openocd/src/target/arm_simulator.c
drath 4a5f45e87d - merged XScale branch back into trunk
- fixed some compiler warnigns in amt_jtagaccel.c, bitbang.c, parport.c
- free working area and register stuff if str7x block write algorithm failed
- check PC after exiting a target algorithm in armv4_5.c


git-svn-id: svn://svn.berlios.de/openocd/trunk@135 b42882b7-edfa-0310-969c-e2dbd0fdcd60
2007-03-28 16:31:55 +00:00

685 lines
18 KiB
C

/***************************************************************************
* Copyright (C) 2006 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target.h"
#include "armv4_5.h"
#include "arm_disassembler.h"
#include "arm_simulator.h"
#include "log.h"
#include "binarybuffer.h"
#include <string.h>
u32 arm_shift(u8 shift, u32 Rm, u32 shift_amount, u8 *carry)
{
u32 return_value;
shift_amount &= 0xff;
if (shift == 0x0) /* LSL */
{
if ((shift_amount > 0) && (shift_amount <= 32))
{
return_value = Rm << shift_amount;
*carry = Rm >> (32 - shift_amount);
}
else if (shift_amount > 32)
{
return_value = 0x0;
*carry = 0x0;
}
else /* (shift_amount == 0) */
{
return_value = Rm;
}
}
else if (shift == 0x1) /* LSR */
{
if ((shift_amount > 0) && (shift_amount <= 32))
{
return_value = Rm >> shift_amount;
*carry = (Rm >> (shift_amount - 1)) & 1;
}
else if (shift_amount > 32)
{
return_value = 0x0;
*carry = 0x0;
}
else /* (shift_amount == 0) */
{
return_value = Rm;
}
}
else if (shift == 0x2) /* ASR */
{
if ((shift_amount > 0) && (shift_amount <= 32))
{
/* right shifts of unsigned values are guaranteed to be logical (shift in zeroes)
* simulate an arithmetic shift (shift in signed-bit) by adding the signed-bit manually */
return_value = Rm >> shift_amount;
if (Rm & 0x80000000)
return_value |= 0xffffffff << (32 - shift_amount);
}
else if (shift_amount > 32)
{
if (Rm & 0x80000000)
{
return_value = 0xffffffff;
*carry = 0x1;
}
else
{
return_value = 0x0;
*carry = 0x0;
}
}
else /* (shift_amount == 0) */
{
return_value = Rm;
}
}
else if (shift == 0x3) /* ROR */
{
if (shift_amount == 0)
{
return_value = Rm;
}
else
{
shift_amount = shift_amount % 32;
return_value = (Rm >> shift_amount) | (Rm << (32 - shift_amount));
*carry = (return_value >> 31) & 0x1;
}
}
else if (shift == 0x4) /* RRX */
{
return_value = Rm >> 1;
if (*carry)
Rm |= 0x80000000;
*carry = Rm & 0x1;
}
return return_value;
}
u32 arm_shifter_operand(armv4_5_common_t *armv4_5, int variant, union arm_shifter_operand shifter_operand, u8 *shifter_carry_out)
{
u32 return_value;
int instruction_size;
if (armv4_5->core_state == ARMV4_5_STATE_ARM)
instruction_size = 4;
else
instruction_size = 2;
*shifter_carry_out = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 29, 1);
if (variant == 0) /* 32-bit immediate */
{
return_value = shifter_operand.immediate.immediate;
}
else if (variant == 1) /* immediate shift */
{
u32 Rm = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, shifter_operand.immediate_shift.Rm).value, 0, 32);
/* adjust RM in case the PC is being read */
if (shifter_operand.immediate_shift.Rm == 15)
Rm += 2 * instruction_size;
return_value = arm_shift(shifter_operand.immediate_shift.shift, Rm, shifter_operand.immediate_shift.shift_imm, shifter_carry_out);
}
else if (variant == 2) /* register shift */
{
u32 Rm = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, shifter_operand.register_shift.Rm).value, 0, 32);
u32 Rs = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, shifter_operand.register_shift.Rs).value, 0, 32);
/* adjust RM in case the PC is being read */
if (shifter_operand.register_shift.Rm == 15)
Rm += 2 * instruction_size;
return_value = arm_shift(shifter_operand.immediate_shift.shift, Rm, Rs, shifter_carry_out);
}
else
{
ERROR("BUG: shifter_operand.variant not 0, 1 or 2");
