openocd/src/flash/nor/stm32l4x.c

1533 lines
46 KiB
C

/***************************************************************************
* Copyright (C) 2015 by Uwe Bonnes *
* bon@elektron.ikp.physik.tu-darmstadt.de *
* *
* Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics *
* tarek.bouchkati@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include "bits.h"
#include "stm32l4x.h"
/* STM32L4xxx series for reference.
*
* RM0351 (STM32L4x5/STM32L4x6)
* http://www.st.com/resource/en/reference_manual/dm00083560.pdf
*
* RM0394 (STM32L43x/44x/45x/46x)
* http://www.st.com/resource/en/reference_manual/dm00151940.pdf
*
* RM0432 (STM32L4R/4Sxx)
* http://www.st.com/resource/en/reference_manual/dm00310109.pdf
*
* STM32L476RG Datasheet (for erase timing)
* http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
*
* The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
* an option byte is available to map all sectors to the first bank.
* Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
* handlers do!
*
* RM0394 devices have a single bank only.
*
* RM0432 devices have single and dual bank operating modes.
* - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
* - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
* Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
*
* Bank mode is controlled by two different bits in option bytes register.
* - for STM32L4R/Sxx
* In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
* In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
* - for STM32L4P5/Q5x
* In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
* In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
*
*/
/* STM32WBxxx series for reference.
*
* RM0434 (STM32WB55)
* http://www.st.com/resource/en/reference_manual/dm00318631.pdf
*
* RM0471 (STM32WB50)
* http://www.st.com/resource/en/reference_manual/dm00622834.pdf
*/
/* STM32WLxxx series for reference.
*
* RM0461 (STM32WLEx)
* http://www.st.com/resource/en/reference_manual/dm00530369.pdf
*/
/* STM32G0xxx series for reference.
*
* RM0444 (STM32G0x1)
* http://www.st.com/resource/en/reference_manual/dm00371828.pdf
*
* RM0454 (STM32G0x0)
* http://www.st.com/resource/en/reference_manual/dm00463896.pdf
*/
/* STM32G4xxx series for reference.
*
* RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
* http://www.st.com/resource/en/reference_manual/dm00355726.pdf
*
* Cat. 2 devices have single bank only, page size is 2kByte.
*
* Cat. 3 devices have single and dual bank operating modes,
* Page size is 2kByte (dual mode) or 4kByte (single mode).
*
* Bank mode is controlled by bit 22 (DBANK) in option bytes register.
* Both banks are treated as a single OpenOCD bank.
*
* Cat. 4 devices have single bank only, page size is 2kByte.
*/
/* STM32L5xxx series for reference.
*
* RM0428 (STM32L552xx/STM32L562xx)
* http://www.st.com/resource/en/reference_manual/dm00346336.pdf
*/
/* Erase time can be as high as 25ms, 10x this and assume it's toast... */
#define FLASH_ERASE_TIMEOUT 250
enum stm32l4_flash_reg_index {
STM32_FLASH_ACR_INDEX,
STM32_FLASH_KEYR_INDEX,
STM32_FLASH_OPTKEYR_INDEX,
STM32_FLASH_SR_INDEX,
STM32_FLASH_CR_INDEX,
STM32_FLASH_OPTR_INDEX,
STM32_FLASH_WRP1AR_INDEX,
STM32_FLASH_WRP1BR_INDEX,
STM32_FLASH_WRP2AR_INDEX,
STM32_FLASH_WRP2BR_INDEX,
STM32_FLASH_REG_INDEX_NUM,
};
static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x00C,
[STM32_FLASH_SR_INDEX] = 0x010,
[STM32_FLASH_CR_INDEX] = 0x014,
[STM32_FLASH_OPTR_INDEX] = 0x020,
[STM32_FLASH_WRP1AR_INDEX] = 0x02C,
[STM32_FLASH_WRP1BR_INDEX] = 0x030,
[STM32_FLASH_WRP2AR_INDEX] = 0x04C,
[STM32_FLASH_WRP2BR_INDEX] = 0x050,
};
static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x020,
[STM32_FLASH_CR_INDEX] = 0x028,
[STM32_FLASH_OPTR_INDEX] = 0x040,
[STM32_FLASH_WRP1AR_INDEX] = 0x058,
[STM32_FLASH_WRP1BR_INDEX] = 0x05C,
[STM32_FLASH_WRP2AR_INDEX] = 0x068,
[STM32_FLASH_WRP2BR_INDEX] = 0x06C,
};
struct stm32l4_rev {
const uint16_t rev;
const char *str;
};
struct stm32l4_part_info {
uint16_t id;
const char *device_str;
const struct stm32l4_rev *revs;
const size_t num_revs;
const uint16_t max_flash_size_kb;
const bool has_dual_bank;
const uint32_t flash_regs_base;
const uint32_t *default_flash_regs;
const uint32_t fsize_addr;
};
struct stm32l4_flash_bank {
bool probed;
uint32_t idcode;
unsigned int bank1_sectors;
bool dual_bank_mode;
int hole_sectors;
uint32_t user_bank_size;
uint32_t wrpxxr_mask;
const struct stm32l4_part_info *part_info;
const uint32_t *flash_regs;
};
/* human readable list of families this drivers supports (sorted alphabetically) */
static const char *device_families = "STM32G0/G4/L4/L4+/L5/WB/WL";
static const struct stm32l4_rev stm32_415_revs[] = {
