openocd/src/target/cortex_m3.c
Zachary T Welch dc1685ca25 move ARRAY_SIZE macro to types.h
The ARRAY_SIZE macro was defined in several target files, so move it
to types.h.

This patch also removes two other identical macros: DIM (from jtag.h)
and asizeof (from arm11.h).
2009-11-16 09:58:11 -08:00

1990 lines
55 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2006 by Magnus Lundin *
* lundin@mlu.mine.nu *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
* *
* *
* Cortex-M3(tm) TRM, ARM DDI 0337E (r1p1) and 0337G (r2p0) *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "cortex_m3.h"
#include "target_request.h"
#include "target_type.h"
#include "arm_disassembler.h"
#include "register.h"
/* NOTE: most of this should work fine for the Cortex-M1 and
* Cortex-M0 cores too, although they're ARMv6-M not ARMv7-M.
*/
/* forward declarations */
static int cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint);
static int cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint);
static void cortex_m3_enable_watchpoints(struct target *target);
static int cortex_m3_store_core_reg_u32(struct target *target,
enum armv7m_regtype type, uint32_t num, uint32_t value);
#ifdef ARMV7_GDB_HACKS
extern uint8_t armv7m_gdb_dummy_cpsr_value[];
extern struct reg armv7m_gdb_dummy_cpsr_reg;
#endif
static int cortexm3_dap_read_coreregister_u32(struct swjdp_common *swjdp,
uint32_t *value, int regnum)
{
int retval;
uint32_t dcrdr;
/* because the DCB_DCRDR is used for the emulated dcc channel
* we have to save/restore the DCB_DCRDR when used */
mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
/* mem_ap_write_u32(swjdp, DCB_DCRSR, regnum); */
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum);
/* mem_ap_read_u32(swjdp, DCB_DCRDR, value); */
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
retval = swjdp_transaction_endcheck(swjdp);
/* restore DCB_DCRDR - this needs to be in a seperate
* transaction otherwise the emulated DCC channel breaks */
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
return retval;
}
static int cortexm3_dap_write_coreregister_u32(struct swjdp_common *swjdp,
uint32_t value, int regnum)
{
int retval;
uint32_t dcrdr;
/* because the DCB_DCRDR is used for the emulated dcc channel
* we have to save/restore the DCB_DCRDR when used */
mem_ap_read_u32(swjdp, DCB_DCRDR, &dcrdr);
swjdp->trans_mode = TRANS_MODE_COMPOSITE;
/* mem_ap_write_u32(swjdp, DCB_DCRDR, core_regs[i]); */
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRDR & 0xFFFFFFF0);
dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRDR & 0xC), value);
/* mem_ap_write_u32(swjdp, DCB_DCRSR, i | DCRSR_WnR); */
dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF, DCB_DCRSR & 0xFFFFFFF0);
dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (DCB_DCRSR & 0xC), regnum | DCRSR_WnR);
retval = swjdp_transaction_endcheck(swjdp);
/* restore DCB_DCRDR - this needs to be in a seperate
* transaction otherwise the emulated DCC channel breaks */
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(swjdp, DCB_DCRDR, dcrdr);
return retval;
}
static int cortex_m3_write_debug_halt_mask(struct target *target,
uint32_t mask_on, uint32_t mask_off)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
/* mask off status bits */
cortex_m3->dcb_dhcsr &= ~((0xFFFF << 16) | mask_off);
/* create new register mask */
cortex_m3->dcb_dhcsr |= DBGKEY | C_DEBUGEN | mask_on;
return mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, cortex_m3->dcb_dhcsr);
}
static int cortex_m3_clear_halt(struct target *target)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
/* clear step if any */
cortex_m3_write_debug_halt_mask(target, C_HALT, C_STEP);
/* Read Debug Fault Status Register */
mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
/* Clear Debug Fault Status */
mem_ap_write_atomic_u32(swjdp, NVIC_DFSR, cortex_m3->nvic_dfsr);
LOG_DEBUG(" NVIC_DFSR 0x%" PRIx32 "", cortex_m3->nvic_dfsr);
return ERROR_OK;
}
static int cortex_m3_single_step_core(struct target *target)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
uint32_t dhcsr_save;
/* backup dhcsr reg */
dhcsr_save = cortex_m3->dcb_dhcsr;
/* mask interrupts if not done already */
if (!(cortex_m3->dcb_dhcsr & C_MASKINTS))
mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_HALT | C_DEBUGEN);
mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_MASKINTS | C_STEP | C_DEBUGEN);
LOG_DEBUG(" ");
/* restore dhcsr reg */
cortex_m3->dcb_dhcsr = dhcsr_save;
cortex_m3_clear_halt(target);
return ERROR_OK;
}
static int cortex_m3_endreset_event(struct target *target)
{
int i;
uint32_t dcb_demcr;
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
struct cortex_m3_fp_comparator *fp_list = cortex_m3->fp_comparator_list;
struct cortex_m3_dwt_comparator *dwt_list = cortex_m3->dwt_comparator_list;
mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &dcb_demcr);
LOG_DEBUG("DCB_DEMCR = 0x%8.8" PRIx32 "",dcb_demcr);
/* this regsiter is used for emulated dcc channel */
mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
/* Enable debug requests */
mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
/* clear any interrupt masking */
cortex_m3_write_debug_halt_mask(target, 0, C_MASKINTS);
/* Enable trace and dwt */
mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
/* Monitor bus faults */
mem_ap_write_u32(swjdp, NVIC_SHCSR, SHCSR_BUSFAULTENA);
/* Enable FPB */
target_write_u32(target, FP_CTRL, 3);
cortex_m3->fpb_enabled = 1;
/* Restore FPB registers */
for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
{
target_write_u32(target, fp_list[i].fpcr_address, fp_list[i].fpcr_value);
}
/* Restore DWT registers */
for (i = 0; i < cortex_m3->dwt_num_comp; i++)
{
target_write_u32(target, dwt_list[i].dwt_comparator_address + 0,
dwt_list[i].comp);
target_write_u32(target, dwt_list[i].dwt_comparator_address + 4,