return_value = 0xffffffff;
}
return return_value;
}
int pass_condition(u32 cpsr, u32 opcode)
{
switch ((opcode & 0xf0000000) >> 28)
{
case 0x0: /* EQ */
if (cpsr & 0x40000000)
return 1;
else
return 0;
case 0x1: /* NE */
if (!(cpsr & 0x40000000))
return 1;
else
return 0;
case 0x2: /* CS */
if (cpsr & 0x20000000)
return 1;
else
return 0;
case 0x3: /* CC */
if (!(cpsr & 0x20000000))
return 1;
else
return 0;
case 0x4: /* MI */
if (cpsr & 0x80000000)
return 1;
else
return 0;
case 0x5: /* PL */
if (!(cpsr & 0x80000000))
return 1;
else
return 0;
case 0x6: /* VS */
if (cpsr & 0x10000000)
return 1;
else
return 0;
case 0x7: /* VC */
if (!(cpsr & 0x10000000))
return 1;
else
return 0;
case 0x8: /* HI */
if ((cpsr & 0x20000000) && !(cpsr & 0x40000000))
return 1;
else
return 0;
case 0x9: /* LS */
if (!(cpsr & 0x20000000) || (cpsr & 0x40000000))
return 1;
else
return 0;
case 0xa: /* GE */
if (((cpsr & 0x80000000) && (cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xb: /* LT */
if (((cpsr & 0x80000000) && !(cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xc: /* GT */
if (!(cpsr & 0x40000000) &&
(((cpsr & 0x80000000) && (cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000))))
return 1;
else
return 0;
case 0xd: /* LE */
if ((cpsr & 0x40000000) &&
(((cpsr & 0x80000000) && !(cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000))))
return 1;
else
return 0;
case 0xe:
case 0xf:
return 1;
}
ERROR("BUG: should never get here");
return 0;
}
/* simulate a single step (if possible)
* if the dry_run_pc argument is provided, no state is changed,
* but the new pc is stored in the variable pointed at by the argument
*/
int arm_simulate_step(target_t *target, u32 *dry_run_pc)
{
armv4_5_common_t *armv4_5 = target->arch_info;
u32 opcode;
u32 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
arm_instruction_t instruction;
int instruction_size;
if (armv4_5->core_state == ARMV4_5_STATE_ARM)
{
/* get current instruction, and identify it */
target_read_u32(target, current_pc, &opcode);
arm_evaluate_opcode(opcode, current_pc, &instruction);
instruction_size = 4;
}
else
{
/* TODO: add support for Thumb instruction set */
instruction_size = 2;
}
/* check condition code */
if (!pass_condition(buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32), opcode))
{
if (dry_run_pc)
{
*dry_run_pc = current_pc + instruction_size;
}
else
{
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, current_pc + instruction_size);
}
return ERROR_OK;
}
/* examine instruction type */
/* branch instructions */
if ((instruction.type >= ARM_B) && (instruction.type <= ARM_BLX))
{
u32 target;
if (instruction.info.b_bl_bx_blx.reg_operand == -1)
{
target = instruction.info.b_bl_bx_blx.target_address;
}
else
{
target = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.b_bl_bx_blx.reg_operand).value, 0, 32);
}
if (dry_run_pc)
{
*dry_run_pc = target;
return ERROR_OK;
}
else
{
if (instruction.type == ARM_B)
{
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target);
}
else if (instruction.type == ARM_BL)
{
u32 old_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 14).value, 0, 32, old_pc + 4);
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target);
}
else if (instruction.type == ARM_BX)
{
if (target & 0x1)
{
armv4_5->core_state = ARMV4_5_STATE_THUMB;
}
else
{
armv4_5->core_state = ARMV4_5_STATE_ARM;
}
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target & 0xfffffffe);
}
else if (instruction.type == ARM_BLX)
{
u32 old_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 14).value, 0, 32, old_pc + 4);
if (target & 0x1)
{
armv4_5->core_state = ARMV4_5_STATE_THUMB;
}
else
{
armv4_5->core_state = ARMV4_5_STATE_ARM;
}
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, target & 0xfffffffe);
}
return ERROR_OK;