{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
};
static const struct stm32l4_rev stm32_435_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32_460_revs[] = {
{ 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32_461_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32_462_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32_464_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32_466_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32_468_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
};
static const struct stm32l4_rev stm32_469_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
};
static const struct stm32l4_rev stm32_470_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
};
static const struct stm32l4_rev stm32_471_revs[] = {
{ 0x1001, "Z" },
};
static const struct stm32l4_rev stm32_472_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32_479_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32l4_rev stm32_495_revs[] = {
{ 0x2001, "2.1" },
};
static const struct stm32l4_rev stm32_496_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32l4_rev stm32_497_revs[] = {
{ 0x1000, "1.0" },
};
static const struct stm32l4_part_info stm32l4_parts[] = {
{
.id = 0x415,
.revs = stm32_415_revs,
.num_revs = ARRAY_SIZE(stm32_415_revs),
.device_str = "STM32L47/L48xx",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x435,
.revs = stm32_435_revs,
.num_revs = ARRAY_SIZE(stm32_435_revs),
.device_str = "STM32L43/L44xx",
.max_flash_size_kb = 256,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x460,
.revs = stm32_460_revs,
.num_revs = ARRAY_SIZE(stm32_460_revs),
.device_str = "STM32G07/G08xx",
.max_flash_size_kb = 128,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x461,
.revs = stm32_461_revs,
.num_revs = ARRAY_SIZE(stm32_461_revs),
.device_str = "STM32L49/L4Axx",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x462,
.revs = stm32_462_revs,
.num_revs = ARRAY_SIZE(stm32_462_revs),
.device_str = "STM32L45/L46xx",
.max_flash_size_kb = 512,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x464,
.revs = stm32_464_revs,
.num_revs = ARRAY_SIZE(stm32_464_revs),
.device_str = "STM32L41/L42xx",
.max_flash_size_kb = 128,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x466,
.revs = stm32_466_revs,
.num_revs = ARRAY_SIZE(stm32_466_revs),
.device_str = "STM32G03/G04xx",
.max_flash_size_kb = 64,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x468,
.revs = stm32_468_revs,
.num_revs = ARRAY_SIZE(stm32_468_revs),
.device_str = "STM32G43/G44xx",
.max_flash_size_kb = 128,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x469,
.revs = stm32_469_revs,
.num_revs = ARRAY_SIZE(stm32_469_revs),
.device_str = "STM32G47/G48xx",
.max_flash_size_kb = 512,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x470,
.revs = stm32_470_revs,
.num_revs = ARRAY_SIZE(stm32_470_revs),
.device_str = "STM32L4R/L4Sxx",
.max_flash_size_kb = 2048,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x471,
.revs = stm32_471_revs,
.num_revs = ARRAY_SIZE(stm32_471_revs),
.device_str = "STM32L4P5/L4Q5x",
.max_flash_size_kb = 1024,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x472,
.revs = stm32_472_revs,
.num_revs = ARRAY_SIZE(stm32_472_revs),
.device_str = "STM32L55/L56xx",
.max_flash_size_kb = 512,
.has_dual_bank = true,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l5_ns_flash_regs,
.fsize_addr = 0x0BFA05E0,
},
{
.id = 0x479,
.revs = stm32_479_revs,
.num_revs = ARRAY_SIZE(stm32_479_revs),
.device_str = "STM32G49/G4Axx",
.max_flash_size_kb = 512,
.has_dual_bank = false,
.flash_regs_base = 0x40022000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x495,
.revs = stm32_495_revs,
.num_revs = ARRAY_SIZE(stm32_495_revs),
.device_str = "STM32WB5x",
.max_flash_size_kb = 1024,
.has_dual_bank = false,
.flash_regs_base = 0x58004000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x496,
.revs = stm32_496_revs,
.num_revs = ARRAY_SIZE(stm32_496_revs),
.device_str = "STM32WB3x",
.max_flash_size_kb = 512,
.has_dual_bank = false,
.flash_regs_base = 0x58004000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
{
.id = 0x497,
.revs = stm32_497_revs,
.num_revs = ARRAY_SIZE(stm32_497_revs),
.device_str = "STM32WLEx",
.max_flash_size_kb = 256,
.has_dual_bank = false,
.flash_regs_base = 0x58004000,
.default_flash_regs = stm32l4_flash_regs,
.fsize_addr = 0x1FFF75E0,
},
};
/* flash bank stm32l4x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
if (!stm32l4_info)
return ERROR_FAIL; /* Checkme: What better error to use?*/
bank->driver_priv = stm32l4_info;
/* The flash write must be aligned to a double word (8-bytes) boundary.
