openocd/src/flash/nor/nrf5.c

1449 lines
41 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2013 Synapse Product Development *
* Andrey Smirnov <andrew.smironv@gmail.com> *
* Angus Gratton <gus@projectgus.com> *
* Erdem U. Altunyurt <spamjunkeater@gmail.com> *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>
#include <helper/types.h>
#include <helper/time_support.h>
/* Both those values are constant across the current spectrum ofr nRF5 devices */
#define WATCHDOG_REFRESH_REGISTER 0x40010600
#define WATCHDOG_REFRESH_VALUE 0x6e524635
enum {
NRF5_FLASH_BASE = 0x00000000,
};
enum nrf5_ficr_registers {
NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
#define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
NRF5_FICR_CODEPAGESIZE = NRF5_FICR_REG(0x010),
NRF5_FICR_CODESIZE = NRF5_FICR_REG(0x014),
NRF51_FICR_CLENR0 = NRF5_FICR_REG(0x028),
NRF51_FICR_PPFC = NRF5_FICR_REG(0x02C),
NRF51_FICR_NUMRAMBLOCK = NRF5_FICR_REG(0x034),
NRF51_FICR_SIZERAMBLOCK0 = NRF5_FICR_REG(0x038),
NRF51_FICR_SIZERAMBLOCK1 = NRF5_FICR_REG(0x03C),
NRF51_FICR_SIZERAMBLOCK2 = NRF5_FICR_REG(0x040),
NRF51_FICR_SIZERAMBLOCK3 = NRF5_FICR_REG(0x044),
NRF5_FICR_CONFIGID = NRF5_FICR_REG(0x05C),
NRF5_FICR_DEVICEID0 = NRF5_FICR_REG(0x060),
NRF5_FICR_DEVICEID1 = NRF5_FICR_REG(0x064),
NRF5_FICR_ER0 = NRF5_FICR_REG(0x080),
NRF5_FICR_ER1 = NRF5_FICR_REG(0x084),
NRF5_FICR_ER2 = NRF5_FICR_REG(0x088),
NRF5_FICR_ER3 = NRF5_FICR_REG(0x08C),
NRF5_FICR_IR0 = NRF5_FICR_REG(0x090),
NRF5_FICR_IR1 = NRF5_FICR_REG(0x094),
NRF5_FICR_IR2 = NRF5_FICR_REG(0x098),
NRF5_FICR_IR3 = NRF5_FICR_REG(0x09C),
NRF5_FICR_DEVICEADDRTYPE = NRF5_FICR_REG(0x0A0),
NRF5_FICR_DEVICEADDR0 = NRF5_FICR_REG(0x0A4),
NRF5_FICR_DEVICEADDR1 = NRF5_FICR_REG(0x0A8),
NRF51_FICR_OVERRIDEN = NRF5_FICR_REG(0x0AC),
NRF51_FICR_NRF_1MBIT0 = NRF5_FICR_REG(0x0B0),
NRF51_FICR_NRF_1MBIT1 = NRF5_FICR_REG(0x0B4),
NRF51_FICR_NRF_1MBIT2 = NRF5_FICR_REG(0x0B8),
NRF51_FICR_NRF_1MBIT3 = NRF5_FICR_REG(0x0BC),
NRF51_FICR_NRF_1MBIT4 = NRF5_FICR_REG(0x0C0),
NRF51_FICR_BLE_1MBIT0 = NRF5_FICR_REG(0x0EC),
NRF51_FICR_BLE_1MBIT1 = NRF5_FICR_REG(0x0F0),
NRF51_FICR_BLE_1MBIT2 = NRF5_FICR_REG(0x0F4),
NRF51_FICR_BLE_1MBIT3 = NRF5_FICR_REG(0x0F8),
NRF51_FICR_BLE_1MBIT4 = NRF5_FICR_REG(0x0FC),
/* Following registers are available on nRF52 and on nRF51 since rev 3 */
NRF5_FICR_INFO_PART = NRF5_FICR_REG(0x100),
NRF5_FICR_INFO_VARIANT = NRF5_FICR_REG(0x104),
NRF5_FICR_INFO_PACKAGE = NRF5_FICR_REG(0x108),
NRF5_FICR_INFO_RAM = NRF5_FICR_REG(0x10C),
NRF5_FICR_INFO_FLASH = NRF5_FICR_REG(0x110),
};
enum nrf5_uicr_registers {
NRF5_UICR_BASE = 0x10001000, /* User Information
* Configuration Registers */
#define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
NRF51_UICR_CLENR0 = NRF5_UICR_REG(0x000),
NRF51_UICR_RBPCONF = NRF5_UICR_REG(0x004),
NRF51_UICR_XTALFREQ = NRF5_UICR_REG(0x008),
NRF51_UICR_FWID = NRF5_UICR_REG(0x010),
};
enum nrf5_nvmc_registers {
NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
* Controller Registers */
#define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
NRF5_NVMC_CONFIG = NRF5_NVMC_REG(0x504),
NRF5_NVMC_ERASEPAGE = NRF5_NVMC_REG(0x508),
NRF5_NVMC_ERASEALL = NRF5_NVMC_REG(0x50C),
NRF5_NVMC_ERASEUICR = NRF5_NVMC_REG(0x514),
NRF5_BPROT_BASE = 0x40000000,
};
enum nrf5_nvmc_config_bits {
NRF5_NVMC_CONFIG_REN = 0x00,
NRF5_NVMC_CONFIG_WEN = 0x01,
NRF5_NVMC_CONFIG_EEN = 0x02,
};
struct nrf52_ficr_info {
uint32_t part;
uint32_t variant;
uint32_t package;
uint32_t ram;
uint32_t flash;
};
enum nrf5_features {
NRF5_FEATURE_SERIES_51 = 1 << 0,
NRF5_FEATURE_SERIES_52 = 1 << 1,
NRF5_FEATURE_BPROT = 1 << 2,
NRF5_FEATURE_ACL_PROT = 1 << 3,
};
struct nrf5_device_spec {
uint16_t hwid;
const char *part;
const char *variant;
const char *build_code;
unsigned int flash_size_kb;
enum nrf5_features features;
};
struct nrf5_info {
unsigned int refcount;
struct nrf5_bank {
struct nrf5_info *chip;
bool probed;
} bank[2];
struct target *target;
/* chip identification stored in nrf5_probe() for use in nrf5_info() */
bool ficr_info_valid;
struct nrf52_ficr_info ficr_info;
const struct nrf5_device_spec *spec;
uint16_t hwid;
enum nrf5_features features;
unsigned int flash_size_kb;
unsigned int ram_size_kb;
};
#define NRF51_DEVICE_DEF(id, pt, var, bcode, fsize) \
{ \
.hwid = (id), \
.part = pt, \
.variant = var, \
.build_code = bcode, \
.flash_size_kb = (fsize), \
.features = NRF5_FEATURE_SERIES_51, \