dwt_list[i].mask);
target_write_u32(target, dwt_list[i].dwt_comparator_address + 8,
dwt_list[i].function);
}
swjdp_transaction_endcheck(swjdp);
armv7m_invalidate_core_regs(target);
/* make sure we have latest dhcsr flags */
mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
return ERROR_OK;
}
static int cortex_m3_examine_debug_reason(struct target *target)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
/* THIS IS NOT GOOD, TODO - better logic for detection of debug state reason */
/* only check the debug reason if we don't know it already */
if ((target->debug_reason != DBG_REASON_DBGRQ)
&& (target->debug_reason != DBG_REASON_SINGLESTEP))
{
if (cortex_m3->nvic_dfsr & DFSR_BKPT)
{
target->debug_reason = DBG_REASON_BREAKPOINT;
if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
target->debug_reason = DBG_REASON_WPTANDBKPT;
}
else if (cortex_m3->nvic_dfsr & DFSR_DWTTRAP)
target->debug_reason = DBG_REASON_WATCHPOINT;
else if (cortex_m3->nvic_dfsr & DFSR_VCATCH)
target->debug_reason = DBG_REASON_BREAKPOINT;
else /* EXTERNAL, HALTED */
target->debug_reason = DBG_REASON_UNDEFINED;
}
return ERROR_OK;
}
static int cortex_m3_examine_exception_reason(struct target *target)
{
uint32_t shcsr, except_sr, cfsr = -1, except_ar = -1;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct swjdp_common *swjdp = &armv7m->swjdp_info;
mem_ap_read_u32(swjdp, NVIC_SHCSR, &shcsr);
switch (armv7m->exception_number)
{
case 2: /* NMI */
break;
case 3: /* Hard Fault */
mem_ap_read_atomic_u32(swjdp, NVIC_HFSR, &except_sr);
if (except_sr & 0x40000000)
{
mem_ap_read_u32(swjdp, NVIC_CFSR, &cfsr);
}
break;
case 4: /* Memory Management */
mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
mem_ap_read_u32(swjdp, NVIC_MMFAR, &except_ar);
break;
case 5: /* Bus Fault */
mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
mem_ap_read_u32(swjdp, NVIC_BFAR, &except_ar);
break;
case 6: /* Usage Fault */
mem_ap_read_u32(swjdp, NVIC_CFSR, &except_sr);
break;
case 11: /* SVCall */
break;
case 12: /* Debug Monitor */
mem_ap_read_u32(swjdp, NVIC_DFSR, &except_sr);
break;
case 14: /* PendSV */
break;
case 15: /* SysTick */
break;
default:
except_sr = 0;
break;
}
swjdp_transaction_endcheck(swjdp);
LOG_DEBUG("%s SHCSR 0x%" PRIx32 ", SR 0x%" PRIx32 ", CFSR 0x%" PRIx32 ", AR 0x%" PRIx32 "", armv7m_exception_string(armv7m->exception_number), \
shcsr, except_sr, cfsr, except_ar);
return ERROR_OK;
}
static int cortex_m3_debug_entry(struct target *target)
{
int i;
uint32_t xPSR;
int retval;
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct armv7m_common *armv7m = &cortex_m3->armv7m;
struct swjdp_common *swjdp = &armv7m->swjdp_info;
LOG_DEBUG(" ");
cortex_m3_clear_halt(target);
mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
if ((retval = armv7m->examine_debug_reason(target)) != ERROR_OK)
return retval;
/* Examine target state and mode */
/* First load register acessible through core debug port*/
int num_regs = armv7m->core_cache->num_regs;
for (i = 0; i < num_regs; i++)
{
if (!armv7m->core_cache->reg_list[i].valid)
armv7m->read_core_reg(target, i);
}
xPSR = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32);
#ifdef ARMV7_GDB_HACKS
/* copy real xpsr reg for gdb, setting thumb bit */
buf_set_u32(armv7m_gdb_dummy_cpsr_value, 0, 32, xPSR);
buf_set_u32(armv7m_gdb_dummy_cpsr_value, 5, 1, 1);
armv7m_gdb_dummy_cpsr_reg.valid = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
armv7m_gdb_dummy_cpsr_reg.dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty;
#endif
/* For IT instructions xPSR must be reloaded on resume and clear on debug exec */
if (xPSR & 0xf00)
{
armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = armv7m->core_cache->reg_list[ARMV7M_xPSR].valid;
cortex_m3_store_core_reg_u32(target, ARMV7M_REGISTER_CORE_GP, 16, xPSR &~ 0xff);
}
/* Are we in an exception handler */
if (xPSR & 0x1FF)
{
armv7m->core_mode = ARMV7M_MODE_HANDLER;
armv7m->exception_number = (xPSR & 0x1FF);
}
else
{
armv7m->core_mode = buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 1);
armv7m->exception_number = 0;
}
if (armv7m->exception_number)
{
cortex_m3_examine_exception_reason(target);
}
LOG_DEBUG("entered debug state in core mode: %s at PC 0x%" PRIx32 ", target->state: %s",
armv7m_mode_strings[armv7m->core_mode],
*(uint32_t*)(armv7m->core_cache->reg_list[15].value),
target_state_name(target));
if (armv7m->post_debug_entry)
armv7m->post_debug_entry(target);
return ERROR_OK;
}
static int cortex_m3_poll(struct target *target)
{
int retval;
enum target_state prev_target_state = target->state;
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
/* Read from Debug Halting Control and Status Register */
retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
if (retval != ERROR_OK)
{
target->state = TARGET_UNKNOWN;
return retval;
}
if (cortex_m3->dcb_dhcsr & S_RESET_ST)
{
/* check if still in reset */
mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
if (cortex_m3->dcb_dhcsr & S_RESET_ST)
{
target->state = TARGET_RESET;
return ERROR_OK;
}
}
if (target->state == TARGET_RESET)
{
/* Cannot switch context while running so endreset is called with target->state == TARGET_RESET */
LOG_DEBUG("Exit from reset with dcb_dhcsr 0x%" PRIx32 "", cortex_m3->dcb_dhcsr);
cortex_m3_endreset_event(target);
target->state = TARGET_RUNNING;
prev_target_state = TARGET_RUNNING;
}
if (cortex_m3->dcb_dhcsr & S_HALT)
{
target->state = TARGET_HALTED;
if ((prev_target_state == TARGET_RUNNING) || (prev_target_state == TARGET_RESET))
{
if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}
if (prev_target_state == TARGET_DEBUG_RUNNING)
{
LOG_DEBUG(" ");
if ((retval = cortex_m3_debug_entry(target)) != ERROR_OK)
return retval;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
}
}
/* REVISIT when S_SLEEP is set, it's in a Sleep or DeepSleep state.
* How best to model low power modes?