* Ask the flash infrastructure to ensure required alignment */
bank->write_start_alignment = bank->write_end_alignment = 8;
stm32l4_info->probed = false;
stm32l4_info->user_bank_size = bank->size;
return ERROR_OK;
}
static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_info->part_info->flash_regs_base + reg_offset;
}
static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
}
static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}
static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index, uint32_t *value)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}
static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}
static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index, uint32_t value)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* If this operation fails, we ignore it and report the original
* retval
*/
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
}
return retval;
}
static int stm32l4_unlock_reg(struct flash_bank *bank)
{
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers */
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
uint32_t ctrl;
int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_OPTLOCK) == 0)
return ERROR_OK;
/* unlock option registers */
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_OPTLOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
uint32_t value, uint32_t mask)
{
uint32_t optiondata;
int retval, retval2;
retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
optiondata = (optiondata & ~mask) | (value & mask);
retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK | FLASH_OPTLOCK);
if (retval != ERROR_OK)
return retval;
return retval2;
}
static int stm32l4_protect_check(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t wrp1ar, wrp1br, wrp2ar, wrp2br;
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP1AR_INDEX, &wrp1ar);
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP1BR_INDEX, &wrp1br);
if (stm32l4_info->part_info->has_dual_bank) {
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP2AR_INDEX, &wrp2ar);
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_WRP2BR_INDEX, &wrp2br);
} else {
/* prevent uninitialized errors */
wrp2ar = 0;
wrp2br = 0;
}
const uint8_t wrp1a_start = wrp1ar & stm32l4_info->wrpxxr_mask;
const uint8_t wrp1a_end = (wrp1ar >> 16) & stm32l4_info->wrpxxr_mask;
const uint8_t wrp1b_start = wrp1br & stm32l4_info->wrpxxr_mask;
const uint8_t wrp1b_end = (wrp1br >> 16) & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2a_start = wrp2ar & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2a_end = (wrp2ar >> 16) & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2b_start = wrp2br & stm32l4_info->wrpxxr_mask;
const uint8_t wrp2b_end = (wrp2br >> 16) & stm32l4_info->wrpxxr_mask;
for (unsigned int i = 0; i < bank->num_sectors; i++) {
if (i < stm32l4_info->bank1_sectors) {
if (((i >= wrp1a_start) &&
(i <= wrp1a_end)) ||
((i >= wrp1b_start) &&
(i <= wrp1b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
} else {
assert(stm32l4_info->part_info->has_dual_bank == true);
uint8_t snb;
snb = i - stm32l4_info->bank1_sectors;
if (((snb >= wrp2a_start) &&
(snb <= wrp2a_end)) ||
((snb >= wrp2b_start) &&
(snb <= wrp2b_end)))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
}
return ERROR_OK;
}
static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int retval, retval2;
assert((first <= last) && (last < bank->num_sectors));
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by
checking the BSY bit in the FLASH_SR register
2. Set the PER bit and select the page and bank
you wish to erase in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for the BSY bit to be cleared
*/
for (unsigned int i = first; i <= last; i++) {
uint32_t erase_flags;
erase_flags = FLASH_PER | FLASH_STRT;
if (i >= stm32l4_info->bank1_sectors) {
uint8_t snb;
snb = i - stm32l4_info->bank1_sectors;
erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
} else
erase_flags |= i << FLASH_PAGE_SHIFT;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
if (retval != ERROR_OK)
break;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
break;
bank->sectors[i].is_erased = 1;
}
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return retval2;
}
static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int ret = ERROR_OK;
/* Bank 2 */
uint32_t reg_value = 0xFF; /* Default to bank un-protected */
if (last >= stm32l4_info->bank1_sectors) {
if (set == 1) {
uint8_t begin = first > stm32l4_info->bank1_sectors ? first : 0x00;