}
}
/* data processing instructions, except compare instructions (CMP, CMN, TST, TEQ) */
else if (((instruction.type >= ARM_AND) && (instruction.type <= ARM_RSC))
|| ((instruction.type >= ARM_ORR) && (instruction.type <= ARM_MVN)))
{
u32 Rd, Rn, shifter_operand;
u8 C = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 29, 1);
u8 carry_out;
Rd = 0x0;
Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.data_proc.Rn).value, 0, 32);
shifter_operand = arm_shifter_operand(armv4_5, instruction.info.data_proc.variant, instruction.info.data_proc.shifter_operand, &carry_out);
/* adjust Rn in case the PC is being read */
if (instruction.info.data_proc.Rn == 15)
Rn += 2 * instruction_size;
if (instruction.type == ARM_AND)
Rd = Rn & shifter_operand;
else if (instruction.type == ARM_EOR)
Rd = Rn ^ shifter_operand;
else if (instruction.type == ARM_SUB)
Rd = Rn - shifter_operand;
else if (instruction.type == ARM_RSB)
Rd = shifter_operand - Rn;
else if (instruction.type == ARM_ADD)
Rd = Rn + shifter_operand;
else if (instruction.type == ARM_ADC)
Rd = Rn + shifter_operand + (C & 1);
else if (instruction.type == ARM_SBC)
Rd = Rn - shifter_operand - (C & 1) ? 0 : 1;
else if (instruction.type == ARM_RSC)
Rd = shifter_operand - Rn - (C & 1) ? 0 : 1;
else if (instruction.type == ARM_ORR)
Rd = Rn | shifter_operand;
else if (instruction.type == ARM_BIC)
Rd = Rn & ~(shifter_operand);
else if (instruction.type == ARM_MOV)
Rd = shifter_operand;
else if (instruction.type == ARM_MVN)
Rd = ~shifter_operand;
if (dry_run_pc)
{
if (instruction.info.data_proc.Rd == 15)
{
*dry_run_pc = Rd;
return ERROR_OK;
}
else
{
*dry_run_pc = current_pc + instruction_size;
}
return ERROR_OK;
}
else
{
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.data_proc.Rd).value, 0, 32, Rd);
WARNING("no updating of flags yet");
if (instruction.info.data_proc.Rd == 15)
return ERROR_OK;
}
}
/* compare instructions (CMP, CMN, TST, TEQ) */
else if ((instruction.type >= ARM_TST) && (instruction.type <= ARM_CMN))
{
if (dry_run_pc)
{
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
}
else
{
WARNING("no updating of flags yet");
}
}
/* load register instructions */
else if ((instruction.type >= ARM_LDR) && (instruction.type <= ARM_LDRSH))
{
u32 load_address, modified_address, load_value;
u32 Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.Rn).value, 0, 32);
/* adjust Rn in case the PC is being read */
if (instruction.info.load_store.Rn == 15)
Rn += 2 * instruction_size;
if (instruction.info.load_store.offset_mode == 0)
{
if (instruction.info.load_store.U)
modified_address = Rn + instruction.info.load_store.offset.offset;
else
modified_address = Rn - instruction.info.load_store.offset.offset;
}
else if (instruction.info.load_store.offset_mode == 1)
{
u32 offset;
u32 Rm = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.offset.reg.Rm).value, 0, 32);
u8 shift = instruction.info.load_store.offset.reg.shift;
u8 shift_imm = instruction.info.load_store.offset.reg.shift_imm;
u8 carry = buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 29, 1);
offset = arm_shift(shift, Rm, shift_imm, &carry);
if (instruction.info.load_store.U)
modified_address = Rn + offset;
else
modified_address = Rn - offset;
}
else
{
ERROR("BUG: offset_mode neither 0 (offset) nor 1 (scaled register)");
}
if (instruction.info.load_store.index_mode == 0)
{
/* offset mode
* we load from the modified address, but don't change the base address register */
load_address = modified_address;
modified_address = Rn;
}
else if (instruction.info.load_store.index_mode == 1)
{
/* pre-indexed mode
* we load from the modified address, and write it back to the base address register */
load_address = modified_address;
}
else if (instruction.info.load_store.index_mode == 2)