*/
if (target->state == TARGET_UNKNOWN)
{
/* check if processor is retiring instructions */
if (cortex_m3->dcb_dhcsr & S_RETIRE_ST)
{
target->state = TARGET_RUNNING;
return ERROR_OK;
}
}
return ERROR_OK;
}
static int cortex_m3_halt(struct target *target)
{
LOG_DEBUG("target->state: %s",
target_state_name(target));
if (target->state == TARGET_HALTED)
{
LOG_DEBUG("target was already halted");
return ERROR_OK;
}
if (target->state == TARGET_UNKNOWN)
{
LOG_WARNING("target was in unknown state when halt was requested");
}
if (target->state == TARGET_RESET)
{
if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst())
{
LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST");
return ERROR_TARGET_FAILURE;
}
else
{
/* we came here in a reset_halt or reset_init sequence
* debug entry was already prepared in cortex_m3_prepare_reset_halt()
*/
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
}
/* Write to Debug Halting Control and Status Register */
cortex_m3_write_debug_halt_mask(target, C_HALT, 0);
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
static int cortex_m3_soft_reset_halt(struct target *target)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
uint32_t dcb_dhcsr = 0;
int retval, timeout = 0;
/* Enter debug state on reset, cf. end_reset_event() */
mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
/* Request a reset */
mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR, AIRCR_VECTKEY | AIRCR_VECTRESET);
target->state = TARGET_RESET;
/* registers are now invalid */
armv7m_invalidate_core_regs(target);
while (timeout < 100)
{
retval = mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &dcb_dhcsr);
if (retval == ERROR_OK)
{
mem_ap_read_atomic_u32(swjdp, NVIC_DFSR, &cortex_m3->nvic_dfsr);
if ((dcb_dhcsr & S_HALT) && (cortex_m3->nvic_dfsr & DFSR_VCATCH))
{
LOG_DEBUG("system reset-halted, dcb_dhcsr 0x%" PRIx32 ", nvic_dfsr 0x%" PRIx32 "", dcb_dhcsr, cortex_m3->nvic_dfsr);
cortex_m3_poll(target);
return ERROR_OK;
}
else
LOG_DEBUG("waiting for system reset-halt, dcb_dhcsr 0x%" PRIx32 ", %i ms", dcb_dhcsr, timeout);
}
timeout++;
alive_sleep(1);
}
return ERROR_OK;
}
static void cortex_m3_enable_breakpoints(struct target *target)
{
struct breakpoint *breakpoint = target->breakpoints;
/* set any pending breakpoints */
while (breakpoint)
{
if (breakpoint->set == 0)
cortex_m3_set_breakpoint(target, breakpoint);
breakpoint = breakpoint->next;
}
}
static int cortex_m3_resume(struct target *target, int current,
uint32_t address, int handle_breakpoints, int debug_execution)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct breakpoint *breakpoint = NULL;
uint32_t resume_pc;
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (!debug_execution)
{
target_free_all_working_areas(target);
cortex_m3_enable_breakpoints(target);
cortex_m3_enable_watchpoints(target);
}
if (debug_execution)
{
/* Disable interrupts */
/* We disable interrupts in the PRIMASK register instead of masking with C_MASKINTS,
* This is probably the same issue as Cortex-M3 Errata 377493:
* C_MASKINTS in parallel with disabled interrupts can cause local faults to not be taken. */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
/* Make sure we are in Thumb mode */
buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32) | (1 << 24));
armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
}
/* current = 1: continue on current pc, otherwise continue at <address> */
if (!current)
{
buf_set_u32(armv7m->core_cache->reg_list[15].value, 0, 32, address);
armv7m->core_cache->reg_list[15].dirty = 1;
armv7m->core_cache->reg_list[15].valid = 1;
}
resume_pc = buf_get_u32(armv7m->core_cache->reg_list[15].value, 0, 32);
armv7m_restore_context(target);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints)
{
/* Single step past breakpoint at current address */
if ((breakpoint = breakpoint_find(target, resume_pc)))
{
LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (ID: %d)",
breakpoint->address,
breakpoint->unique_id);
cortex_m3_unset_breakpoint(target, breakpoint);
cortex_m3_single_step_core(target);
cortex_m3_set_breakpoint(target, breakpoint);
}
}
/* Restart core */
cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
target->debug_reason = DBG_REASON_NOTHALTED;
/* registers are now invalid */
armv7m_invalidate_core_regs(target);
if (!debug_execution)
{
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc);
}
else
{
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc);
}
return ERROR_OK;
}
/* int irqstepcount = 0; */
static int cortex_m3_step(struct target *target, int current,
uint32_t address, int handle_breakpoints)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct armv7m_common *armv7m = &cortex_m3->armv7m;
struct swjdp_common *swjdp = &armv7m->swjdp_info;
struct breakpoint *breakpoint = NULL;
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* current = 1: continue on current pc, otherwise continue at <address> */
if (!current)
buf_set_u32(cortex_m3->armv7m.core_cache->reg_list[15].value,
0, 32, address);
/* the front-end may request us not to handle breakpoints */
if (handle_breakpoints) {
breakpoint = breakpoint_find(target, buf_get_u32(armv7m
->core_cache->reg_list[15].value, 0, 32));
if (breakpoint)
cortex_m3_unset_breakpoint(target, breakpoint);
}
target->debug_reason = DBG_REASON_SINGLESTEP;
armv7m_restore_context(target);
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
/* set step and clear halt */
cortex_m3_write_debug_halt_mask(target, C_STEP, C_HALT);
mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
/* registers are now invalid */
armv7m_invalidate_core_regs(target);
if (breakpoint)
cortex_m3_set_breakpoint(target, breakpoint);
LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
cortex_m3_debug_entry(target);
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
LOG_DEBUG("target stepped dcb_dhcsr = 0x%" PRIx32 " nvic_icsr = 0x%" PRIx32 "", cortex_m3->dcb_dhcsr, cortex_m3->nvic_icsr);
return ERROR_OK;
}
static int cortex_m3_assert_reset(struct target *target)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
int assert_srst = 1;
LOG_DEBUG("target->state: %s",
target_state_name(target));
enum reset_types jtag_reset_config = jtag_get_reset_config();
/*
* We can reset Cortex-M3 targets using just the NVIC without
* requiring SRST, getting a SoC reset (or a core-only reset)
* instead of a system reset.
*/
if (!(jtag_reset_config & RESET_HAS_SRST))
assert_srst = 0;
/* Enable debug requests */
mem_ap_read_atomic_u32(swjdp, DCB_DHCSR, &cortex_m3->dcb_dhcsr);
if (!(cortex_m3->dcb_dhcsr & C_DEBUGEN))
mem_ap_write_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN);
mem_ap_write_u32(swjdp, DCB_DCRDR, 0);
if (!target->reset_halt)
{
/* Set/Clear C_MASKINTS in a separate operation */
if (cortex_m3->dcb_dhcsr & C_MASKINTS)
mem_ap_write_atomic_u32(swjdp, DCB_DHCSR, DBGKEY | C_DEBUGEN | C_HALT);
/* clear any debug flags before resuming */
cortex_m3_clear_halt(target);
/* clear C_HALT in dhcsr reg */
cortex_m3_write_debug_halt_mask(target, 0, C_HALT);
/* Enter debug state on reset, cf. end_reset_event() */
mem_ap_write_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR);
}
else
{
/* Enter debug state on reset, cf. end_reset_event() */
mem_ap_write_atomic_u32(swjdp, DCB_DEMCR, TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
}
/*
* When nRST is asserted on most Stellaris devices, it clears some of
* the debug state. The ARMv7M and Cortex-M3 TRMs say that's wrong;
* and OpenOCD depends on those TRMs. So we won't use SRST on those
* chips. (Only power-on reset should affect debug state, beyond a
* few specified bits; not the chip's nRST input, wired to SRST.)
*
* REVISIT current errata specs don't seem to cover this issue.
* Do we have more details than this email?
* https://lists.berlios.de/pipermail
* /openocd-development/2008-August/003065.html
*/
if (strcmp(target->variant, "lm3s") == 0)
{
/* Check for silicon revisions with the issue. */
uint32_t did0;
if (target_read_u32(target, 0x400fe000, &did0) == ERROR_OK)
{
switch ((did0 >> 16) & 0xff)
{
case 0:
/* all Sandstorm suffer issue */
assert_srst = 0;
break;
case 1:
case 3:
/* Fury and DustDevil rev A have
* this nRST problem. It should
* be fixed in rev B silicon.