reg_value = ((last & 0xFF) << 16) | begin;
}
ret = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_WRP2AR_INDEX], reg_value, 0xffffffff);
}
/* Bank 1 */
reg_value = 0xFF; /* Default to bank un-protected */
if (first < stm32l4_info->bank1_sectors) {
if (set == 1) {
uint8_t end = last >= stm32l4_info->bank1_sectors ? 0xFF : last;
reg_value = (end << 16) | (first & 0xFF);
}
ret = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_WRP1AR_INDEX], reg_value, 0xffffffff);
}
return ret;
}
/* Count is in double-words */
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[6];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32l4_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
};
if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32l4_flash_write_code),
stm32l4_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer, size *must* be multiple of dword plus one dword for rp and one for wp */
buffer_size = target_get_working_area_avail(target) & ~(2 * sizeof(uint32_t) - 1);
if (buffer_size < 256) {
LOG_WARNING("large enough working area not available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
} else if (buffer_size > 16384) {
/* probably won't benefit from more than 16k ... */
buffer_size = 16384;
}
if (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
LOG_ERROR("allocating working area failed");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (double word-64bit) */
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash status register */
init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT); /* flash control register */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
buf_set_u32(reg_params[4].value, 0, 32, stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
buf_set_u32(reg_params[5].value, 0, 32, stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
retval = target_run_flash_async_algorithm(target, buffer, count, 8,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32l4 flash write algorithm");
uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = %08" PRIx32, error);
/* Clear but report errors */
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
return retval;
}
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
int retval = ERROR_OK, retval2;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* The flash write must be aligned to a double word (8-bytes) boundary.
* The flash infrastructure ensures it, do just a security check */
assert(offset % 8 == 0);
assert(count % 8 == 0);
/* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
* data to be written does not go into a gap:
* suppose buffer is fully contained in bank from sector 0 to sector
* num->sectors - 1 and sectors are ordered according to offset
*/
struct flash_sector *head = &bank->sectors[0];
struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
while ((head < tail) && (offset >= (head + 1)->offset)) {
/* buffer does not intersect head nor gap behind head */
head++;
}
while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
/* buffer does not intersect tail nor gap before tail */
--tail;
}
LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
/* Now check that there is no gap from head to tail, this should work
* even for multiple or non-symmetric gaps
*/
while (head < tail) {
if (head->offset + head->size != (head + 1)->offset) {
LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
bank->base + head->offset + head->size,
bank->base + (head + 1)->offset - 1);
retval = ERROR_FLASH_DST_OUT_OF_BANK;
}
head++;
}
if (retval != ERROR_OK)
return retval;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_block(bank, buffer, offset, count / 8);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK);
if (retval != ERROR_OK) {
LOG_ERROR("block write failed");
return retval;
}
return retval2;
}
static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
{
int retval;
/* try reading possible IDCODE registers, in the following order */
uint32_t DBGMCU_IDCODE[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
for (unsigned int i = 0; i < ARRAY_SIZE(DBGMCU_IDCODE); i++) {
retval = target_read_u32(bank->target, DBGMCU_IDCODE[i], id);
if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
return ERROR_OK;
}
LOG_ERROR("can't get the device id");
return (retval == ERROR_OK) ? ERROR_FAIL : retval;
}
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info;
uint16_t flash_size_kb = 0xffff;
uint32_t device_id;
uint32_t options;
stm32l4_info->probed = false;
/* read stm32 device id registers */
int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