}
#define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize, features) \
{ \
.hwid = (id), \
.part = pt, \
.variant = var, \
.build_code = bcode, \
.flash_size_kb = (fsize), \
.features = features, \
}
/* The known devices table below is derived from the "nRF5x series
* compatibility matrix" documents, which can be found in the "DocLib" of
* nordic:
*
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51422_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51822_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51824_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52810/latest/COMP/nrf52810/nRF52810_ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52832/latest/COMP/nrf52832/ic_revision_overview
* https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52840/latest/COMP/nrf52840/nRF52840_ic_revision_overview
*
* Up to date with Matrix v2.0, plus some additional HWIDs.
*
* The additional HWIDs apply where the build code in the matrix is
* shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
* for x==0, x!=0 means different (unspecified) HWIDs.
*/
static const struct nrf5_device_spec nrf5_known_devices_table[] = {
/* nRF51822 Devices (IC rev 1). */
NRF51_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
NRF51_DEVICE_DEF(0x0026, "51822", "QFAB", "AA", 128),
NRF51_DEVICE_DEF(0x0027, "51822", "QFAB", "A0", 128),
NRF51_DEVICE_DEF(0x0020, "51822", "CEAA", "BA", 256),
NRF51_DEVICE_DEF(0x002F, "51822", "CEAA", "B0", 256),
/* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
with built-in jlink seem to use engineering samples not listed
in the nRF51 Series Compatibility Matrix V1.0. */
NRF51_DEVICE_DEF(0x0071, "51822", "QFAC", "AB", 256),
/* nRF51822 Devices (IC rev 2). */
NRF51_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0", 256),
NRF51_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0", 256),
NRF51_DEVICE_DEF(0x003C, "51822", "QFAA", "G0", 256),
NRF51_DEVICE_DEF(0x0057, "51822", "QFAA", "G2", 256),
NRF51_DEVICE_DEF(0x0058, "51822", "QFAA", "G3", 256),
NRF51_DEVICE_DEF(0x004C, "51822", "QFAB", "B0", 128),
NRF51_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0", 256),
NRF51_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0", 256),
NRF51_DEVICE_DEF(0x004D, "51822", "CEAA", "D00", 256),
/* nRF51822 Devices (IC rev 3). */
NRF51_DEVICE_DEF(0x0072, "51822", "QFAA", "H0", 256),
NRF51_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2", 256),
NRF51_DEVICE_DEF(0x007B, "51822", "QFAB", "C0", 128),
NRF51_DEVICE_DEF(0x0083, "51822", "QFAC", "A0", 256),
NRF51_DEVICE_DEF(0x0084, "51822", "QFAC", "A1", 256),
NRF51_DEVICE_DEF(0x007D, "51822", "CDAB", "A0", 128),
NRF51_DEVICE_DEF(0x0079, "51822", "CEAA", "E0", 256),
NRF51_DEVICE_DEF(0x0087, "51822", "CFAC", "A0", 256),
NRF51_DEVICE_DEF(0x008F, "51822", "QFAA", "H1", 256),
/* nRF51422 Devices (IC rev 1). */
NRF51_DEVICE_DEF(0x001E, "51422", "QFAA", "CA", 256),
NRF51_DEVICE_DEF(0x0024, "51422", "QFAA", "C0", 256),
NRF51_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A", 256),
/* nRF51422 Devices (IC rev 2). */
NRF51_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA", 256),
NRF51_DEVICE_DEF(0x002E, "51422", "QFAA", "E0", 256),
NRF51_DEVICE_DEF(0x0061, "51422", "QFAB", "A00", 128),
NRF51_DEVICE_DEF(0x0050, "51422", "CEAA", "B0", 256),
/* nRF51422 Devices (IC rev 3). */
NRF51_DEVICE_DEF(0x0073, "51422", "QFAA", "F0", 256),
NRF51_DEVICE_DEF(0x007C, "51422", "QFAB", "B0", 128),
NRF51_DEVICE_DEF(0x0085, "51422", "QFAC", "A0", 256),
NRF51_DEVICE_DEF(0x0086, "51422", "QFAC", "A1", 256),
NRF51_DEVICE_DEF(0x007E, "51422", "CDAB", "A0", 128),
NRF51_DEVICE_DEF(0x007A, "51422", "CEAA", "C0", 256),
NRF51_DEVICE_DEF(0x0088, "51422", "CFAC", "A0", 256),
/* The driver fully autodetects nRF52 series devices by FICR INFO,
* no need for nRF52xxx HWIDs in this table */
#if 0
/* nRF52810 Devices */
NRF5_DEVICE_DEF(0x0142, "52810", "QFAA", "B0", 192, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
NRF5_DEVICE_DEF(0x0143, "52810", "QCAA", "C0", 192, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
/* nRF52832 Devices */
NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
NRF5_DEVICE_DEF(0x00E3, "52832", "CIAA", "B0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
/* nRF52840 Devices */
NRF5_DEVICE_DEF(0x0150, "52840", "QIAA", "C0", 1024, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_ACL_PROT),
