{
for (i = 0; i < c->num_sectors; i++)
{
c->sectors[i].is_erased = 0;
}
}
}
/* lookup flash bank by address */
struct flash_bank *get_flash_bank_by_addr(struct target *target, uint32_t addr)
{
struct flash_bank *c;
/* cycle through bank list */
for (c = flash_banks; c; c = c->next)
{
int retval;
retval = c->driver->auto_probe(c);
if (retval != ERROR_OK)
{
LOG_ERROR("auto_probe failed %d\n", retval);
return NULL;
}
/* check whether address belongs to this flash bank */
if ((addr >= c->base) && (addr <= c->base + (c->size - 1)) && target == c->target)
return c;
}
LOG_ERROR("No flash at address 0x%08" PRIx32 "\n", addr);
return NULL;
}
/* erase given flash region, selects proper bank according to target and address */
static int flash_iterate_address_range(struct target *target, uint32_t addr, uint32_t length,
int (*callback)(struct flash_bank *bank, int first, int last))
{
struct flash_bank *c;
int first = -1;
int last = -1;
int i;
if ((c = get_flash_bank_by_addr(target, addr)) == NULL)
return ERROR_FLASH_DST_OUT_OF_BANK; /* no corresponding bank found */
if (c->size == 0 || c->num_sectors == 0)
{
LOG_ERROR("Bank is invalid");
return ERROR_FLASH_BANK_INVALID;
}
if (length == 0)
{
/* special case, erase whole bank when length is zero */
if (addr != c->base)
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
return callback(c, 0, c->num_sectors - 1);
}
/* check whether it fits */
if (addr + length - 1 > c->base + c->size - 1)
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
addr -= c->base;
for (i = 0; i < c->num_sectors; i++)
{
/* check whether sector overlaps with the given range and is not yet erased */
if (addr < c->sectors[i].offset + c->sectors[i].size && addr + length > c->sectors[i].offset && c->sectors[i].is_erased != 1) {
/* if first is not set yet then this is the first sector */
if (first == -1)
first = i;
last = i; /* and it is the last one so far in any case */
}
}
if (first == -1 || last == -1)
return ERROR_OK;
return callback(c, first, last);
}
int flash_erase_address_range(struct target *target, uint32_t addr, uint32_t length)
{
return flash_iterate_address_range(target, addr, length, &flash_driver_erase);
}
static int flash_driver_unprotect(struct flash_bank *bank, int first, int last)
{
return flash_driver_protect(bank, 0, first, last);
}
static int flash_unlock_address_range(struct target *target, uint32_t addr, uint32_t length)
{
return flash_iterate_address_range(target, addr, length, &flash_driver_unprotect);
}
/* write (optional verify) an image to flash memory of the given target */
static int flash_write_unlock(struct target *target, struct image *image, uint32_t *written, int erase, bool unlock)
{
int retval = ERROR_OK;
int section;
uint32_t section_offset;
struct flash_bank *c;
int *padding;
section = 0;
section_offset = 0;
if (written)
*written = 0;
if (erase)
{
/* assume all sectors need erasing - stops any problems
* when flash_write is called multiple times */
flash_set_dirty();
}
/* allocate padding array */
padding = malloc(image->num_sections * sizeof(padding));
/* loop until we reach end of the image */
while (section < image->num_sections)
{
uint32_t buffer_size;
uint8_t *buffer;
int section_first;
int section_last;
uint32_t run_address = image->sections[section].base_address + section_offset;
uint32_t run_size = image->sections[section].size - section_offset;
int pad_bytes = 0;
if (image->sections[section].size == 0)
{
LOG_WARNING("empty section %d", section);
section++;
section_offset = 0;
continue;
}
/* find the corresponding flash bank */
if ((c = get_flash_bank_by_addr(target, run_address)) == NULL)
{
section++; /* and skip it */
section_offset = 0;
continue;
}
/* collect consecutive sections which fall into the same bank */
section_first = section;
section_last = section;
padding[section] = 0;
while ((run_address + run_size - 1 < c->base + c->size - 1)
&& (section_last + 1 < image->num_sections))
{
if (image->sections[section_last + 1].base_address < (run_address + run_size))
{
LOG_DEBUG("section %d out of order(very slightly surprising, but supported)", section_last + 1);
break;
}
/* if we have multiple sections within our image, flash programming could fail due to alignment issues
* attempt to rebuild a consecutive buffer for the flash loader */
pad_bytes = (image->sections[section_last + 1].base_address) - (run_address + run_size);
if ((run_address + run_size + pad_bytes) > (c->base + c->size))
break;
padding[section_last] = pad_bytes;
run_size += image->sections[++section_last].size;
run_size += pad_bytes;
padding[section_last] = 0;
LOG_INFO("Padding image section %d with %d bytes", section_last-1, pad_bytes);
}
/* fit the run into bank constraints */
if (run_address + run_size - 1 > c->base + c->size - 1)
{
LOG_WARNING("writing %d bytes only - as image section is %d bytes and bank is only %d bytes", \
(int)(c->base + c->size - run_address), (int)(run_size), (int)(c->size));
run_size = c->base + c->size - run_address;
}
/* allocate buffer */
buffer = malloc(run_size);
buffer_size = 0;
/* read sections to the buffer */
while (buffer_size < run_size)
{
size_t size_read;
size_read = run_size - buffer_size;
