openocd/src/flash/nor/stm32lx.c
Spencer Oliver 468a4b65ea flash: fix stm32 failed probe using incorrect flash size
This fixes an issue if the device is manually probed after the initial probe
fails due to being unable to read flash size register. In this situation the
driver assumes the user has overridden the flash size when infact this may
not be the case.

It also seems on the older stm32f1 devices the flash register is not readable
when locked, this does not seem to apply to the newer parts - f0, f3, f4.

Change-Id: I125f872fcb2d962ca6705f97b62d957e2b31303b
Signed-off-by: Spencer Oliver <spen@spen-soft.co.uk>
Reviewed-on: http://openocd.zylin.com/1187
Tested-by: jenkins
Reviewed-by: Johan Almquist <johan.almquist@assaabloy.com>
Reviewed-by: Freddie Chopin <freddie.chopin@gmail.com>
2013-03-06 21:10:40 +00:00

1000 lines
27 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Clement Burin des Roziers *
* clement.burin-des-roziers@hikob.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <target/cortex_m.h>
/* stm32lx flash register locations */
#define FLASH_BASE 0x40023C00
#define FLASH_ACR 0x40023C00
#define FLASH_PECR 0x40023C04
#define FLASH_PDKEYR 0x40023C08
#define FLASH_PEKEYR 0x40023C0C
#define FLASH_PRGKEYR 0x40023C10
#define FLASH_OPTKEYR 0x40023C14
#define FLASH_SR 0x40023C18
#define FLASH_OBR 0x40023C1C
#define FLASH_WRPR 0x40023C20
/* FLASH_ACR bites */
#define FLASH_ACR__LATENCY (1<<0)
#define FLASH_ACR__PRFTEN (1<<1)
#define FLASH_ACR__ACC64 (1<<2)
#define FLASH_ACR__SLEEP_PD (1<<3)
#define FLASH_ACR__RUN_PD (1<<4)
/* FLASH_PECR bits */
#define FLASH_PECR__PELOCK (1<<0)
#define FLASH_PECR__PRGLOCK (1<<1)
#define FLASH_PECR__OPTLOCK (1<<2)
#define FLASH_PECR__PROG (1<<3)
#define FLASH_PECR__DATA (1<<4)
#define FLASH_PECR__FTDW (1<<8)
#define FLASH_PECR__ERASE (1<<9)
#define FLASH_PECR__FPRG (1<<10)
#define FLASH_PECR__EOPIE (1<<16)
#define FLASH_PECR__ERRIE (1<<17)
#define FLASH_PECR__OBL_LAUNCH (1<<18)
/* FLASH_SR bits */
#define FLASH_SR__BSY (1<<0)
#define FLASH_SR__EOP (1<<1)
#define FLASH_SR__ENDHV (1<<2)
#define FLASH_SR__READY (1<<3)
#define FLASH_SR__WRPERR (1<<8)
#define FLASH_SR__PGAERR (1<<9)
#define FLASH_SR__SIZERR (1<<10)
#define FLASH_SR__OPTVERR (1<<11)
/* Unlock keys */
#define PEKEY1 0x89ABCDEF
#define PEKEY2 0x02030405
#define PRGKEY1 0x8C9DAEBF
#define PRGKEY2 0x13141516
#define OPTKEY1 0xFBEAD9C8
#define OPTKEY2 0x24252627
/* other registers */
#define DBGMCU_IDCODE 0xE0042000
#define F_SIZE 0x1FF8004C
/* Constants */
#define FLASH_PAGE_SIZE 256
#define FLASH_SECTOR_SIZE 4096
#define FLASH_PAGES_PER_SECTOR 16
#define FLASH_BANK0_ADDRESS 0x08000000
/* stm32lx option byte register location */
#define OB_RDP 0x1FF80000
#define OB_USER 0x1FF80004
#define OB_WRP0_1 0x1FF80008
#define OB_WRP2_3 0x1FF8000C
/* OB_RDP values */
#define OB_RDP__LEVEL0 0xFF5500AA
#define OB_RDP__LEVEL1 0xFFFF0000
/* stm32lx RCC register locations */
#define RCC_CR 0x40023800
#define RCC_ICSCR 0x40023804
#define RCC_CFGR 0x40023808
/* RCC_ICSCR bits */
#define RCC_ICSCR__MSIRANGE_MASK (7<<13)
static int stm32lx_unlock_program_memory(struct flash_bank *bank);
static int stm32lx_lock_program_memory(struct flash_bank *bank);
static int stm32lx_enable_write_half_page(struct flash_bank *bank);
static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
struct stm32lx_flash_bank {
int probed;
bool has_dual_banks;
uint32_t user_bank_size;
};
/* flash bank stm32lx <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
{
struct stm32lx_flash_bank *stm32lx_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
/* Create the bank structure */
stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
/* Check allocation */
if (stm32lx_info == NULL) {
LOG_ERROR("failed to allocate bank structure");
return ERROR_FAIL;
}
bank->driver_priv = stm32lx_info;
stm32lx_info->probed = 0;
stm32lx_info->has_dual_banks = false;
stm32lx_info->user_bank_size = bank->size;
return ERROR_OK;
}
static int stm32lx_protect_check(struct flash_bank *bank)
{
int retval;
struct target *target = bank->target;
uint32_t wrpr;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/*