*/
if (((did0 >> 8) & 0xff) == 0)
assert_srst = 0;
break;
case 4:
/* Tempest should be fine. */
break;
}
}
}
if (assert_srst)
{
/* default to asserting srst */
if (jtag_reset_config & RESET_SRST_PULLS_TRST)
{
jtag_add_reset(1, 1);
}
else
{
jtag_add_reset(0, 1);
}
}
else
{
/* Use a standard Cortex-M3 software reset mechanism.
* SYSRESETREQ will reset SoC peripherals outside the
* core, like watchdog timers, if the SoC wires it up
* correctly. Else VECRESET can reset just the core.
*/
mem_ap_write_atomic_u32(swjdp, NVIC_AIRCR,
AIRCR_VECTKEY | AIRCR_SYSRESETREQ);
LOG_DEBUG("Using Cortex-M3 SYSRESETREQ");
{
/* I do not know why this is necessary, but it
* fixes strange effects (step/resume cause NMI
* after reset) on LM3S6918 -- Michael Schwingen
*/
uint32_t tmp;
mem_ap_read_atomic_u32(swjdp, NVIC_AIRCR, &tmp);
}
}
target->state = TARGET_RESET;
jtag_add_sleep(50000);
armv7m_invalidate_core_regs(target);
if (target->reset_halt)
{
int retval;
if ((retval = target_halt(target)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static int cortex_m3_deassert_reset(struct target *target)
{
LOG_DEBUG("target->state: %s",
target_state_name(target));
/* deassert reset lines */
jtag_add_reset(0, 0);
return ERROR_OK;
}
static int
cortex_m3_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
int fp_num = 0;
uint32_t hilo;
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct cortex_m3_fp_comparator *comparator_list = cortex_m3->fp_comparator_list;
if (breakpoint->set)
{
LOG_WARNING("breakpoint (BPID: %d) already set", breakpoint->unique_id);
return ERROR_OK;
}
if (cortex_m3->auto_bp_type)
{
breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
}
if (breakpoint->type == BKPT_HARD)
{
while (comparator_list[fp_num].used && (fp_num < cortex_m3->fp_num_code))
fp_num++;
if (fp_num >= cortex_m3->fp_num_code)
{
LOG_DEBUG("ERROR Can not find free FP Comparator");
LOG_WARNING("ERROR Can not find free FP Comparator");
exit(-1);
}
breakpoint->set = fp_num + 1;
hilo = (breakpoint->address & 0x2) ? FPCR_REPLACE_BKPT_HIGH : FPCR_REPLACE_BKPT_LOW;
comparator_list[fp_num].used = 1;
comparator_list[fp_num].fpcr_value = (breakpoint->address & 0x1FFFFFFC) | hilo | 1;
target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
LOG_DEBUG("fpc_num %i fpcr_value 0x%" PRIx32 "", fp_num, comparator_list[fp_num].fpcr_value);
if (!cortex_m3->fpb_enabled)
{
LOG_DEBUG("FPB wasn't enabled, do it now");
target_write_u32(target, FP_CTRL, 3);
}
}
else if (breakpoint->type == BKPT_SOFT)
{
uint8_t code[4];
buf_set_u32(code, 0, 32, ARMV7M_T_BKPT(0x11));
if ((retval = target_read_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK)
{
return retval;
}
if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, breakpoint->length, 1, code)) != ERROR_OK)
{
return retval;
}
breakpoint->set = 0x11; /* Any nice value but 0 */
}
LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
breakpoint->unique_id,
(int)(breakpoint->type),
breakpoint->address,
breakpoint->length,
breakpoint->set);
return ERROR_OK;
}
static int
cortex_m3_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct cortex_m3_fp_comparator * comparator_list = cortex_m3->fp_comparator_list;
if (!breakpoint->set)
{
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
LOG_DEBUG("BPID: %d, Type: %d, Address: 0x%08" PRIx32 " Length: %d (set=%d)",
breakpoint->unique_id,
(int)(breakpoint->type),
breakpoint->address,
breakpoint->length,
breakpoint->set);
if (breakpoint->type == BKPT_HARD)
{
int fp_num = breakpoint->set - 1;
if ((fp_num < 0) || (fp_num >= cortex_m3->fp_num_code))
{
LOG_DEBUG("Invalid FP Comparator number in breakpoint");
return ERROR_OK;
}
comparator_list[fp_num].used = 0;
comparator_list[fp_num].fpcr_value = 0;
target_write_u32(target, comparator_list[fp_num].fpcr_address, comparator_list[fp_num].fpcr_value);
}
else
{
/* restore original instruction (kept in target endianness) */
if (breakpoint->length == 4)
{
if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
{
return retval;
}
}
else
{
if ((retval = target_write_memory(target, breakpoint->address & 0xFFFFFFFE, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
{
return retval;
}
}
}
breakpoint->set = 0;
return ERROR_OK;
}
static int
cortex_m3_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
if (cortex_m3->auto_bp_type)
{
breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
#ifdef ARMV7_GDB_HACKS
if (breakpoint->length != 2) {
/* XXX Hack: Replace all breakpoints with length != 2 with
* a hardware breakpoint. */
breakpoint->type = BKPT_HARD;
breakpoint->length = 2;
}
#endif
}
if ((breakpoint->type == BKPT_HARD) && (breakpoint->address >= 0x20000000))
{
LOG_INFO("flash patch comparator requested outside code memory region");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if ((breakpoint->type == BKPT_SOFT) && (breakpoint->address < 0x20000000))
{
LOG_INFO("soft breakpoint requested in code (flash) memory region");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if ((breakpoint->type == BKPT_HARD) && (cortex_m3->fp_code_available < 1))
{
LOG_INFO("no flash patch comparator unit available for hardware breakpoint");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if ((breakpoint->length != 2))
{
LOG_INFO("only breakpoints of two bytes length supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
cortex_m3->fp_code_available--;
cortex_m3_set_breakpoint(target, breakpoint);
return ERROR_OK;
}
static int
cortex_m3_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
/* REVISIT why check? FBP can be updated with core running ... */
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (cortex_m3->auto_bp_type)
{
breakpoint->type = (breakpoint->address < 0x20000000) ? BKPT_HARD : BKPT_SOFT;
}
if (breakpoint->set)
{
cortex_m3_unset_breakpoint(target, breakpoint);
}
if (breakpoint->type == BKPT_HARD)
cortex_m3->fp_code_available++;
return ERROR_OK;
}
static int
cortex_m3_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
int dwt_num = 0;
uint32_t mask, temp;
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
/* watchpoint params were validated earlier */
mask = 0;
temp = watchpoint->length;
while (temp) {
temp >>= 1;
mask++;
}
mask--;
/* REVISIT Don't fully trust these "not used" records ... users
* may set up breakpoints by hand, e.g. dual-address data value
* watchpoint using comparator #1; comparator #0 matching cycle