if (size_read > image->sections[section].size - section_offset)
size_read = image->sections[section].size - section_offset;
if ((retval = image_read_section(image, section, section_offset,
size_read, buffer + buffer_size, &size_read)) != ERROR_OK || size_read == 0)
{
free(buffer);
free(padding);
return retval;
}
/* see if we need to pad the section */
while (padding[section]--)
(buffer + buffer_size)[size_read++] = 0xff;
buffer_size += size_read;
section_offset += size_read;
if (section_offset >= image->sections[section].size)
{
section++;
section_offset = 0;
}
}
retval = ERROR_OK;
if (unlock)
{
retval = flash_unlock_address_range(target, run_address, run_size);
}
if (retval == ERROR_OK)
{
if (erase)
{
/* calculate and erase sectors */
retval = flash_erase_address_range(target, run_address, run_size);
}
}
if (retval == ERROR_OK)
{
/* write flash sectors */
retval = flash_driver_write(c, buffer, run_address - c->base, run_size);
}
free(buffer);
if (retval != ERROR_OK)
{
free(padding);
return retval; /* abort operation */
}
if (written != NULL)
*written += run_size; /* add run size to total written counter */
}
free(padding);
return retval;
}
int flash_write(struct target *target, struct image *image, uint32_t *written, int erase)
{
return flash_write_unlock(target, image, written, erase, false);
}
int default_flash_mem_blank_check(struct flash_bank *bank)
{
struct target *target = bank->target;
const int buffer_size = 1024;
int i;
uint32_t nBytes;
int retval = ERROR_OK;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint8_t *buffer = malloc(buffer_size);
for (i = 0; i < bank->num_sectors; i++)
{
uint32_t j;
bank->sectors[i].is_erased = 1;
for (j = 0; j < bank->sectors[i].size; j += buffer_size)
{
uint32_t chunk;
chunk = buffer_size;
if (chunk > (j - bank->sectors[i].size))
{
chunk = (j - bank->sectors[i].size);
}
retval = target_read_memory(target, bank->base + bank->sectors[i].offset + j, 4, chunk/4, buffer);
if (retval != ERROR_OK)
{
goto done;
}
for (nBytes = 0; nBytes < chunk; nBytes++)
{
if (buffer[nBytes] != 0xFF)
{
bank->sectors[i].is_erased = 0;
break;
}
}
}
}
done:
free(buffer);
return retval;
}
int default_flash_blank_check(struct flash_bank *bank)
{
struct target *target = bank->target;
int i;
int retval;
int fast_check = 0;
uint32_t blank;
if (bank->target->state != TARGET_HALTED)
{
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
for (i = 0; i < bank->num_sectors; i++)
{
uint32_t address = bank->base + bank->sectors[i].offset;
uint32_t size = bank->sectors[i].size;
if ((retval = target_blank_check_memory(target, address, size, &blank)) != ERROR_OK)
{
fast_check = 0;
break;
}
if (blank == 0xFF)
bank->sectors[i].is_erased = 1;
else
bank->sectors[i].is_erased = 0;
fast_check = 1;
}
if (!fast_check)
{
LOG_USER("Running slow fallback erase check - add working memory");
return default_flash_mem_blank_check(bank);
}
return ERROR_OK;
}
static const struct command_registration flash_exec_command_handlers[] = {
{
.name = "probe",
.handler = &handle_flash_probe_command,
.mode = COMMAND_EXEC,
.usage = "<bank>",
.help = "identify flash bank",
},
{
.name = "info",
.handler = &handle_flash_info_command,
.mode = COMMAND_EXEC,
.usage = "<bank>",
.help = "print bank information",
},
{
.name = "erase_check",
.handler = &handle_flash_erase_check_command,
.mode = COMMAND_EXEC,
.usage = "<bank>",
.help = "check erase state of sectors",
},
{
.name = "protect_check",
.handler = &handle_flash_protect_check_command,
.mode = COMMAND_EXEC,
.usage = "<bank>",
.help = "check protection state of sectors",
},
{
.name = "erase_sector",
.handler = &handle_flash_erase_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <first> <last>",
.help = "erase sectors",
},
{
.name = "erase_address",
.handler = &handle_flash_erase_address_command,
.mode = COMMAND_EXEC,
.usage = "<address> <length>",
.help = "erase address range",
},
{
.name = "fillw",
.handler = &handle_flash_fill_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <address> <word_pattern> <count>",
.help = "fill with pattern (no autoerase)",
},
{
.name = "fillh",
.handler = &handle_flash_fill_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <address> <halfword_pattern> <count>",
.help = "fill with pattern",
},
{
.name = "fillb",
.handler = &handle_flash_fill_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <address> <byte_pattern> <count>",
.help = "fill with pattern",
},
{
.name = "write_bank",
.handler = &handle_flash_write_bank_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <file> <offset>",
.help = "write binary data",
},
{
.name = "write_image",
.handler = &handle_flash_write_image_command,
.mode = COMMAND_EXEC,
.usage = "<bank> [erase] [unlock] <file> [offset] [type]",
.help = "write an image to flash"
},
{
.name = "protect",
.handler = &handle_flash_protect_command,
.mode = COMMAND_EXEC,
.usage = "<bank> <first> <last> <on | off>",
.help = "set protection of sectors",
},
COMMAND_REGISTRATION_DONE
};
int flash_init_drivers(struct command_context *cmd_ctx)
{
if (!flash_banks)
return ERROR_OK;
struct command *parent = command_find_in_context(cmd_ctx, "flash");
return register_commands(cmd_ctx, parent, flash_exec_command_handlers);
}