if (retval != ERROR_OK)
return retval;
device_id = stm32l4_info->idcode & 0xFFF;
for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
if (device_id == stm32l4_parts[n].id)
stm32l4_info->part_info = &stm32l4_parts[n];
}
if (!stm32l4_info->part_info) {
LOG_WARNING("Cannot identify target as an %s family device.", device_families);
return ERROR_FAIL;
}
part_info = stm32l4_info->part_info;
stm32l4_info->flash_regs = stm32l4_info->part_info->default_flash_regs;
char device_info[1024];
retval = bank->driver->info(bank, device_info, sizeof(device_info));
if (retval != ERROR_OK)
return retval;
LOG_INFO("device idcode = 0x%08" PRIx32 " (%s)", stm32l4_info->idcode, device_info);
/* get flash size from target. */
retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
|| flash_size_kb > part_info->max_flash_size_kb) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
part_info->max_flash_size_kb);
flash_size_kb = part_info->max_flash_size_kb;
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32l4_info->user_bank_size) {
LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
flash_size_kb = stm32l4_info->user_bank_size / 1024;
}
LOG_INFO("flash size = %dkbytes", flash_size_kb);
/* did we assign a flash size? */
assert((flash_size_kb != 0xffff) && flash_size_kb);
/* read flash option register */
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &options);
if (retval != ERROR_OK)
return retval;
stm32l4_info->bank1_sectors = 0;
stm32l4_info->hole_sectors = 0;
int num_pages = 0;
int page_size_kb = 0;
stm32l4_info->dual_bank_mode = false;
bool use_dbank_bit = false;
switch (device_id) {
case 0x415: /* STM32L47/L48xx */
case 0x461: /* STM32L49/L4Axx */
/* if flash size is max (1M) the device is always dual bank
* 0x415: has variants with 512K
* 0x461: has variants with 512 and 256
* for these variants:
* if DUAL_BANK = 0 -> single bank
* else -> dual bank without gap
* note: the page size is invariant
*/
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
/* check DUAL_BANK bit[21] if the flash is less than 1M */
if (flash_size_kb == 1024 || (options & BIT(21))) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case 0x435: /* STM32L43/L44xx */
case 0x460: /* STM32G07/G08xx */
case 0x462: /* STM32L45/L46xx */
case 0x464: /* STM32L41/L42xx */
case 0x466: /* STM32G03/G04xx */
case 0x468: /* STM32G43/G44xx */
case 0x479: /* STM32G49/G4Axx */
case 0x497: /* STM32WLEx */
/* single bank flash */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;
case 0x469: /* STM32G47/G48xx */
/* STM32G47/8 can be single/dual bank:
* if DUAL_BANK = 0 -> single bank
* else -> dual bank WITH gap
*/
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if (options & BIT(22)) {
stm32l4_info->dual_bank_mode = true;
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages / 2;
/* for devices with trimmed flash, there is a gap between both banks */
stm32l4_info->hole_sectors =
(part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
}
break;
case 0x470: /* STM32L4R/L4Sxx */
case 0x471: /* STM32L4P5/L4Q5x */
/* STM32L4R/S can be single/dual bank:
* if size = 2M check DBANK bit(22)
* if size = 1M check DB1M bit(21)
* STM32L4P/Q can be single/dual bank
* if size = 1M check DBANK bit(22)
* if size = 512K check DB512K bit(21)
*/
page_size_kb = 8;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
if ((use_dbank_bit && (options & BIT(22))) ||
(!use_dbank_bit && (options & BIT(21)))) {
stm32l4_info->dual_bank_mode = true;
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case 0x472: /* STM32L55/L56xx */
/* STM32L55/L56xx can be single/dual bank:
* if size = 512K check DBANK bit(22)
* if size = 256K check DB256K bit(21)
*/
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
if ((use_dbank_bit && (options & BIT(22))) ||
(!use_dbank_bit && (options & BIT(21)))) {
stm32l4_info->dual_bank_mode = true;
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case 0x495: /* STM32WB5x */
case 0x496: /* STM32WB3x */
/* single bank flash */
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;
}
LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
if (gap_size_kb != 0) {
LOG_INFO("gap detected from 0x%08x to 0x%08x",
STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
* page_size_kb * 1024,
STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
* page_size_kb + gap_size_kb) * 1024 - 1);
}
/* number of significant bits in WRPxxR differs per device,
* always right adjusted, on some devices non-implemented
* bits read as '0', on others as '1' ...