* count; send data trace info through ITM and TPIU; etc
*/
struct cortex_m3_dwt_comparator *comparator;
for (comparator = cortex_m3->dwt_comparator_list;
comparator->used && dwt_num < cortex_m3->dwt_num_comp;
comparator++, dwt_num++)
continue;
if (dwt_num >= cortex_m3->dwt_num_comp)
{
LOG_ERROR("Can not find free DWT Comparator");
return ERROR_FAIL;
}
comparator->used = 1;
watchpoint->set = dwt_num + 1;
comparator->comp = watchpoint->address;
target_write_u32(target, comparator->dwt_comparator_address + 0,
comparator->comp);
comparator->mask = mask;
target_write_u32(target, comparator->dwt_comparator_address + 4,
comparator->mask);
switch (watchpoint->rw) {
case WPT_READ:
comparator->function = 5;
break;
case WPT_WRITE:
comparator->function = 6;
break;
case WPT_ACCESS:
comparator->function = 7;
break;
}
target_write_u32(target, comparator->dwt_comparator_address + 8,
comparator->function);
LOG_DEBUG("Watchpoint (ID %d) DWT%d 0x%08x 0x%x 0x%05x",
watchpoint->unique_id, dwt_num,
(unsigned) comparator->comp,
(unsigned) comparator->mask,
(unsigned) comparator->function);
return ERROR_OK;
}
static int
cortex_m3_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct cortex_m3_dwt_comparator *comparator;
int dwt_num;
if (!watchpoint->set)
{
LOG_WARNING("watchpoint (wpid: %d) not set",
watchpoint->unique_id);
return ERROR_OK;
}
dwt_num = watchpoint->set - 1;
LOG_DEBUG("Watchpoint (ID %d) DWT%d address: 0x%08x clear",
watchpoint->unique_id, dwt_num,
(unsigned) watchpoint->address);
if ((dwt_num < 0) || (dwt_num >= cortex_m3->dwt_num_comp))
{
LOG_DEBUG("Invalid DWT Comparator number in watchpoint");
return ERROR_OK;
}
comparator = cortex_m3->dwt_comparator_list + dwt_num;
comparator->used = 0;
comparator->function = 0;
target_write_u32(target, comparator->dwt_comparator_address + 8,
comparator->function);
watchpoint->set = 0;
return ERROR_OK;
}
static int
cortex_m3_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
/* REVISIT why check? DWT can be updated with core running ... */
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (cortex_m3->dwt_comp_available < 1)
{
LOG_DEBUG("no comparators?");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* hardware doesn't support data value masking */
if (watchpoint->mask != ~(uint32_t)0) {
LOG_DEBUG("watchpoint value masks not supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* hardware allows address masks of up to 32K */
unsigned mask;
for (mask = 0; mask < 16; mask++) {
if ((1u << mask) == watchpoint->length)
break;
}
if (mask == 16) {
LOG_DEBUG("unsupported watchpoint length");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (watchpoint->address & ((1 << mask) - 1)) {
LOG_DEBUG("watchpoint address is unaligned");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* Caller doesn't seem to be able to describe watching for data
* values of zero; that flags "no value".
*
* REVISIT This DWT may well be able to watch for specific data
* values. Requires comparator #1 to set DATAVMATCH and match
* the data, and another comparator (DATAVADDR0) matching addr.
*/
if (watchpoint->value) {
LOG_DEBUG("data value watchpoint not YET supported");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
cortex_m3->dwt_comp_available--;
LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
return ERROR_OK;
}
static int
cortex_m3_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
/* REVISIT why check? DWT can be updated with core running ... */
if (target->state != TARGET_HALTED)
{
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (watchpoint->set)
{
cortex_m3_unset_watchpoint(target, watchpoint);
}
cortex_m3->dwt_comp_available++;
LOG_DEBUG("dwt_comp_available: %d", cortex_m3->dwt_comp_available);
return ERROR_OK;
}
static void cortex_m3_enable_watchpoints(struct target *target)
{
struct watchpoint *watchpoint = target->watchpoints;
/* set any pending watchpoints */
while (watchpoint)
{
if (watchpoint->set == 0)
cortex_m3_set_watchpoint(target, watchpoint);
watchpoint = watchpoint->next;
}
}
static int cortex_m3_load_core_reg_u32(struct target *target,
enum armv7m_regtype type, uint32_t num, uint32_t * value)
{
int retval;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct swjdp_common *swjdp = &armv7m->swjdp_info;
/* NOTE: we "know" here that the register identifiers used
* in the v7m header match the Cortex-M3 Debug Core Register
* Selector values for R0..R15, xPSR, MSP, and PSP.
*/
switch (num) {
case 0 ... 18:
/* read a normal core register */
retval = cortexm3_dap_read_coreregister_u32(swjdp, value, num);
if (retval != ERROR_OK)
{
LOG_ERROR("JTAG failure %i",retval);
return ERROR_JTAG_DEVICE_ERROR;
}
LOG_DEBUG("load from core reg %i value 0x%" PRIx32 "",(int)num,*value);
break;
case ARMV7M_PRIMASK:
case ARMV7M_BASEPRI:
case ARMV7M_FAULTMASK:
case ARMV7M_CONTROL:
/* Cortex-M3 packages these four registers as bitfields
* in one Debug Core register. So say r0 and r2 docs;
* it was removed from r1 docs, but still works.
*/
cortexm3_dap_read_coreregister_u32(swjdp, value, 20);
switch (num)
{
case ARMV7M_PRIMASK:
*value = buf_get_u32((uint8_t*)value, 0, 1);
break;
case ARMV7M_BASEPRI:
*value = buf_get_u32((uint8_t*)value, 8, 8);
break;
case ARMV7M_FAULTMASK:
*value = buf_get_u32((uint8_t*)value, 16, 1);
break;
case ARMV7M_CONTROL:
*value = buf_get_u32((uint8_t*)value, 24, 2);
break;
}
LOG_DEBUG("load from special reg %i value 0x%" PRIx32 "", (int)num, *value);
break;
default:
return ERROR_INVALID_ARGUMENTS;
}
return ERROR_OK;
}
static int cortex_m3_store_core_reg_u32(struct target *target,
enum armv7m_regtype type, uint32_t num, uint32_t value)
{
int retval;
uint32_t reg;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct swjdp_common *swjdp = &armv7m->swjdp_info;
#ifdef ARMV7_GDB_HACKS
/* If the LR register is being modified, make sure it will put us
* in "thumb" mode, or an INVSTATE exception will occur. This is a
* hack to deal with the fact that gdb will sometimes "forge"
* return addresses, and doesn't set the LSB correctly (i.e., when
* printing expressions containing function calls, it sets LR = 0.)
* Valid exception return codes have bit 0 set too.
*/
if (num == ARMV7M_R14)
value |= 0x01;
#endif
/* NOTE: we "know" here that the register identifiers used
* in the v7m header match the Cortex-M3 Debug Core Register
* Selector values for R0..R15, xPSR, MSP, and PSP.