* Read the WRPR word, and check each bit (corresponding to each
* flash sector
*/
retval = target_read_u32(target, FLASH_WRPR, &wrpr);
if (retval != ERROR_OK)
return retval;
for (int i = 0; i < 32; i++) {
if (wrpr & (1 << i))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return ERROR_OK;
}
static int stm32lx_erase(struct flash_bank *bank, int first, int last)
{
int retval;
/*
* It could be possible to do a mass erase if all sectors must be
* erased, but it is not implemented yet.
*/
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/*
* Loop over the selected sectors and erase them
*/
for (int i = first; i <= last; i++) {
retval = stm32lx_erase_sector(bank, i);
if (retval != ERROR_OK)
return retval;
bank->sectors[i].is_erased = 1;
}
return ERROR_OK;
}
static int stm32lx_protect(struct flash_bank *bank, int set, int first,
int last)
{
LOG_WARNING("protection of the STM32L flash is not implemented");
return ERROR_OK;
}
static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[3];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* see contib/loaders/flash/stm32lx.S for src */
static const uint8_t stm32lx_flash_write_code[] = {
/* write_word: */
0x00, 0x23, /* movs r3, #0 */
0x04, 0xe0, /* b test_done */
/* write_word: */
0x51, 0xf8, 0x04, 0xcb, /* ldr ip, [r1], #4 */
0x40, 0xf8, 0x04, 0xcb, /* str ip, [r0], #4 */
0x01, 0x33, /* adds r3, #1 */
/* test_done: */
0x93, 0x42, /* cmp r3, r2 */
0xf8, 0xd3, /* bcc write_word */
0x00, 0xbe, /* bkpt 0 */
};
/* Check if there is an even number of half pages (128bytes) */
if (count % 128) {
LOG_ERROR("there should be an even number "
"of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
return ERROR_FAIL;
}
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_DEBUG("no working area for block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
};
/* Write the flashing code */
retval = target_write_buffer(target,
write_algorithm->address,
sizeof(stm32lx_flash_write_code),
(uint8_t *)stm32lx_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* Allocate half pages memory */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
if (buffer_size > 1024)
buffer_size -= 1024;
else
buffer_size /= 2;
if (buffer_size <= 256) {
/* we already allocated the writing code, but failed to get a
* buffer, free the algorithm */
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
/* Enable half-page write */
retval = stm32lx_enable_write_half_page(bank);
if (retval != ERROR_OK) {
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
return retval;
}
struct armv7m_common *armv7m = target_to_armv7m(target);
if (armv7m == NULL) {
/* something is very wrong if armv7m is NULL */
LOG_ERROR("unable to get armv7m target");
return retval;
}
/* save any DEMCR flags and configure target to catch any Hard Faults */
uint32_t demcr_save = armv7m->demcr;
armv7m->demcr = VC_HARDERR;
/* Loop while there are bytes to write */
while (count > 0) {
uint32_t this_count;
this_count = (count > buffer_size) ? buffer_size : count;
/* Write the next half pages */
retval = target_write_buffer(target, source->address, this_count, buffer);
if (retval != ERROR_OK)
break;
/* 4: Store useful information in the registers */
/* the destination address of the copy (R0) */
buf_set_u32(reg_params[0].value, 0, 32, address);
/* The source address of the copy (R1) */
buf_set_u32(reg_params[1].value, 0, 32, source->address);
/* The length of the copy (R2) */
buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
/* 5: Execute the bunch of code */
retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
/ sizeof(*reg_params), reg_params,
write_algorithm->address, 0, 10000, &armv7m_info);
if (retval != ERROR_OK)
break;
/* check for Hard Fault */
if (armv7m->exception_number == 3)
break;
/* 6: Wait while busy */
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
break;
buffer += this_count;
address += this_count;
count -= this_count;
}
/* restore previous flags */
armv7m->demcr = demcr_save;
if (armv7m->exception_number == 3) {
/* the stm32l15x devices seem to have an issue when blank.
* if a ram loader is executed on a blank device it will
