openocd/src/target/arc_mem.c
Antonio Borneo c3d3487d61 openocd: src: fix incorrect SPDX tags
The SPDX tag is aimed at machine handling and it's thus expected
to be placed in the first line in specific format.

Move the SPDX tag to the first line and fix it where needed.

The SPDX tag on files *.c is incorrect, as it should use the C99
single line comment using '//'. But current checkpatch doesn't
allow C99 comments, so keep using standard C comments, by now.

Change-Id: Ie9a05f530009d482a4116eebd147fd7e1ee3d41e
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/7066
Tested-by: jenkins
2022-07-23 13:16:09 +00:00

311 lines
9.7 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013-2014,2019-2020 Synopsys, Inc. *
* Frank Dols <frank.dols@synopsys.com> *
* Mischa Jonker <mischa.jonker@synopsys.com> *
* Anton Kolesov <anton.kolesov@synopsys.com> *
* Evgeniy Didin <didin@synopsys.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arc.h"
/* ----- Supporting functions ---------------------------------------------- */
static bool arc_mem_is_slow_memory(struct arc_common *arc, uint32_t addr,
uint32_t size, uint32_t count)
{
uint32_t addr_end = addr + size * count;
/* `_end` field can overflow - it points to the first byte after the end,
* therefore if DCCM is right at the end of memory address space, then
* dccm_end will be 0. */
assert(addr_end >= addr || addr_end == 0);
return !((addr >= arc->dccm_start && addr_end <= arc->dccm_end) ||
(addr >= arc->iccm0_start && addr_end <= arc->iccm0_end) ||
(addr >= arc->iccm1_start && addr_end <= arc->iccm1_end));
}
/* Write word at word-aligned address */
static int arc_mem_write_block32(struct target *target, uint32_t addr,
uint32_t count, void *buf)
{
struct arc_common *arc = target_to_arc(target);
LOG_DEBUG("Write 4-byte memory block: addr=0x%08" PRIx32 ", count=%" PRIu32,
addr, count);
/* Check arguments */
assert(!(addr & 3));
/* We need to flush the cache since it might contain dirty
* lines, so the cache invalidation may cause data inconsistency. */
CHECK_RETVAL(arc_cache_flush(target));
/* No need to flush cache, because we don't read values from memory. */
CHECK_RETVAL(arc_jtag_write_memory(&arc->jtag_info, addr, count,
(uint32_t *)buf));
/* Invalidate caches. */
CHECK_RETVAL(arc_cache_invalidate(target));
return ERROR_OK;
}
/* Write half-word at half-word-aligned address */
static int arc_mem_write_block16(struct target *target, uint32_t addr,
uint32_t count, void *buf)
{
struct arc_common *arc = target_to_arc(target);
uint32_t i;
uint32_t buffer_he;
uint8_t buffer_te[sizeof(uint32_t)];
uint8_t halfword_te[sizeof(uint16_t)];
LOG_DEBUG("Write 2-byte memory block: addr=0x%08" PRIx32 ", count=%" PRIu32,
addr, count);
/* Check arguments */
assert(!(addr & 1));
/* We will read data from memory, so we need to flush the cache. */
CHECK_RETVAL(arc_cache_flush(target));
/* non-word writes are less common than 4-byte writes, so I suppose we can
* allow ourselves to write this in a cycle, instead of calling arc_jtag
* with count > 1. */
for (i = 0; i < count; i++) {
/* We can read only word at word-aligned address. Also *jtag_read_memory
* functions return data in host endianness, so host endianness !=
* target endianness we have to convert data back to target endianness,
* or bytes will be at the wrong places.So:
* 1) read word
* 2) convert to target endianness
* 3) make changes
* 4) convert back to host endianness
* 5) write word back to target.
*/
bool is_slow_memory = arc_mem_is_slow_memory(arc,
(addr + i * sizeof(uint16_t)) & ~3u, 4, 1);
CHECK_RETVAL(arc_jtag_read_memory(&arc->jtag_info,
(addr + i * sizeof(uint16_t)) & ~3u, 1, &buffer_he,
is_slow_memory));
target_buffer_set_u32(target, buffer_te, buffer_he);
/* buf is in host endianness, convert to target */
target_buffer_set_u16(target, halfword_te, ((uint16_t *)buf)[i]);
memcpy(buffer_te + ((addr + i * sizeof(uint16_t)) & 3u),
halfword_te, sizeof(uint16_t));
buffer_he = target_buffer_get_u32(target, buffer_te);
CHECK_RETVAL(arc_jtag_write_memory(&arc->jtag_info,
(addr + i * sizeof(uint16_t)) & ~3u, 1, &buffer_he));
}
/* Invalidate caches. */
CHECK_RETVAL(arc_cache_invalidate(target));
return ERROR_OK;
}
/* Write byte at address */
static int arc_mem_write_block8(struct target *target, uint32_t addr,
uint32_t count, void *buf)
{
struct arc_common *arc = target_to_arc(target);
uint32_t i;
uint32_t buffer_he;
uint8_t buffer_te[sizeof(uint32_t)];
LOG_DEBUG("Write 1-byte memory block: addr=0x%08" PRIx32 ", count=%" PRIu32,
addr, count);
/* We will read data from memory, so we need to flush the cache. */
CHECK_RETVAL(arc_cache_flush(target));
/* non-word writes are less common than 4-byte writes, so I suppose we can
* allow ourselves to write this in a cycle, instead of calling arc_jtag