*/
switch (num) {
case 0 ... 18:
retval = cortexm3_dap_write_coreregister_u32(swjdp, value, num);
if (retval != ERROR_OK)
{
LOG_ERROR("JTAG failure %i", retval);
armv7m->core_cache->reg_list[num].dirty = armv7m->core_cache->reg_list[num].valid;
return ERROR_JTAG_DEVICE_ERROR;
}
LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", (int)num, value);
break;
case ARMV7M_PRIMASK:
case ARMV7M_BASEPRI:
case ARMV7M_FAULTMASK:
case ARMV7M_CONTROL:
/* Cortex-M3 packages these four registers as bitfields
* in one Debug Core register. So say r0 and r2 docs;
* it was removed from r1 docs, but still works.
*/
cortexm3_dap_read_coreregister_u32(swjdp, &reg, 20);
switch (num)
{
case ARMV7M_PRIMASK:
buf_set_u32((uint8_t*)&reg, 0, 1, value);
break;
case ARMV7M_BASEPRI:
buf_set_u32((uint8_t*)&reg, 8, 8, value);
break;
case ARMV7M_FAULTMASK:
buf_set_u32((uint8_t*)&reg, 16, 1, value);
break;
case ARMV7M_CONTROL:
buf_set_u32((uint8_t*)&reg, 24, 2, value);
break;
}
cortexm3_dap_write_coreregister_u32(swjdp, reg, 20);
LOG_DEBUG("write special reg %i value 0x%" PRIx32 " ", (int)num, value);
break;
default:
return ERROR_INVALID_ARGUMENTS;
}
return ERROR_OK;
}
static int cortex_m3_read_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct swjdp_common *swjdp = &armv7m->swjdp_info;
int retval;
/* sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
return ERROR_INVALID_ARGUMENTS;
/* cortex_m3 handles unaligned memory access */
switch (size)
{
case 4:
retval = mem_ap_read_buf_u32(swjdp, buffer, 4 * count, address);
break;
case 2:
retval = mem_ap_read_buf_u16(swjdp, buffer, 2 * count, address);
break;
case 1:
retval = mem_ap_read_buf_u8(swjdp, buffer, count, address);
break;
default:
LOG_ERROR("BUG: we shouldn't get here");
exit(-1);
}
return retval;
}
static int cortex_m3_write_memory(struct target *target, uint32_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct swjdp_common *swjdp = &armv7m->swjdp_info;
int retval;
/* sanitize arguments */
if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
return ERROR_INVALID_ARGUMENTS;
switch (size)
{
case 4:
retval = mem_ap_write_buf_u32(swjdp, buffer, 4 * count, address);
break;
case 2:
retval = mem_ap_write_buf_u16(swjdp, buffer, 2 * count, address);
break;
case 1:
retval = mem_ap_write_buf_u8(swjdp, buffer, count, address);
break;
default:
LOG_ERROR("BUG: we shouldn't get here");
exit(-1);
}
return retval;
}
static int cortex_m3_bulk_write_memory(struct target *target, uint32_t address,
uint32_t count, uint8_t *buffer)
{
return cortex_m3_write_memory(target, address, 4, count, buffer);
}
static int cortex_m3_init_target(struct command_context *cmd_ctx,
struct target *target)
{
armv7m_build_reg_cache(target);
return ERROR_OK;
}
/* REVISIT cache valid/dirty bits are unmaintained. We could set "valid"
* on r/w if the core is not running, and clear on resume or reset ... or
* at least, in a post_restore_context() method.
*/
struct dwt_reg_state {
struct target *target;
uint32_t addr;
uint32_t value; /* scratch/cache */
};
static int cortex_m3_dwt_get_reg(struct reg *reg)
{
struct dwt_reg_state *state = reg->arch_info;
return target_read_u32(state->target, state->addr, &state->value);
}
static int cortex_m3_dwt_set_reg(struct reg *reg, uint8_t *buf)
{
struct dwt_reg_state *state = reg->arch_info;
return target_write_u32(state->target, state->addr,
buf_get_u32(buf, 0, reg->size));
}
struct dwt_reg {
uint32_t addr;
char *name;
unsigned size;
};
static struct dwt_reg dwt_base_regs[] = {
{ DWT_CTRL, "dwt_ctrl", 32, },
{ DWT_CYCCNT, "dwt_cyccnt", 32, },
/* plus some 8 bit counters, useful for profiling with TPIU */
};
static struct dwt_reg dwt_comp[] = {
#define DWT_COMPARATOR(i) \
{ DWT_COMP0 + 0x10 * (i), "dwt_" #i "_comp", 32, }, \
{ DWT_MASK0 + 0x10 * (i), "dwt_" #i "_mask", 4, }, \
{ DWT_FUNCTION0 + 0x10 * (i), "dwt_" #i "_function", 32, }
DWT_COMPARATOR(0),
DWT_COMPARATOR(1),
DWT_COMPARATOR(2),
DWT_COMPARATOR(3),
#undef DWT_COMPARATOR
};
static int dwt_reg_type = -1;
static void
cortex_m3_dwt_addreg(struct target *t, struct reg *r, struct dwt_reg *d)
{
struct dwt_reg_state *state;
state = calloc(1, sizeof *state);
if (!state)
return;
state->addr = d->addr;
state->target = t;
r->name = d->name;
r->size = d->size;
r->value = &state->value;
r->arch_info = state;
r->arch_type = dwt_reg_type;
}
static void
cortex_m3_dwt_setup(struct cortex_m3_common *cm3, struct target *target)
{
uint32_t dwtcr;
struct reg_cache *cache;
struct cortex_m3_dwt_comparator *comparator;
int reg, i;
target_read_u32(target, DWT_CTRL, &dwtcr);
if (!dwtcr) {
LOG_DEBUG("no DWT");
return;
}
if (dwt_reg_type < 0)
dwt_reg_type = register_reg_arch_type(cortex_m3_dwt_get_reg,
cortex_m3_dwt_set_reg);
cm3->dwt_num_comp = (dwtcr >> 28) & 0xF;
cm3->dwt_comp_available = cm3->dwt_num_comp;
cm3->dwt_comparator_list = calloc(cm3->dwt_num_comp,
sizeof(struct cortex_m3_dwt_comparator));
if (!cm3->dwt_comparator_list) {
fail0:
cm3->dwt_num_comp = 0;
LOG_ERROR("out of mem");
return;
}
cache = calloc(1, sizeof *cache);
if (!cache) {
fail1:
free(cm3->dwt_comparator_list);
goto fail0;
}
cache->name = "cortex-m3 dwt registers";
cache->num_regs = 2 + cm3->dwt_num_comp * 3;
cache->reg_list = calloc(cache->num_regs, sizeof *cache->reg_list);
if (!cache->reg_list) {
free(cache);
goto fail1;
}
for (reg = 0; reg < 2; reg++)
cortex_m3_dwt_addreg(target, cache->reg_list + reg,
dwt_base_regs + reg);
comparator = cm3->dwt_comparator_list;
for (i = 0; i < cm3->dwt_num_comp; i++, comparator++) {
int j;
comparator->dwt_comparator_address = DWT_COMP0 + 0x10 * i;
for (j = 0; j < 3; j++, reg++)
cortex_m3_dwt_addreg(target, cache->reg_list + reg,
dwt_comp + 3 * i + j);
}
*register_get_last_cache_p(&target->reg_cache) = cache;
cm3->dwt_cache = cache;
LOG_DEBUG("DWT dwtcr 0x%" PRIx32 ", comp %d, watch%s",
dwtcr, cm3->dwt_num_comp,
(dwtcr & (0xf << 24)) ? " only" : "/trigger");
/* REVISIT: if num_comp > 1, check whether comparator #1 can
* implement single-address data value watchpoints ... so we
* won't need to check it later, when asked to set one up.