* notably G4 Cat. 2 implement only 6 bits, contradicting the RM
*/
/* use *max_flash_size* instead of actual size as the trimmed versions
* certainly use the same number of bits
* max_flash_size is always power of two, so max_pages too
*/
uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
assert((max_pages & (max_pages - 1)) == 0);
/* in dual bank mode number of pages is doubled, but extra bit is bank selection */
stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
free(bank->sectors);
bank->size = (flash_size_kb + gap_size_kb) * 1024;
bank->base = STM32_FLASH_BANK_BASE;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
for (unsigned int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = i * page_size_kb * 1024;
/* in dual bank configuration, if there is a gap between banks
* we fix up the sector offset to consider this gap */
if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
bank->sectors[i].offset += gap_size_kb * 1024;
bank->sectors[i].size = page_size_kb * 1024;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32l4_info->probed = true;
return ERROR_OK;
}
static int stm32l4_auto_probe(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_info->probed)
return ERROR_OK;
return stm32l4_probe(bank);
}
static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
if (part_info) {
const char *rev_str = NULL;
uint16_t rev_id = stm32l4_info->idcode >> 16;
for (unsigned int i = 0; i < part_info->num_revs; i++) {
if (rev_id == part_info->revs[i].rev) {
rev_str = part_info->revs[i].str;
if (rev_str != NULL) {
snprintf(buf, buf_size, "%s - Rev: %s%s",
part_info->device_str, rev_str, stm32l4_info->probed ?
(stm32l4_info->dual_bank_mode ? " dual-bank" : " single-bank") : "");
return ERROR_OK;
}
}
}
snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)%s",
part_info->device_str, rev_id, stm32l4_info->probed ?
(stm32l4_info->dual_bank_mode ? " dual-bank" : " single-bank") : "");
return ERROR_OK;
} else {
snprintf(buf, buf_size, "Cannot identify target as an %s device", device_families);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int stm32l4_mass_erase(struct flash_bank *bank)
{
int retval, retval2;
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t action = FLASH_MER1;
if (stm32l4_info->part_info->has_dual_bank)
action |= FLASH_MER2;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/* mass erase flash memory */
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_LOCK);
if (retval != ERROR_OK)
return retval;
return retval2;
}
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
if (CMD_ARGC < 1) {
command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32l4_mass_erase(bank);
if (retval == ERROR_OK) {
/* set all sectors as erased */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD, "stm32l4x mass erase complete");
} else {
command_print(CMD, "stm32l4x mass erase failed");
}
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_read_command)
{
if (CMD_ARGC < 2) {
command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_offset, reg_addr;
uint32_t value = 0;
reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
if (ERROR_OK != retval)
return retval;
command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_write_command)
{
if (CMD_ARGC < 3) {
command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
uint32_t reg_offset;
uint32_t value = 0;
uint32_t mask = 0xFFFFFFFF;
reg_offset = strtoul(CMD_ARGV[1], NULL, 16);
value = strtoul(CMD_ARGV[2], NULL, 16);
if (CMD_ARGC > 3)
mask = strtoul(CMD_ARGV[3], NULL, 16);
command_print(CMD, "%s Option written.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
retval = stm32l4_write_option(bank, reg_offset, value, mask);
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_load_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
retval = stm32l4_unlock_reg(bank);
if (ERROR_OK != retval)
return retval;
retval = stm32l4_unlock_option_reg(bank);
if (ERROR_OK != retval)
return retval;
/* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
* but the RMs explicitly do *NOT* list this as power-on reset cause, and:
* "Note: If the read protection is set while the debugger is still
* connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
*/
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
/* Need to re-probe after change */
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
stm32l4_info->probed = false;
return retval;
}
COMMAND_HANDLER(stm32l4_handle_lock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* set readout protection level 1 by erasing the RDP option byte */
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX], 0, 0x000000FF) != ERROR_OK) {
command_print(CMD, "%s failed to lock device", bank->driver->name);
return ERROR_OK;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
RDP_LEVEL_0, 0x000000FF) != ERROR_OK) {
command_print(CMD, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}
return ERROR_OK;
}
static const struct command_registration stm32l4_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32l4_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32l4_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32l4_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "option_read",
.handler = stm32l4_handle_option_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset",
.help = "Read & Display device option bytes.",
},
{
.name = "option_write",
.handler = stm32l4_handle_option_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset value mask",
.help = "Write device option bit fields with provided value.",
},
{
.name = "option_load",
.handler = stm32l4_handle_option_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device options (will cause device reset).",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32l4_command_handlers[] = {
{
.name = "stm32l4x",
.mode = COMMAND_ANY,
.help = "stm32l4x flash command group",
.usage = "",
.chain = stm32l4_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32l4x_flash = {
.name = "stm32l4x",
.commands = stm32l4_command_handlers,
.flash_bank_command = stm32l4_flash_bank_command,
.erase = stm32l4_erase,
.protect = stm32l4_protect,
.write = stm32l4_write,
.read = default_flash_read,
.probe = stm32l4_probe,
.auto_probe = stm32l4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32l4_protect_check,
.info = get_stm32l4_info,
.free_driver_priv = default_flash_free_driver_priv,
};