{
/* post-indexed mode
* we load from the unmodified address, and write the modified address back */
load_address = Rn;
}
target_read_u32(target, load_address, &load_value);
if (dry_run_pc)
{
if (instruction.info.load_store.Rd == 15)
{
*dry_run_pc = load_value;
return ERROR_OK;
}
else
{
*dry_run_pc = current_pc + instruction_size;
}
return ERROR_OK;
}
else
{
if ((instruction.info.load_store.index_mode == 1) ||
(instruction.info.load_store.index_mode == 2))
{
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.Rn).value, 0, 32, modified_address);
}
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store.Rd).value, 0, 32, load_value);
if (instruction.info.load_store.Rd == 15)
return ERROR_OK;
}
}
/* load multiple instruction */
else if (instruction.type == ARM_LDM)
{
int i;
u32 Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32);
u32 load_values[16];
int bits_set = 0;
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
bits_set++;
}
switch (instruction.info.load_store_multiple.addressing_mode)
{
case 0: /* Increment after */
Rn = Rn;
break;
case 1: /* Increment before */
Rn = Rn + 4;
break;
case 2: /* Decrement after */
Rn = Rn - (bits_set * 4) + 4;
break;
case 3: /* Decrement before */
Rn = Rn - (bits_set * 4);
break;
}
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
{
target_read_u32(target, Rn, &load_values[i]);
Rn += 4;
}
}
if (dry_run_pc)
{
if (instruction.info.load_store_multiple.register_list & 0x8000)
{
*dry_run_pc = load_values[15];
return ERROR_OK;
}
}
else
{
enum armv4_5_mode mode = armv4_5->core_mode;
int update_cpsr = 0;
if (instruction.info.load_store_multiple.S)
{
if (instruction.info.load_store_multiple.register_list & 0x8000)
update_cpsr = 1;
else
mode = ARMV4_5_MODE_USR;
}
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
{
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, mode, i).value, 0, 32, load_values[i]);
}
}
if (update_cpsr)
{
u32 spsr = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32);
buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32, spsr);
}
/* base register writeback */
if (instruction.info.load_store_multiple.W)
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32, Rn);
if (instruction.info.load_store_multiple.register_list & 0x8000)
return ERROR_OK;
}
}
/* store multiple instruction */
else if (instruction.type == ARM_STM)
{
int i;
if (dry_run_pc)
{
/* STM wont affect PC (advance by instruction size */
}
else
{
u32 Rn = buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32);
int bits_set = 0;
enum armv4_5_mode mode = armv4_5->core_mode;
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
bits_set++;
}
if (instruction.info.load_store_multiple.S)
{
mode = ARMV4_5_MODE_USR;
}
switch (instruction.info.load_store_multiple.addressing_mode)
{
case 0: /* Increment after */
Rn = Rn;
break;
case 1: /* Increment before */
Rn = Rn + 4;
break;
case 2: /* Decrement after */
Rn = Rn - (bits_set * 4) + 4;
break;
case 3: /* Decrement before */
Rn = Rn - (bits_set * 4);
break;
}
for (i = 0; i < 16; i++)
{
if (instruction.info.load_store_multiple.register_list & (1 << i))
{
target_write_u32(target, Rn, buf_get_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32));
Rn += 4;
}
}
/* base register writeback */
if (instruction.info.load_store_multiple.W)
buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, instruction.info.load_store_multiple.Rn).value, 0, 32, Rn);
}
}
else if (!dry_run_pc)
{
/* the instruction wasn't handled, but we're supposed to simulate it
*/
return ERROR_ARM_SIMULATOR_NOT_IMPLEMENTED;
}
if (dry_run_pc)
{
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
}
else
{
buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, current_pc + instruction_size);
return ERROR_OK;
}
}