openocd/src/helper/binarybuffer.c
Samuel Obuch 3ac010bb9f Fix debug prints when loading to flash
While loading to flash with debug level at least 3,
OpenOCD tries to print the whole loaded bitstream.
This will be very-very-slow due to implementation of
conversion from buffer to string.

* fix condition on selected debug level in jtag/core.c
* replace slow buf_to_str function from helper/binarybuffer.c
  with faster but_to_hex_str function

Change-Id: I3dc01d5846941ca80736f2ed12e3a54114d2b6dd
Signed-off-by: Samuel Obuch <sobuch@codasip.com>
Reviewed-on: http://openocd.zylin.com/5800
Tested-by: jenkins
Reviewed-by: Jan Matyas <matyas@codasip.com>
Reviewed-by: Antonio Borneo <borneo.antonio@gmail.com>
2020-09-05 16:48:08 +01:00

440 lines
12 KiB
C

/***************************************************************************
* Copyright (C) 2004, 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "log.h"
#include "binarybuffer.h"
static const unsigned char bit_reverse_table256[] = {
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
};
static const char hex_digits[] = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f'
};
void *buf_cpy(const void *from, void *_to, unsigned size)
{
if (NULL == from || NULL == _to)
return NULL;
/* copy entire buffer */
memcpy(_to, from, DIV_ROUND_UP(size, 8));
/* mask out bits that don't belong to the buffer */
unsigned trailing_bits = size % 8;
if (trailing_bits) {
uint8_t *to = _to;
to[size / 8] &= (1 << trailing_bits) - 1;
}
return _to;
}
static bool buf_cmp_masked(uint8_t a, uint8_t b, uint8_t m)
{
return (a & m) != (b & m);
}
static bool buf_cmp_trailing(uint8_t a, uint8_t b, uint8_t m, unsigned trailing)
{
uint8_t mask = (1 << trailing) - 1;
return buf_cmp_masked(a, b, mask & m);
}
bool buf_cmp(const void *_buf1, const void *_buf2, unsigned size)
{
if (!_buf1 || !_buf2)
return _buf1 != _buf2;
unsigned last = size / 8;
if (memcmp(_buf1, _buf2, last) != 0)
return false;
unsigned trailing = size % 8;
if (!trailing)
return false;
const uint8_t *buf1 = _buf1, *buf2 = _buf2;
return buf_cmp_trailing(buf1[last], buf2[last], 0xff, trailing);
}
bool buf_cmp_mask(const void *_buf1, const void *_buf2,
const void *_mask, unsigned size)
{
if (!_buf1 || !_buf2)
return _buf1 != _buf2 || _buf1 != _mask;
const uint8_t *buf1 = _buf1, *buf2 = _buf2, *mask = _mask;
unsigned last = size / 8;
for (unsigned i = 0; i < last; i++) {
if (buf_cmp_masked(buf1[i], buf2[i], mask[i]))
return true;
}
unsigned trailing = size % 8;
if (!trailing)
return false;
return buf_cmp_trailing(buf1[last], buf2[last], mask[last], trailing);
}
void *buf_set_ones(void *_buf, unsigned size)
{
uint8_t *buf = _buf;
if (!buf)
return NULL;
memset(buf, 0xff, size / 8);
unsigned trailing_bits = size % 8;
if (trailing_bits)
buf[size / 8] = (1 << trailing_bits) - 1;
return buf;
}
void *buf_set_buf(const void *_src, unsigned src_start,
void *_dst, unsigned dst_start, unsigned len)
{
const uint8_t *src = _src;
uint8_t *dst = _dst;
unsigned i, sb, db, sq, dq, lb, lq;
sb = src_start / 8;
db = dst_start / 8;
sq = src_start % 8;
dq = dst_start % 8;
lb = len / 8;
lq = len % 8;
src += sb;
dst += db;
/* check if both buffers are on byte boundary and