* with count > 1. */
for (i = 0; i < count; i++) {
/* See comment in arc_mem_write_block16 for details. Since it is a byte
* there is not need to convert write buffer to target endianness, but
* we still have to convert read buffer. */
CHECK_RETVAL(arc_jtag_read_memory(&arc->jtag_info, (addr + i) & ~3, 1, &buffer_he,
arc_mem_is_slow_memory(arc, (addr + i) & ~3, 4, 1)));
target_buffer_set_u32(target, buffer_te, buffer_he);
memcpy(buffer_te + ((addr + i) & 3), (uint8_t *)buf + i, 1);
buffer_he = target_buffer_get_u32(target, buffer_te);
CHECK_RETVAL(arc_jtag_write_memory(&arc->jtag_info, (addr + i) & ~3, 1, &buffer_he));
}
/* Invalidate caches. */
CHECK_RETVAL(arc_cache_invalidate(target));
return ERROR_OK;
}
/* ----- Exported functions ------------------------------------------------ */
int arc_mem_write(struct target *target, target_addr_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
int retval = ERROR_OK;
void *tunnel = NULL;
LOG_DEBUG("address: 0x%08" TARGET_PRIxADDR ", size: %" PRIu32 ", count: %" PRIu32,
address, size, count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || !(count) || !(buffer))
return ERROR_COMMAND_SYNTAX_ERROR;
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
/* correct endianness if we have word or hword access */
if (size > 1) {
/*
* arc_..._write_mem with size 4/2 requires uint32_t/uint16_t
* in host endianness, but byte array represents target endianness.
*/
tunnel = calloc(1, count * size * sizeof(uint8_t));
if (!tunnel) {
LOG_ERROR("Unable to allocate memory");
return ERROR_FAIL;
}
switch (size) {
case 4:
target_buffer_get_u32_array(target, buffer, count,
(uint32_t *)tunnel);
break;
case 2:
target_buffer_get_u16_array(target, buffer, count,
(uint16_t *)tunnel);
break;
}
buffer = tunnel;
}
if (size == 4) {
retval = arc_mem_write_block32(target, address, count, (void *)buffer);
} else if (size == 2) {
/* We convert buffer from host endianness to target. But then in
* write_block16, we do the reverse. Is there a way to avoid this without
* breaking other cases? */
retval = arc_mem_write_block16(target, address, count, (void *)buffer);
} else {
retval = arc_mem_write_block8(target, address, count, (void *)buffer);
}
free(tunnel);
return retval;
}
static int arc_mem_read_block(struct target *target, target_addr_t addr,
uint32_t size, uint32_t count, void *buf)
{
struct arc_common *arc = target_to_arc(target);
LOG_DEBUG("Read memory: addr=0x%08" TARGET_PRIxADDR ", size=%" PRIu32
", count=%" PRIu32, addr, size, count);
assert(!(addr & 3));
assert(size == 4);
/* Flush cache before memory access */
CHECK_RETVAL(arc_cache_flush(target));
CHECK_RETVAL(arc_jtag_read_memory(&arc->jtag_info, addr, count, buf,
arc_mem_is_slow_memory(arc, addr, size, count)));
return ERROR_OK;
}
int arc_mem_read(struct target *target, target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
int retval = ERROR_OK;
void *tunnel_he;
uint8_t *tunnel_te;
uint32_t words_to_read, bytes_to_read;
LOG_DEBUG("Read memory: addr=0x%08" TARGET_PRIxADDR ", size=%" PRIu32
", count=%" PRIu32, address, size, count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* Sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || !(count) || !(buffer))
return ERROR_COMMAND_SYNTAX_ERROR;
if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
return ERROR_TARGET_UNALIGNED_ACCESS;
/* Reads are word-aligned, so padding might be required if count > 1.
* NB: +3 is a padding for the last word (in case it's not aligned;
* addr&3 is a padding for the first word (since address can be
* unaligned as well). */
bytes_to_read = (count * size + 3 + (address & 3u)) & ~3u;
words_to_read = bytes_to_read >> 2;
tunnel_he = calloc(1, bytes_to_read);
tunnel_te = calloc(1, bytes_to_read);
if (!tunnel_he || !tunnel_te) {
LOG_ERROR("Unable to allocate memory");
free(tunnel_he);
free(tunnel_te);
return ERROR_FAIL;
}
/* We can read only word-aligned words. */
retval = arc_mem_read_block(target, address & ~3u, sizeof(uint32_t),
words_to_read, tunnel_he);
/* arc_..._read_mem with size 4/2 returns uint32_t/uint16_t in host */
/* endianness, but byte array should represent target endianness */
if (retval == ERROR_OK) {
switch (size) {
case 4:
target_buffer_set_u32_array(target, buffer, count,
tunnel_he);
break;
case 2:
target_buffer_set_u32_array(target, tunnel_te,
words_to_read, tunnel_he);
/* Will that work properly with count > 1 and big endian? */
memcpy(buffer, tunnel_te + (address & 3u),
count * sizeof(uint16_t));
break;
case 1:
target_buffer_set_u32_array(target, tunnel_te,
words_to_read, tunnel_he);
/* Will that work properly with count > 1 and big endian? */
memcpy(buffer, tunnel_te + (address & 3u), count);
break;
}
}
free(tunnel_he);
free(tunnel_te);
return retval;
}