* Hard Fault, this issue does not happen for a already programmed device.
* A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
* The workaround of handling the Hard Fault exception does work, but makes the
* loader more complicated, as a compromise we manually write the pages, programming time
* is reduced by 50% using this slower method.
*/
LOG_WARNING("couldn't use loader, falling back to page memory writes");
while (count > 0) {
uint32_t this_count;
this_count = (count > 128) ? 128 : count;
/* Write the next half pages */
retval = target_write_buffer(target, address, this_count, buffer);
if (retval != ERROR_OK)
break;
/* Wait while busy */
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
break;
buffer += this_count;
address += this_count;
count -= this_count;
}
}
if (retval == ERROR_OK)
retval = stm32lx_lock_program_memory(bank);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
return retval;
}
static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
uint32_t halfpages_number;
uint32_t bytes_remaining = 0;
uint32_t address = bank->base + offset;
uint32_t bytes_written = 0;
int retval, retval2;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (offset & 0x3) {
LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
/* first we need to write any unaligned head bytes upto
* the next 128 byte page */
if (offset % 128)
bytes_remaining = MIN(count, 128 - (offset % 128));
while (bytes_remaining > 0) {
uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
/* copy remaining bytes into the write buffer */
uint32_t bytes_to_write = MIN(4, bytes_remaining);
memcpy(value, buffer + bytes_written, bytes_to_write);
retval = target_write_buffer(target, address, 4, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
bytes_written += bytes_to_write;
bytes_remaining -= bytes_to_write;
address += 4;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
}
offset += bytes_written;
count -= bytes_written;
/* this should always pass this check here */
assert((offset % 128) == 0);
/* calculate half pages */
halfpages_number = count / 128;
if (halfpages_number) {
retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, 128 * halfpages_number);
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* attempt slow memory writes */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
halfpages_number = 0;
} else {
if (retval != ERROR_OK)
return ERROR_FAIL;
}
}
/* write any remaining bytes */
uint32_t page_bytes_written = 128 * halfpages_number;
bytes_written += page_bytes_written;
address += page_bytes_written;
bytes_remaining = count - page_bytes_written;
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
while (bytes_remaining > 0) {
uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
/* copy remaining bytes into the write buffer */
uint32_t bytes_to_write = MIN(4, bytes_remaining);
memcpy(value, buffer + bytes_written, bytes_to_write);
retval = target_write_buffer(target, address, 4, value);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
bytes_written += bytes_to_write;
bytes_remaining -= bytes_to_write;
address += 4;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
}
reset_pg_and_lock:
retval2 = stm32lx_lock_program_memory(bank);
if (retval == ERROR_OK)
retval = retval2;
return retval;
}
static int stm32lx_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
int i;
uint16_t flash_size_in_kb;
uint16_t max_flash_size_in_kb;
uint32_t device_id;
uint32_t base_address = FLASH_BANK0_ADDRESS;
uint32_t second_bank_base;
uint32_t first_bank_size_in_kb;
stm32lx_info->probed = 0;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
/* set max flash size depending on family */
switch (device_id & 0xfff) {
case 0x416:
max_flash_size_in_kb = 128;
break;
case 0x427:
/* single bank, high density */
max_flash_size_in_kb = 256;
break;
case 0x436:
/* According to ST, the devices with id 0x436 have dual bank flash and comes with
* a total flash size of 384k or 256kb. However, the first bank is always 192kb,
* and second one holds the rest. The reason is that the 256kb version is actually
* the same physical flash but only the first 256kb are verified.