* len is a multiple of 8bit so we can simple copy
* the buffer */
if ((sq == 0) && (dq == 0) && (lq == 0)) {
for (i = 0; i < lb; i++)
*dst++ = *src++;
return _dst;
}
/* fallback to slow bit copy */
for (i = 0; i < len; i++) {
if (((*src >> (sq&7)) & 1) == 1)
*dst |= 1 << (dq&7);
else
*dst &= ~(1 << (dq&7));
if (sq++ == 7) {
sq = 0;
src++;
}
if (dq++ == 7) {
dq = 0;
dst++;
}
}
return _dst;
}
uint32_t flip_u32(uint32_t value, unsigned int num)
{
uint32_t c = (bit_reverse_table256[value & 0xff] << 24) |
(bit_reverse_table256[(value >> 8) & 0xff] << 16) |
(bit_reverse_table256[(value >> 16) & 0xff] << 8) |
(bit_reverse_table256[(value >> 24) & 0xff]);
if (num < 32)
c = c >> (32 - num);
return c;
}
static int ceil_f_to_u32(float x)
{
if (x < 0) /* return zero for negative numbers */
return 0;
uint32_t y = x; /* cut off fraction */
if ((x - y) > 0.0) /* if there was a fractional part, increase by one */
y++;
return y;
}
char *buf_to_hex_str(const void *_buf, unsigned buf_len)
{
unsigned len_bytes = DIV_ROUND_UP(buf_len, 8);
char *str = calloc(len_bytes * 2 + 1, 1);
const uint8_t *buf = _buf;
for (unsigned i = 0; i < len_bytes; i++) {
uint8_t tmp = buf[len_bytes - i - 1];
if ((i == 0) && (buf_len % 8))
tmp &= (0xff >> (8 - (buf_len % 8)));
str[2 * i] = hex_digits[tmp >> 4];
str[2 * i + 1] = hex_digits[tmp & 0xf];
}
return str;
}
/** identify radix, and skip radix-prefix (0, 0x or 0X) */
static void str_radix_guess(const char **_str, unsigned *_str_len,
unsigned *_radix)
{
unsigned radix = *_radix;
if (0 != radix)
return;
const char *str = *_str;
unsigned str_len = *_str_len;
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X')) {
radix = 16;
str += 2;
str_len -= 2;
} else if ((str[0] == '0') && (str_len != 1)) {
radix = 8;
str += 1;
str_len -= 1;
} else
radix = 10;
*_str = str;
*_str_len = str_len;
*_radix = radix;
}
int str_to_buf(const char *str, unsigned str_len,
void *_buf, unsigned buf_len, unsigned radix)
{
str_radix_guess(&str, &str_len, &radix);
float factor;
if (radix == 16)
factor = 0.5; /* log(16) / log(256) = 0.5 */
else if (radix == 10)
factor = 0.41524; /* log(10) / log(256) = 0.41524 */
else if (radix == 8)
factor = 0.375; /* log(8) / log(256) = 0.375 */
else
return 0;
/* copy to zero-terminated buffer */
char *charbuf = strndup(str, str_len);
/* number of digits in base-256 notation */
unsigned b256_len = ceil_f_to_u32(str_len * factor);
uint8_t *b256_buf = calloc(b256_len, 1);
/* go through zero terminated buffer
* input digits (ASCII) */
unsigned i;
for (i = 0; charbuf[i]; i++) {
uint32_t tmp = charbuf[i];
if ((tmp >= '0') && (tmp <= '9'))
tmp = (tmp - '0');
else if ((tmp >= 'a') && (tmp <= 'f'))
tmp = (tmp - 'a' + 10);
else if ((tmp >= 'A') && (tmp <= 'F'))
tmp = (tmp - 'A' + 10);
else
continue; /* skip characters other than [0-9,a-f,A-F] */
if (tmp >= radix)
continue; /* skip digits invalid for the current radix */
/* base-256 digits */
for (unsigned j = 0; j < b256_len; j++) {
tmp += (uint32_t)b256_buf[j] * radix;
b256_buf[j] = (uint8_t)(tmp & 0xFF);
tmp >>= 8;
}
}
uint8_t *buf = _buf;
for (unsigned j = 0; j < DIV_ROUND_UP(buf_len, 8); j++) {
if (j < b256_len)
buf[j] = b256_buf[j];
else
buf[j] = 0;
}