*/
}
static int cortex_m3_examine(struct target *target)
{
int retval;
uint32_t cpuid, fpcr;
int i;
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct swjdp_common *swjdp = &cortex_m3->armv7m.swjdp_info;
if ((retval = ahbap_debugport_init(swjdp)) != ERROR_OK)
return retval;
if (!target_was_examined(target))
{
target_set_examined(target);
/* Read from Device Identification Registers */
retval = target_read_u32(target, CPUID, &cpuid);
if (retval != ERROR_OK)
return retval;
if (((cpuid >> 4) & 0xc3f) == 0xc23)
LOG_DEBUG("CORTEX-M3 processor detected");
LOG_DEBUG("cpuid: 0x%8.8" PRIx32 "", cpuid);
/* NOTE: FPB and DWT are both optional. */
/* Setup FPB */
target_read_u32(target, FP_CTRL, &fpcr);
cortex_m3->auto_bp_type = 1;
cortex_m3->fp_num_code = ((fpcr >> 8) & 0x70) | ((fpcr >> 4) & 0xF); /* bits [14:12] and [7:4] */
cortex_m3->fp_num_lit = (fpcr >> 8) & 0xF;
cortex_m3->fp_code_available = cortex_m3->fp_num_code;
cortex_m3->fp_comparator_list = calloc(cortex_m3->fp_num_code + cortex_m3->fp_num_lit, sizeof(struct cortex_m3_fp_comparator));
cortex_m3->fpb_enabled = fpcr & 1;
for (i = 0; i < cortex_m3->fp_num_code + cortex_m3->fp_num_lit; i++)
{
cortex_m3->fp_comparator_list[i].type = (i < cortex_m3->fp_num_code) ? FPCR_CODE : FPCR_LITERAL;
cortex_m3->fp_comparator_list[i].fpcr_address = FP_COMP0 + 4 * i;
}
LOG_DEBUG("FPB fpcr 0x%" PRIx32 ", numcode %i, numlit %i", fpcr, cortex_m3->fp_num_code, cortex_m3->fp_num_lit);
/* Setup DWT */
cortex_m3_dwt_setup(cortex_m3, target);
}
return ERROR_OK;
}
static int cortex_m3_dcc_read(struct swjdp_common *swjdp, uint8_t *value, uint8_t *ctrl)
{
uint16_t dcrdr;
mem_ap_read_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
*ctrl = (uint8_t)dcrdr;
*value = (uint8_t)(dcrdr >> 8);
LOG_DEBUG("data 0x%x ctrl 0x%x", *value, *ctrl);
/* write ack back to software dcc register
* signify we have read data */
if (dcrdr & (1 << 0))
{
dcrdr = 0;
mem_ap_write_buf_u16(swjdp, (uint8_t*)&dcrdr, 1, DCB_DCRDR);
}
return ERROR_OK;
}
static int cortex_m3_target_request_data(struct target *target,
uint32_t size, uint8_t *buffer)
{
struct armv7m_common *armv7m = target_to_armv7m(target);
struct swjdp_common *swjdp = &armv7m->swjdp_info;
uint8_t data;
uint8_t ctrl;
uint32_t i;
for (i = 0; i < (size * 4); i++)
{
cortex_m3_dcc_read(swjdp, &data, &ctrl);
buffer[i] = data;
}
return ERROR_OK;
}
static int cortex_m3_handle_target_request(void *priv)
{
struct target *target = priv;
if (!target_was_examined(target))
return ERROR_OK;
struct armv7m_common *armv7m = target_to_armv7m(target);
struct swjdp_common *swjdp = &armv7m->swjdp_info;
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING)
{
uint8_t data;
uint8_t ctrl;
cortex_m3_dcc_read(swjdp, &data, &ctrl);
/* check if we have data */
if (ctrl & (1 << 0))
{
uint32_t request;
/* we assume target is quick enough */
request = data;
cortex_m3_dcc_read(swjdp, &data, &ctrl);
request |= (data << 8);
cortex_m3_dcc_read(swjdp, &data, &ctrl);
request |= (data << 16);
cortex_m3_dcc_read(swjdp, &data, &ctrl);
request |= (data << 24);
target_request(target, request);
}
}
return ERROR_OK;
}
static int cortex_m3_init_arch_info(struct target *target,
struct cortex_m3_common *cortex_m3, struct jtag_tap *tap)
{
int retval;
struct armv7m_common *armv7m = &cortex_m3->armv7m;
armv7m_init_arch_info(target, armv7m);
/* prepare JTAG information for the new target */
cortex_m3->jtag_info.tap = tap;
cortex_m3->jtag_info.scann_size = 4;
armv7m->swjdp_info.dp_select_value = -1;
armv7m->swjdp_info.ap_csw_value = -1;
armv7m->swjdp_info.ap_tar_value = -1;
armv7m->swjdp_info.jtag_info = &cortex_m3->jtag_info;
armv7m->swjdp_info.memaccess_tck = 8;
armv7m->swjdp_info.tar_autoincr_block = (1 << 12); /* Cortex-M3 has 4096 bytes autoincrement range */
/* register arch-specific functions */
armv7m->examine_debug_reason = cortex_m3_examine_debug_reason;
armv7m->post_debug_entry = NULL;
armv7m->pre_restore_context = NULL;
armv7m->post_restore_context = NULL;
armv7m->load_core_reg_u32 = cortex_m3_load_core_reg_u32;
armv7m->store_core_reg_u32 = cortex_m3_store_core_reg_u32;
target_register_timer_callback(cortex_m3_handle_target_request, 1, 1, target);
if ((retval = arm_jtag_setup_connection(&cortex_m3->jtag_info)) != ERROR_OK)
{
return retval;
}
return ERROR_OK;
}
static int cortex_m3_target_create(struct target *target, Jim_Interp *interp)
{
struct cortex_m3_common *cortex_m3 = calloc(1,sizeof(struct cortex_m3_common));
cortex_m3->common_magic = CORTEX_M3_COMMON_MAGIC;
cortex_m3_init_arch_info(target, cortex_m3, target->tap);
return ERROR_OK;
}
/*--------------------------------------------------------------------------*/
static int cortex_m3_verify_pointer(struct command_context *cmd_ctx,
struct cortex_m3_common *cm3)
{
if (cm3->common_magic != CORTEX_M3_COMMON_MAGIC) {
command_print(cmd_ctx, "target is not a Cortex-M3");
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
/*
* Only stuff below this line should need to verify that its target
* is a Cortex-M3. Everything else should have indirected through the
* cortexm3_target structure, which is only used with CM3 targets.