#endif
};
struct nrf5_device_package {
uint32_t package;
const char *code;
};
/* Newer devices have FICR INFO.PACKAGE.
* This table converts its value to two character code */
static const struct nrf5_device_package nrf5_packages_table[] = {
{ 0x2000, "QF" },
{ 0x2001, "CH" },
{ 0x2002, "CI" },
{ 0x2005, "CK" },
};
const struct flash_driver nrf5_flash, nrf51_flash;
static bool nrf5_bank_is_probed(const struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
assert(nbank);
return nbank->probed;
}
static int nrf5_probe(struct flash_bank *bank);
static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
{
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct nrf5_bank *nbank = bank->driver_priv;
*chip = nbank->chip;
if (nrf5_bank_is_probed(bank))
return ERROR_OK;
return nrf5_probe(bank);
}
static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
{
uint32_t ready;
int res;
int timeout_ms = 340;
int64_t ts_start = timeval_ms();
do {
res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
if (res != ERROR_OK) {
LOG_ERROR("Error waiting NVMC_READY: generic flash write/erase error (check protection etc...)");
return res;
}
if (ready == 0x00000001)
return ERROR_OK;
keep_alive();
} while ((timeval_ms()-ts_start) < timeout_ms);
LOG_DEBUG("Timed out waiting for NVMC_READY");
return ERROR_FLASH_BUSY;
}
static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_EEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable erase operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Erase enable did not complete");
return res;
}
static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_WEN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable write operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Write enable did not complete");
return res;
}
static int nrf5_nvmc_read_only(struct nrf5_info *chip)
{
int res;
res = target_write_u32(chip->target,
NRF5_NVMC_CONFIG,
NRF5_NVMC_CONFIG_REN);
if (res != ERROR_OK) {
LOG_ERROR("Failed to enable read-only operation");
return res;
}
/*
According to NVMC examples in Nordic SDK busy status must be
checked after writing to NVMC_CONFIG
*/
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
LOG_ERROR("Read only enable did not complete");
return res;
}
static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
uint32_t erase_register, uint32_t erase_value)
{
int res;
res = nrf5_nvmc_erase_enable(chip);
if (res != ERROR_OK)
goto error;
res = target_write_u32(chip->target,
erase_register,
erase_value);
if (res != ERROR_OK)
goto set_read_only;
res = nrf5_wait_for_nvmc(chip);
if (res != ERROR_OK)
goto set_read_only;
return nrf5_nvmc_read_only(chip);
set_read_only:
nrf5_nvmc_read_only(chip);
error:
LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
erase_register, erase_value);
return ERROR_FAIL;
}
static int nrf5_protect_check_clenr0(struct flash_bank *bank)
{
int res;
uint32_t clenr0;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
assert(chip);
res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[FICR]");
return res;
}
if (clenr0 == 0xFFFFFFFF) {
res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size[UICR]");
return res;
}
}
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected =
clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
return ERROR_OK;
}
static int nrf5_protect_check_bprot(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
assert(chip);
static uint32_t nrf5_bprot_offsets[4] = { 0x600, 0x604, 0x610, 0x614 };
uint32_t bprot_reg = 0;
int res;
for (unsigned int i = 0; i < bank->num_sectors; i++) {
unsigned int bit = i % 32;
if (bit == 0) {
unsigned int n_reg = i / 32;
if (n_reg >= ARRAY_SIZE(nrf5_bprot_offsets))
break;
res = target_read_u32(chip->target, NRF5_BPROT_BASE + nrf5_bprot_offsets[n_reg], &bprot_reg);
if (res != ERROR_OK)
return res;
}
bank->sectors[i].is_protected = (bprot_reg & (1 << bit)) ? 1 : 0;
}
return ERROR_OK;
}
static int nrf5_protect_check(struct flash_bank *bank)
{
/* UICR cannot be write protected so just return early */
if (bank->base == NRF5_UICR_BASE)
return ERROR_OK;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
assert(chip);
if (chip->features & NRF5_FEATURE_BPROT)
return nrf5_protect_check_bprot(bank);
if (chip->features & NRF5_FEATURE_SERIES_51)
return nrf5_protect_check_clenr0(bank);
LOG_WARNING("Flash protection of this nRF device is not supported");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