/* mask out bits that don't belong to the buffer */
if (buf_len % 8)
buf[(buf_len / 8)] &= 0xff >> (8 - (buf_len % 8));
free(b256_buf);
free(charbuf);
return i;
}
void bit_copy_queue_init(struct bit_copy_queue *q)
{
INIT_LIST_HEAD(&q->list);
}
int bit_copy_queued(struct bit_copy_queue *q, uint8_t *dst, unsigned dst_offset, const uint8_t *src,
unsigned src_offset, unsigned bit_count)
{
struct bit_copy_queue_entry *qe = malloc(sizeof(*qe));
if (!qe)
return ERROR_FAIL;
qe->dst = dst;
qe->dst_offset = dst_offset;
qe->src = src;
qe->src_offset = src_offset;
qe->bit_count = bit_count;
list_add_tail(&qe->list, &q->list);
return ERROR_OK;
}
void bit_copy_execute(struct bit_copy_queue *q)
{
struct bit_copy_queue_entry *qe;
struct bit_copy_queue_entry *tmp;
list_for_each_entry_safe(qe, tmp, &q->list, list) {
bit_copy(qe->dst, qe->dst_offset, qe->src, qe->src_offset, qe->bit_count);
list_del(&qe->list);
free(qe);
}
}
void bit_copy_discard(struct bit_copy_queue *q)
{
struct bit_copy_queue_entry *qe;
struct bit_copy_queue_entry *tmp;
list_for_each_entry_safe(qe, tmp, &q->list, list) {
list_del(&qe->list);
free(qe);
}
}
/**
* Convert a string of hexadecimal pairs into its binary
* representation.
*
* @param[out] bin Buffer to store binary representation. The buffer size must
* be at least @p count.
* @param[in] hex String with hexadecimal pairs to convert into its binary
* representation.
* @param[in] count Number of hexadecimal pairs to convert.
*
* @return The number of converted hexadecimal pairs.
*/
size_t unhexify(uint8_t *bin, const char *hex, size_t count)
{
size_t i;
char tmp;
if (!bin || !hex)
return 0;
memset(bin, 0, count);
for (i = 0; i < 2 * count; i++) {
if (hex[i] >= 'a' && hex[i] <= 'f')
tmp = hex[i] - 'a' + 10;
else if (hex[i] >= 'A' && hex[i] <= 'F')
tmp = hex[i] - 'A' + 10;
else if (hex[i] >= '0' && hex[i] <= '9')
tmp = hex[i] - '0';
else
return i / 2;
bin[i / 2] |= tmp << (4 * ((i + 1) % 2));
}
return i / 2;
}
/**
* Convert binary data into a string of hexadecimal pairs.
*
* @param[out] hex Buffer to store string of hexadecimal pairs. The buffer size
* must be at least @p length.
* @param[in] bin Buffer with binary data to convert into hexadecimal pairs.
* @param[in] count Number of bytes to convert.
* @param[in] length Maximum number of characters, including null-terminator,
* to store into @p hex.
*
* @returns The length of the converted string excluding null-terminator.
*/
size_t hexify(char *hex, const uint8_t *bin, size_t count, size_t length)
{
size_t i;
uint8_t tmp;
if (!length)
return 0;
for (i = 0; i < length - 1 && i < 2 * count; i++) {
tmp = (bin[i / 2] >> (4 * ((i + 1) % 2))) & 0x0f;
hex[i] = hex_digits[tmp];
}
hex[i] = 0;
return i;
}
void buffer_shr(void *_buf, unsigned buf_len, unsigned count)
{
unsigned i;
unsigned char *buf = _buf;
unsigned bytes_to_remove;
unsigned shift;
bytes_to_remove = count / 8;
shift = count - (bytes_to_remove * 8);
for (i = 0; i < (buf_len - 1); i++)
buf[i] = (buf[i] >> shift) | ((buf[i+1] << (8 - shift)) & 0xff);
buf[(buf_len - 1)] = buf[(buf_len - 1)] >> shift;
if (bytes_to_remove) {
memmove(buf, &buf[bytes_to_remove], buf_len - bytes_to_remove);
memset(&buf[buf_len - bytes_to_remove], 0, bytes_to_remove);
}
}