*/
max_flash_size_in_kb = 384;
first_bank_size_in_kb = 192;
stm32lx_info->has_dual_banks = true;
break;
default:
LOG_WARNING("Cannot identify target as a STM32L family.");
return ERROR_FAIL;
}
/* Get the flash size from target. */
retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
/* Failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
} else if (flash_size_in_kb > max_flash_size_in_kb) {
LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
flash_size_in_kb, max_flash_size_in_kb, max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
if (stm32lx_info->has_dual_banks) {
/* Use the configured base address to determine if this is the first or second flash bank.
* Verify that the base address is reasonably correct and determine the flash bank size
*/
second_bank_base = base_address + first_bank_size_in_kb * 1024;
if (bank->base == second_bank_base) {
/* This is the second bank */
base_address = second_bank_base;
flash_size_in_kb = flash_size_in_kb - first_bank_size_in_kb;
} else if (bank->base == 0 || bank->base == base_address) {
/* This is the first bank */
flash_size_in_kb = first_bank_size_in_kb;
} else {
LOG_WARNING("STM32L flash bank base address config is incorrect. 0x%x but should rather be 0x%x or 0x%x",
bank->base, base_address, second_bank_base);
return ERROR_FAIL;
}
LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%x",
bank->bank_number, flash_size_in_kb, base_address);
} else {
LOG_INFO("STM32L flash size is %dkb, base address is 0x%x", flash_size_in_kb, base_address);
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32lx_info->user_bank_size) {
flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
}
/* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
* 16 pages for a protection area */
/* calculate numbers of sectors (4kB per sector) */
int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
bank->size = flash_size_in_kb * 1024;
bank->base = base_address;
bank->num_sectors = num_sectors;
bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
if (bank->sectors == NULL) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
for (i = 0; i < num_sectors; i++) {
bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
bank->sectors[i].size = FLASH_SECTOR_SIZE;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32lx_info->probed = 1;
return ERROR_OK;
}
static int stm32lx_auto_probe(struct flash_bank *bank)
{
struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
if (stm32lx_info->probed)
return ERROR_OK;
return stm32lx_probe(bank);
}
static int stm32lx_erase_check(struct flash_bank *bank)
{
struct target *target = bank->target;
const int buffer_size = 4096;
int i;
uint32_t nBytes;
int retval = ERROR_OK;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
uint8_t *buffer = malloc(buffer_size);
if (buffer == NULL) {
LOG_ERROR("failed to allocate read buffer");
return ERROR_FAIL;
}
for (i = 0; i < bank->num_sectors; i++) {
uint32_t j;
bank->sectors[i].is_erased = 1;
/* Loop chunk by chunk over the sector */
for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
uint32_t chunk;
chunk = buffer_size;
if (chunk > (j - bank->sectors[i].size))
chunk = (j - bank->sectors[i].size);
retval = target_read_memory(target, bank->base
+ bank->sectors[i].offset + j, 4, chunk / 4, buffer);
if (retval != ERROR_OK)
break;
for (nBytes = 0; nBytes < chunk; nBytes++) {
if (buffer[nBytes] != 0x00) {
bank->sectors[i].is_erased = 0;
break;
}
}
}
if (retval != ERROR_OK)
break;
}
free(buffer);
return retval;
}
static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
{
/* This method must return a string displaying information about the bank */
struct target *target = bank->target;
uint32_t device_id;
int printed;
/* read stm32 device id register */
int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
if (retval != ERROR_OK)
return retval;
if ((device_id & 0xfff) == 0x416) {
printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1008:
snprintf(buf, buf_size, "Y");
break;
case 0x1018:
snprintf(buf, buf_size, "X");
break;
case 0x1038:
snprintf(buf, buf_size, "W");
break;
case 0x1078:
snprintf(buf, buf_size, "V");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else if ((device_id & 0xfff) == 0x436) {
printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: ");
buf += printed;
buf_size -= printed;
switch (device_id >> 16) {
case 0x1000:
snprintf(buf, buf_size, "A");
break;
case 0x1008:
snprintf(buf, buf_size, "Z");
break;
case 0x1018:
snprintf(buf, buf_size, "Y");
break;
default:
snprintf(buf, buf_size, "unknown");
break;
}
} else {
snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
return ERROR_FAIL;
}
return ERROR_OK;
}
static const struct command_registration stm32lx_exec_command_handlers[] = {
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32lx_command_handlers[] = {
{
.name = "stm32lx",
.mode = COMMAND_ANY,
.help = "stm32lx flash command group",
.usage = "",
.chain = stm32lx_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver stm32lx_flash = {
.name = "stm32lx",
.commands = stm32lx_command_handlers,
.flash_bank_command = stm32lx_flash_bank_command,
.erase = stm32lx_erase,
.protect = stm32lx_protect,
.write = stm32lx_write,
.read = default_flash_read,
.probe = stm32lx_probe,
.auto_probe = stm32lx_auto_probe,
.erase_check = stm32lx_erase_check,
.protect_check = stm32lx_protect_check,
.info = stm32lx_get_info,
};
/* Static methods implementation */
static int stm32lx_unlock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/*
* Unlocking the program memory is done by unlocking the PECR,
* then by writing the 2 PRGKEY to the PRGKEYR register
*/
/* check flash is not already unlocked */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
return ERROR_OK;
/* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PELOCK) {
LOG_ERROR("PELOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
if (retval != ERROR_OK)
return retval;
/* Make sure it worked */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
if (reg32 & FLASH_PECR__PRGLOCK) {
LOG_ERROR("PRGLOCK is not cleared :(");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32lx_enable_write_half_page(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/**
* Unlock the program memory, then set the FPRG bit in the PECR register.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__FPRG;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PROG;
retval = target_write_u32(target, FLASH_PECR, reg32);
return retval;
}
static int stm32lx_lock_program_memory(struct flash_bank *bank)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/* To lock the program memory, simply set the lock bit and lock PECR */
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PRGLOCK;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, FLASH_PECR, &reg32);
if (retval != ERROR_OK)
return retval;
reg32 |= FLASH_PECR__PELOCK;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
{
struct target *target = bank->target;
int retval;
uint32_t reg32;
/*
* To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
* first unlock the memory, loop over the pages of this sector
* and write 0x0 to its first word.
*/
retval = stm32lx_unlock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
retval = target_write_u32(target, FLASH_PECR, reg32);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
uint32_t addr = bank->base + bank->sectors[sector].offset + (page
* FLASH_PAGE_SIZE);
retval = target_write_u32(target, addr, 0x0);
if (retval != ERROR_OK)
return retval;
retval = stm32lx_wait_until_bsy_clear(bank);
if (retval != ERROR_OK)
return retval;
}
retval = stm32lx_lock_program_memory(bank);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
int timeout = 100;
/* wait for busy to clear */
for (;;) {
retval = target_read_u32(target, FLASH_SR, &status);
if (retval != ERROR_OK)
return retval;
if ((status & FLASH_SR__BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_SR__WRPERR) {
LOG_ERROR("access denied / write protected");
retval = ERROR_FAIL;
}
if (status & FLASH_SR__PGAERR) {
LOG_ERROR("invalid program address");
retval = ERROR_FAIL;
}
return retval;
}