static int nrf5_protect_clenr0(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
int res;
uint32_t clenr0, ppfc;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
if (first != 0) {
LOG_ERROR("Code region 0 must start at the beginning of the bank");
return ERROR_FAIL;
}
res = target_read_u32(chip->target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
return ERROR_FAIL;
}
res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
&clenr0);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code region 0 size from UICR");
return res;
}
if (!set || clenr0 != 0xFFFFFFFF) {
LOG_ERROR("You need to perform chip erase before changing the protection settings");
return ERROR_FAIL;
}
res = nrf5_nvmc_write_enable(chip);
if (res != ERROR_OK)
goto error;
clenr0 = bank->sectors[last].offset + bank->sectors[last].size;
res = target_write_u32(chip->target, NRF51_UICR_CLENR0, clenr0);
int res2 = nrf5_wait_for_nvmc(chip);
if (res == ERROR_OK)
res = res2;
if (res == ERROR_OK)
LOG_INFO("A reset or power cycle is required for the new protection settings to take effect.");
else
LOG_ERROR("Couldn't write code region 0 size to UICR");
error:
nrf5_nvmc_read_only(chip);
return res;
}
static int nrf5_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
int res;
struct nrf5_info *chip;
/* UICR cannot be write protected so just bail out early */
if (bank->base == NRF5_UICR_BASE) {
LOG_ERROR("UICR page does not support protection");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
if (chip->features & NRF5_FEATURE_SERIES_51)
return nrf5_protect_clenr0(bank, set, first, last);
LOG_ERROR("Flash protection setting is not supported on this nRF5 device");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
static bool nrf5_info_variant_to_str(uint32_t variant, char *bf)
{
uint8_t b[4];
h_u32_to_be(b, variant);
if (isalnum(b[0]) && isalnum(b[1]) && isalnum(b[2]) && isalnum(b[3])) {
memcpy(bf, b, 4);
bf[4] = 0;
return true;
}
strcpy(bf, "xxxx");
return false;
}
static const char *nrf5_decode_info_package(uint32_t package)
{
for (size_t i = 0; i < ARRAY_SIZE(nrf5_packages_table); i++) {
if (nrf5_packages_table[i].package == package)
return nrf5_packages_table[i].code;
}
return "xx";
}
static int get_nrf5_chip_type_str(const struct nrf5_info *chip, char *buf, unsigned int buf_size)
{
int res;
if (chip->spec) {
res = snprintf(buf, buf_size, "nRF%s-%s(build code: %s)",
chip->spec->part, chip->spec->variant, chip->spec->build_code);
} else if (chip->ficr_info_valid) {
char variant[5];
nrf5_info_variant_to_str(chip->ficr_info.variant, variant);
res = snprintf(buf, buf_size, "nRF%" PRIx32 "-%s%.2s(build code: %s)",
chip->ficr_info.part,
nrf5_decode_info_package(chip->ficr_info.package),
variant, &variant[2]);
} else {
res = snprintf(buf, buf_size, "nRF51xxx (HWID 0x%04" PRIx16 ")", chip->hwid);
}
/* safety: */
if (res <= 0 || (unsigned int)res >= buf_size) {
LOG_ERROR("BUG: buffer problem in %s", __func__);
return ERROR_FAIL;
}
return ERROR_OK;
}
static int nrf5_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
char chip_type_str[256];
if (get_nrf5_chip_type_str(chip, chip_type_str, sizeof(chip_type_str)) != ERROR_OK)
return ERROR_FAIL;
command_print_sameline(cmd, "%s %ukB Flash, %ukB RAM",
chip_type_str, chip->flash_size_kb, chip->ram_size_kb);
return ERROR_OK;
}
static int nrf5_read_ficr_info(struct nrf5_info *chip)
{
int res;
struct target *target = chip->target;
chip->ficr_info_valid = false;
res = target_read_u32(target, NRF5_FICR_INFO_PART, &chip->ficr_info.part);
if (res != ERROR_OK) {
LOG_DEBUG("Couldn't read FICR INFO.PART register");
return res;
}
uint32_t series = chip->ficr_info.part & 0xfffff000;
switch (series) {
case 0x51000:
chip->features = NRF5_FEATURE_SERIES_51;
break;
case 0x52000:
chip->features = NRF5_FEATURE_SERIES_52;
switch (chip->ficr_info.part) {
case 0x52810:
case 0x52832:
chip->features |= NRF5_FEATURE_BPROT;
break;
case 0x52840:
chip->features |= NRF5_FEATURE_ACL_PROT;
break;
}
break;
default:
LOG_DEBUG("FICR INFO likely not implemented. Invalid PART value 0x%08"
PRIx32, chip->ficr_info.part);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Now we know the device has FICR INFO filled by something relevant:
* Although it is not documented, the tested nRF51 rev 3 devices
* have FICR INFO.PART, RAM and FLASH of the same format as nRF52.