*/
/*
* REVISIT Thumb2 disassembly should work for all ARMv7 cores, as well
* as at least ARM-1156T2. The interesting thing about Cortex-M is
* that *only* Thumb2 disassembly matters. There are also some small
* additions to Thumb2 that are specific to ARMv7-M.
*/
COMMAND_HANDLER(handle_cortex_m3_disassemble_command)
{
int retval;
struct target *target = get_current_target(cmd_ctx);
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
uint32_t address;
unsigned long count = 1;
struct arm_instruction cur_instruction;
retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
if (retval != ERROR_OK)
return retval;
errno = 0;
switch (argc) {
case 2:
COMMAND_PARSE_NUMBER(ulong, args[1], count);
/* FALL THROUGH */
case 1:
COMMAND_PARSE_NUMBER(u32, args[0], address);
break;
default:
command_print(cmd_ctx,
"usage: cortex_m3 disassemble <address> [<count>]");
return ERROR_OK;
}
while (count--) {
retval = thumb2_opcode(target, address, &cur_instruction);
if (retval != ERROR_OK)
return retval;
command_print(cmd_ctx, "%s", cur_instruction.text);
address += cur_instruction.instruction_size;
}
return ERROR_OK;
}
static const struct {
char name[10];
unsigned mask;
} vec_ids[] = {
{ "hard_err", VC_HARDERR, },
{ "int_err", VC_INTERR, },
{ "bus_err", VC_BUSERR, },
{ "state_err", VC_STATERR, },
{ "chk_err", VC_CHKERR, },
{ "nocp_err", VC_NOCPERR, },
{ "mm_err", VC_MMERR, },
{ "reset", VC_CORERESET, },
};
COMMAND_HANDLER(handle_cortex_m3_vector_catch_command)
{
struct target *target = get_current_target(cmd_ctx);
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
struct armv7m_common *armv7m = &cortex_m3->armv7m;
struct swjdp_common *swjdp = &armv7m->swjdp_info;
uint32_t demcr = 0;
int retval;
retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
if (retval != ERROR_OK)
return retval;
mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
if (argc > 0) {
unsigned catch = 0;
if (argc == 1) {
if (strcmp(args[0], "all") == 0) {
catch = VC_HARDERR | VC_INTERR | VC_BUSERR
| VC_STATERR | VC_CHKERR | VC_NOCPERR
| VC_MMERR | VC_CORERESET;
goto write;
} else if (strcmp(args[0], "none") == 0) {
goto write;
}
}
while (argc-- > 0) {
unsigned i;
for (i = 0; i < ARRAY_SIZE(vec_ids); i++) {
if (strcmp(args[argc], vec_ids[i].name) != 0)
continue;
catch |= vec_ids[i].mask;
break;
}
if (i == ARRAY_SIZE(vec_ids)) {
LOG_ERROR("No CM3 vector '%s'", args[argc]);
return ERROR_INVALID_ARGUMENTS;
}
}
write:
demcr &= ~0xffff;
demcr |= catch;
/* write, but don't assume it stuck */
mem_ap_write_u32(swjdp, DCB_DEMCR, demcr);
mem_ap_read_atomic_u32(swjdp, DCB_DEMCR, &demcr);
}
for (unsigned i = 0; i < ARRAY_SIZE(vec_ids); i++)
command_print(cmd_ctx, "%9s: %s", vec_ids[i].name,
(demcr & vec_ids[i].mask) ? "catch" : "ignore");
return ERROR_OK;
}
COMMAND_HANDLER(handle_cortex_m3_mask_interrupts_command)
{
struct target *target = get_current_target(cmd_ctx);
struct cortex_m3_common *cortex_m3 = target_to_cm3(target);
int retval;
retval = cortex_m3_verify_pointer(cmd_ctx, cortex_m3);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED)
{
command_print(cmd_ctx, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
if (argc > 0)
{
if (!strcmp(args[0], "on"))
{
cortex_m3_write_debug_halt_mask(target, C_HALT | C_MASKINTS, 0);
}
else if (!strcmp(args[0], "off"))
{
cortex_m3_write_debug_halt_mask(target, C_HALT, C_MASKINTS);
}
else
{
command_print(cmd_ctx, "usage: cortex_m3 maskisr ['on'|'off']");
}
}
command_print(cmd_ctx, "cortex_m3 interrupt mask %s",
(cortex_m3->dcb_dhcsr & C_MASKINTS) ? "on" : "off");
return ERROR_OK;
}
static int cortex_m3_register_commands(struct command_context *cmd_ctx)
{
int retval;
struct command *cortex_m3_cmd;
retval = armv7m_register_commands(cmd_ctx);
cortex_m3_cmd = register_command(cmd_ctx, NULL, "cortex_m3",
NULL, COMMAND_ANY, "cortex_m3 specific commands");
register_command(cmd_ctx, cortex_m3_cmd, "disassemble",
handle_cortex_m3_disassemble_command, COMMAND_EXEC,
"disassemble Thumb2 instructions <address> [<count>]");
register_command(cmd_ctx, cortex_m3_cmd, "maskisr",
handle_cortex_m3_mask_interrupts_command, COMMAND_EXEC,
"mask cortex_m3 interrupts ['on'|'off']");
register_command(cmd_ctx, cortex_m3_cmd, "vector_catch",
handle_cortex_m3_vector_catch_command, COMMAND_EXEC,
"catch hardware vectors ['all'|'none'|<list>]");
return retval;
}
struct target_type cortexm3_target =
{
.name = "cortex_m3",
.poll = cortex_m3_poll,
.arch_state = armv7m_arch_state,
.target_request_data = cortex_m3_target_request_data,
.halt = cortex_m3_halt,
.resume = cortex_m3_resume,
.step = cortex_m3_step,
.assert_reset = cortex_m3_assert_reset,
.deassert_reset = cortex_m3_deassert_reset,
.soft_reset_halt = cortex_m3_soft_reset_halt,
.get_gdb_reg_list = armv7m_get_gdb_reg_list,
.read_memory = cortex_m3_read_memory,
.write_memory = cortex_m3_write_memory,
.bulk_write_memory = cortex_m3_bulk_write_memory,
.checksum_memory = armv7m_checksum_memory,
.blank_check_memory = armv7m_blank_check_memory,
.run_algorithm = armv7m_run_algorithm,
.add_breakpoint = cortex_m3_add_breakpoint,
.remove_breakpoint = cortex_m3_remove_breakpoint,
.add_watchpoint = cortex_m3_add_watchpoint,
.remove_watchpoint = cortex_m3_remove_watchpoint,
.register_commands = cortex_m3_register_commands,
.target_create = cortex_m3_target_create,
.init_target = cortex_m3_init_target,
.examine = cortex_m3_examine,
};