* VARIANT and PACKAGE coding is unknown for a nRF51 device.
* nRF52 devices have FICR INFO documented and always filled. */
res = target_read_u32(target, NRF5_FICR_INFO_VARIANT, &chip->ficr_info.variant);
if (res != ERROR_OK)
return res;
res = target_read_u32(target, NRF5_FICR_INFO_PACKAGE, &chip->ficr_info.package);
if (res != ERROR_OK)
return res;
res = target_read_u32(target, NRF5_FICR_INFO_RAM, &chip->ficr_info.ram);
if (res != ERROR_OK)
return res;
res = target_read_u32(target, NRF5_FICR_INFO_FLASH, &chip->ficr_info.flash);
if (res != ERROR_OK)
return res;
chip->ficr_info_valid = true;
return ERROR_OK;
}
static int nrf5_get_ram_size(struct target *target, uint32_t *ram_size)
{
int res;
*ram_size = 0;
uint32_t numramblock;
res = target_read_u32(target, NRF51_FICR_NUMRAMBLOCK, &numramblock);
if (res != ERROR_OK) {
LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
return res;
}
if (numramblock < 1 || numramblock > 4) {
LOG_DEBUG("FICR NUMRAMBLOCK strange value %" PRIx32, numramblock);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
for (unsigned int i = 0; i < numramblock; i++) {
uint32_t sizeramblock;
res = target_read_u32(target, NRF51_FICR_SIZERAMBLOCK0 + sizeof(uint32_t)*i, &sizeramblock);
if (res != ERROR_OK) {
LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
return res;
}
if (sizeramblock < 1024 || sizeramblock > 65536)
LOG_DEBUG("FICR SIZERAMBLOCK strange value %" PRIx32, sizeramblock);
else
*ram_size += sizeramblock;
}
return res;
}
static int nrf5_probe(struct flash_bank *bank)
{
int res;
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
struct target *target = chip->target;
uint32_t configid;
res = target_read_u32(target, NRF5_FICR_CONFIGID, &configid);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read CONFIGID register");
return res;
}
/* HWID is stored in the lower two bytes of the CONFIGID register */
chip->hwid = configid & 0xFFFF;
/* guess a nRF51 series if the device has no FICR INFO and we don't know HWID */
chip->features = NRF5_FEATURE_SERIES_51;
/* Don't bail out on error for the case that some old engineering
* sample has FICR INFO registers unreadable. We can proceed anyway. */
(void)nrf5_read_ficr_info(chip);
chip->spec = NULL;
for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
if (chip->hwid == nrf5_known_devices_table[i].hwid) {
chip->spec = &nrf5_known_devices_table[i];
chip->features = chip->spec->features;
break;
}
}
if (chip->spec && chip->ficr_info_valid) {
/* check if HWID table gives the same part as FICR INFO */
if (chip->ficr_info.part != strtoul(chip->spec->part, NULL, 16))
LOG_WARNING("HWID 0x%04" PRIx32 " mismatch: FICR INFO.PART %"
PRIx32, chip->hwid, chip->ficr_info.part);
}
if (chip->ficr_info_valid) {
chip->ram_size_kb = chip->ficr_info.ram;
} else {
uint32_t ram_size;
nrf5_get_ram_size(target, &ram_size);
chip->ram_size_kb = ram_size / 1024;
}
/* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
uint32_t flash_page_size;
res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
&flash_page_size);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code page size");
return res;
}
/* Note the register name is misleading,
* NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
uint32_t num_sectors;
res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read code memory size");
return res;
}
chip->flash_size_kb = num_sectors * flash_page_size / 1024;
if (!chip->bank[0].probed && !chip->bank[1].probed) {
char chip_type_str[256];
if (get_nrf5_chip_type_str(chip, chip_type_str, sizeof(chip_type_str)) != ERROR_OK)
return ERROR_FAIL;
const bool device_is_unknown = (!chip->spec && !chip->ficr_info_valid);
LOG_INFO("%s%s %ukB Flash, %ukB RAM",
device_is_unknown ? "Unknown device: " : "",
chip_type_str,
chip->flash_size_kb,
chip->ram_size_kb);
}
free(bank->sectors);
if (bank->base == NRF5_FLASH_BASE) {
/* Sanity check */
if (chip->spec && chip->flash_size_kb != chip->spec->flash_size_kb)
LOG_WARNING("Chip's reported Flash capacity does not match expected one");
if (chip->ficr_info_valid && chip->flash_size_kb != chip->ficr_info.flash)
LOG_WARNING("Chip's reported Flash capacity does not match FICR INFO.FLASH");
bank->num_sectors = num_sectors;
bank->size = num_sectors * flash_page_size;
bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
chip->bank[0].probed = true;
} else {
bank->num_sectors = 1;
bank->size = flash_page_size;
bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
if (!bank->sectors)
return ERROR_FAIL;
bank->sectors[0].is_protected = 0;
chip->bank[1].probed = true;
}
return ERROR_OK;
}
static int nrf5_auto_probe(struct flash_bank *bank)
{
if (nrf5_bank_is_probed(bank))
return ERROR_OK;
return nrf5_probe(bank);
}
static int nrf5_erase_all(struct nrf5_info *chip)
{
LOG_DEBUG("Erasing all non-volatile memory");
return nrf5_nvmc_generic_erase(chip,
NRF5_NVMC_ERASEALL,
0x00000001);
}
static int nrf5_erase_page(struct flash_bank *bank,
struct nrf5_info *chip,
struct flash_sector *sector)
{
int res;
LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
if (bank->base == NRF5_UICR_BASE) {
if (chip->features & NRF5_FEATURE_SERIES_51) {
uint32_t ppfc;
res = target_read_u32(chip->target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0xFF) {
/* We can't erase the UICR. Double-check to
see if it's already erased before complaining. */
default_flash_blank_check(bank);
if (sector->is_erased == 1)
return ERROR_OK;
LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
return ERROR_FAIL;
}
}
res = nrf5_nvmc_generic_erase(chip,
NRF5_NVMC_ERASEUICR,
0x00000001);
} else {
res = nrf5_nvmc_generic_erase(chip,
NRF5_NVMC_ERASEPAGE,
sector->offset);
}
return res;
}
/* Start a low level flash write for the specified region */
static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
{
struct target *target = chip->target;
uint32_t buffer_size = 8192;
struct working_area *write_algorithm;
struct working_area *source;
struct reg_param reg_params[6];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t nrf5_flash_write_code[] = {
#include "../../../contrib/loaders/flash/nrf5/nrf5.inc"
};
LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
assert(bytes % 4 == 0);
/* allocate working area with flash programming code */
if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, falling back to slow memory writes");
for (; bytes > 0; bytes -= 4) {
retval = target_write_memory(target, address, 4, 1, buffer);
if (retval != ERROR_OK)
return retval;
retval = nrf5_wait_for_nvmc(chip);
if (retval != ERROR_OK)
return retval;
address += 4;
buffer += 4;
}
return ERROR_OK;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(nrf5_flash_write_code),
nrf5_flash_write_code);
if (retval != ERROR_OK)
return retval;
/* memory buffer */
while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
if (buffer_size <= 256) {
/* free working area, write algorithm already allocated */
target_free_working_area(target, write_algorithm);
LOG_WARNING("No large enough working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
init_reg_param(&reg_params[4], "r6", 32, PARAM_OUT); /* watchdog refresh value */
init_reg_param(&reg_params[5], "r7", 32, PARAM_OUT); /* watchdog refresh register address */
buf_set_u32(reg_params[0].value, 0, 32, bytes);
buf_set_u32(reg_params[1].value, 0, 32, source->address);
buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[3].value, 0, 32, address);
buf_set_u32(reg_params[4].value, 0, 32, WATCHDOG_REFRESH_VALUE);
buf_set_u32(reg_params[5].value, 0, 32, WATCHDOG_REFRESH_REGISTER);
retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, write_algorithm->address + sizeof(nrf5_flash_write_code) - 2,
&armv7m_info);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
destroy_reg_param(&reg_params[5]);
return retval;
}
static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct nrf5_info *chip;
int res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
assert(offset % 4 == 0);
assert(count % 4 == 0);
/* UICR CLENR0 based protection used on nRF51 is somewhat clumsy:
* RM reads: Code running from code region 1 will not be able to write
* to code region 0.
* Unfortunately the flash loader running from RAM can write to both
* code regions without any hint the protection is violated.
*
* Update protection state and check if any flash sector to be written
* is protected. */
if (chip->features & NRF5_FEATURE_SERIES_51) {
res = nrf5_protect_check_clenr0(bank);
if (res != ERROR_OK)
return res;
for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
struct flash_sector *bs = &bank->sectors[sector];
/* Start offset in or before this sector? */
/* End offset in or behind this sector? */
if ((offset < (bs->offset + bs->size))
&& ((offset + count - 1) >= bs->offset)
&& bs->is_protected == 1) {
LOG_ERROR("Write refused, sector %d is protected", sector);
return ERROR_FLASH_PROTECTED;
}
}
}
res = nrf5_nvmc_write_enable(chip);
if (res != ERROR_OK)
goto error;
res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
if (res != ERROR_OK)
goto error;
return nrf5_nvmc_read_only(chip);
error:
nrf5_nvmc_read_only(chip);
LOG_ERROR("Failed to write to nrf5 flash");
return res;
}
static int nrf5_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
int res;
struct nrf5_info *chip;
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
/* UICR CLENR0 based protection used on nRF51 prevents erase
* absolutely silently. NVMC has no flag to indicate the protection
* was violated.
*
* Update protection state and check if any flash sector to be erased
* is protected. */
if (chip->features & NRF5_FEATURE_SERIES_51) {
res = nrf5_protect_check_clenr0(bank);
if (res != ERROR_OK)
return res;
}
/* For each sector to be erased */
for (unsigned int s = first; s <= last && res == ERROR_OK; s++) {
if (chip->features & NRF5_FEATURE_SERIES_51
&& bank->sectors[s].is_protected == 1) {
LOG_ERROR("Flash sector %d is protected", s);
return ERROR_FLASH_PROTECTED;
}
res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
if (res != ERROR_OK) {
LOG_ERROR("Error erasing sector %d", s);
return res;
}
}
return ERROR_OK;
}
static void nrf5_free_driver_priv(struct flash_bank *bank)
{
struct nrf5_bank *nbank = bank->driver_priv;
struct nrf5_info *chip = nbank->chip;
if (!chip)
return;
chip->refcount--;
if (chip->refcount == 0) {
free(chip);
bank->driver_priv = NULL;
}
}
static struct nrf5_info *nrf5_get_chip(struct target *target)
{
struct flash_bank *bank_iter;
/* iterate over nrf5 banks of same target */
for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
if (bank_iter->driver != &nrf5_flash && bank_iter->driver != &nrf51_flash)
continue;
if (bank_iter->target != target)
continue;
struct nrf5_bank *nbank = bank_iter->driver_priv;
if (!nbank)
continue;
if (nbank->chip)
return nbank->chip;
}
return NULL;
}
FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
{
struct nrf5_info *chip;
struct nrf5_bank *nbank = NULL;
switch (bank->base) {
case NRF5_FLASH_BASE:
case NRF5_UICR_BASE:
break;
default:
LOG_ERROR("Invalid bank address " TARGET_ADDR_FMT, bank->base);
return ERROR_FAIL;
}
chip = nrf5_get_chip(bank->target);
if (!chip) {
/* Create a new chip */
chip = calloc(1, sizeof(*chip));
if (!chip)
return ERROR_FAIL;
chip->target = bank->target;
}
switch (bank->base) {
case NRF5_FLASH_BASE:
nbank = &chip->bank[0];
break;
case NRF5_UICR_BASE:
nbank = &chip->bank[1];
break;
}
assert(nbank);
chip->refcount++;
nbank->chip = chip;
nbank->probed = false;
bank->driver_priv = nbank;
bank->write_start_alignment = bank->write_end_alignment = 4;
return ERROR_OK;
}
COMMAND_HANDLER(nrf5_handle_mass_erase_command)
{
int res;
struct flash_bank *bank = NULL;
struct target *target = get_current_target(CMD_CTX);
res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
if (res != ERROR_OK)
return res;
assert(bank);
struct nrf5_info *chip;
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
if (chip->features & NRF5_FEATURE_SERIES_51) {
uint32_t ppfc;
res = target_read_u32(target, NRF51_FICR_PPFC,
&ppfc);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read PPFC register");
return res;
}
if ((ppfc & 0xFF) == 0x00) {
LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
"mass erase command won't work.");
return ERROR_FAIL;
}
}
res = nrf5_erase_all(chip);
if (res == ERROR_OK) {
LOG_INFO("Mass erase completed.");
if (chip->features & NRF5_FEATURE_SERIES_51)
LOG_INFO("A reset or power cycle is required if the flash was protected before.");
} else {
LOG_ERROR("Failed to erase the chip");
}
return res;
}
COMMAND_HANDLER(nrf5_handle_info_command)
{
int res;
struct flash_bank *bank = NULL;
struct target *target = get_current_target(CMD_CTX);
res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
if (res != ERROR_OK)
return res;
assert(bank);
struct nrf5_info *chip;
res = nrf5_get_probed_chip_if_halted(bank, &chip);
if (res != ERROR_OK)
return res;
static struct {
const uint32_t address;
uint32_t value;
} ficr[] = {
{ .address = NRF5_FICR_CODEPAGESIZE },
{ .address = NRF5_FICR_CODESIZE },
{ .address = NRF51_FICR_CLENR0 },
{ .address = NRF51_FICR_PPFC },
{ .address = NRF51_FICR_NUMRAMBLOCK },
{ .address = NRF51_FICR_SIZERAMBLOCK0 },
{ .address = NRF51_FICR_SIZERAMBLOCK1 },
{ .address = NRF51_FICR_SIZERAMBLOCK2 },
{ .address = NRF51_FICR_SIZERAMBLOCK3 },
{ .address = NRF5_FICR_CONFIGID },
{ .address = NRF5_FICR_DEVICEID0 },
{ .address = NRF5_FICR_DEVICEID1 },
{ .address = NRF5_FICR_ER0 },
{ .address = NRF5_FICR_ER1 },
{ .address = NRF5_FICR_ER2 },
{ .address = NRF5_FICR_ER3 },
{ .address = NRF5_FICR_IR0 },
{ .address = NRF5_FICR_IR1 },
{ .address = NRF5_FICR_IR2 },
{ .address = NRF5_FICR_IR3 },
{ .address = NRF5_FICR_DEVICEADDRTYPE },
{ .address = NRF5_FICR_DEVICEADDR0 },
{ .address = NRF5_FICR_DEVICEADDR1 },
{ .address = NRF51_FICR_OVERRIDEN },
{ .address = NRF51_FICR_NRF_1MBIT0 },
{ .address = NRF51_FICR_NRF_1MBIT1 },
{ .address = NRF51_FICR_NRF_1MBIT2 },
{ .address = NRF51_FICR_NRF_1MBIT3 },
{ .address = NRF51_FICR_NRF_1MBIT4 },
{ .address = NRF51_FICR_BLE_1MBIT0 },
{ .address = NRF51_FICR_BLE_1MBIT1 },
{ .address = NRF51_FICR_BLE_1MBIT2 },
{ .address = NRF51_FICR_BLE_1MBIT3 },
{ .address = NRF51_FICR_BLE_1MBIT4 },
}, uicr[] = {
{ .address = NRF51_UICR_CLENR0, },
{ .address = NRF51_UICR_RBPCONF },
{ .address = NRF51_UICR_XTALFREQ },
{ .address = NRF51_UICR_FWID },
};
for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
res = target_read_u32(chip->target, ficr[i].address,
&ficr[i].value);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
return res;
}
}
for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
res = target_read_u32(chip->target, uicr[i].address,
&uicr[i].value);
if (res != ERROR_OK) {
LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
return res;
}
}
command_print(CMD,
"\n[factory information control block]\n\n"
"code page size: %"PRIu32"B\n"
"code memory size: %"PRIu32"kB\n"
"code region 0 size: %"PRIu32"kB\n"
"pre-programmed code: %s\n"
"number of ram blocks: %"PRIu32"\n"
"ram block 0 size: %"PRIu32"B\n"
"ram block 1 size: %"PRIu32"B\n"
"ram block 2 size: %"PRIu32"B\n"
"ram block 3 size: %"PRIu32 "B\n"
"config id: %" PRIx32 "\n"
"device id: 0x%"PRIx32"%08"PRIx32"\n"
"encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
"identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
"device address type: 0x%"PRIx32"\n"
"device address: 0x%"PRIx32"%08"PRIx32"\n"
"override enable: %"PRIx32"\n"
"NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
"BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
"\n[user information control block]\n\n"
"code region 0 size: %"PRIu32"kB\n"
"read back protection configuration: %"PRIx32"\n"
"reset value for XTALFREQ: %"PRIx32"\n"
"firmware id: 0x%04"PRIx32,
ficr[0].value,
(ficr[1].value * ficr[0].value) / 1024,
(ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
ficr[4].value,
ficr[5].value,
(ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
(ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
(ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
ficr[9].value,
ficr[10].value, ficr[11].value,
ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
ficr[20].value,
ficr[21].value, ficr[22].value,
ficr[23].value,
ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
(uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
uicr[1].value & 0xFFFF,
uicr[2].value & 0xFF,
uicr[3].value & 0xFFFF);
return ERROR_OK;
}
static const struct command_registration nrf5_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = nrf5_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.help = "Erase all flash contents of the chip.",
.usage = "",
},
{
.name = "info",
.handler = nrf5_handle_info_command,
.mode = COMMAND_EXEC,
.help = "Show FICR and UICR info.",
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration nrf5_command_handlers[] = {
{
.name = "nrf5",
.mode = COMMAND_ANY,
.help = "nrf5 flash command group",
.usage = "",
.chain = nrf5_exec_command_handlers,
},
{
.name = "nrf51",
.mode = COMMAND_ANY,
.help = "nrf51 flash command group",
.usage = "",
.chain = nrf5_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver nrf5_flash = {
.name = "nrf5",
.commands = nrf5_command_handlers,
.flash_bank_command = nrf5_flash_bank_command,
.info = nrf5_info,
.erase = nrf5_erase,
.protect = nrf5_protect,
.write = nrf5_write,
.read = default_flash_read,
.probe = nrf5_probe,
.auto_probe = nrf5_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = nrf5_protect_check,
.free_driver_priv = nrf5_free_driver_priv,
};
/* We need to retain the flash-driver name as well as the commands
* for backwards compatibility */
const struct flash_driver nrf51_flash = {
.name = "nrf51",
.commands = nrf5_command_handlers,
.flash_bank_command = nrf5_flash_bank_command,
.info = nrf5_info,
.erase = nrf5_erase,
.protect = nrf5_protect,
.write = nrf5_write,
.read = default_flash_read,
.probe = nrf5_probe,
.auto_probe = nrf5_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = nrf5_protect_check,
.free_driver_priv = nrf5_free_driver_priv,
};