openocd/src/target/aarch64.c
Matthias Welwarsky 5d00fd9d1d aarch64: fix software breakpoints when in aarch32 state
Use the correct opcode for Aarch32 state, both for the breakpoint
instruction itself and the cache handling functions.

Change-Id: I975fa67b1e577b54f5c672a01d516419c6a614b2
Signed-off-by: Matthias Welwarsky <matthias.welwarsky@sysgo.com>
Reviewed-on: http://openocd.zylin.com/3981
Tested-by: jenkins
Reviewed-by: Paul Fertser <fercerpav@gmail.com>
2017-02-24 09:11:52 +00:00

2190 lines
63 KiB
C

/***************************************************************************
* Copyright (C) 2015 by David Ung *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "breakpoints.h"
#include "aarch64.h"
#include "register.h"
#include "target_request.h"
#include "target_type.h"
#include "armv8_opcodes.h"
#include "armv8_cache.h"
#include <helper/time_support.h>
static int aarch64_poll(struct target *target);
static int aarch64_debug_entry(struct target *target);
static int aarch64_restore_context(struct target *target, bool bpwp);
static int aarch64_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode);
static int aarch64_set_context_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode);
static int aarch64_set_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int aarch64_unset_breakpoint(struct target *target,
struct breakpoint *breakpoint);
static int aarch64_mmu(struct target *target, int *enabled);
static int aarch64_virt2phys(struct target *target,
target_addr_t virt, target_addr_t *phys);
static int aarch64_read_apb_ap_memory(struct target *target,
uint64_t address, uint32_t size, uint32_t count, uint8_t *buffer);
static int aarch64_restore_system_control_reg(struct target *target)
{
int retval = ERROR_OK;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = target_to_armv8(target);
if (aarch64->system_control_reg != aarch64->system_control_reg_curr) {
aarch64->system_control_reg_curr = aarch64->system_control_reg;
/* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_v8->cp15_control_reg); */
switch (armv8->arm.core_mode) {
case ARMV8_64_EL0T:
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
retval = armv8->arm.msr(target, 3, /*op 0*/
0, 1, /* op1, op2 */
0, 0, /* CRn, CRm */
aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
retval = armv8->arm.msr(target, 3, /*op 0*/
4, 1, /* op1, op2 */
0, 0, /* CRn, CRm */
aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
retval = armv8->arm.msr(target, 3, /*op 0*/
6, 1, /* op1, op2 */
0, 0, /* CRn, CRm */
aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
default:
retval = armv8->arm.mcr(target, 15, 0, 0, 1, 0, aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
}
}
return retval;
}
/* check address before aarch64_apb read write access with mmu on
* remove apb predictible data abort */
static int aarch64_check_address(struct target *target, uint32_t address)
{
/* TODO */
return ERROR_OK;
}
/* modify system_control_reg in order to enable or disable mmu for :
* - virt2phys address conversion
* - read or write memory in phys or virt address */
static int aarch64_mmu_modify(struct target *target, int enable)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
int retval = ERROR_OK;
if (enable) {
/* if mmu enabled at target stop and mmu not enable */
if (!(aarch64->system_control_reg & 0x1U)) {
LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
return ERROR_FAIL;
}
if (!(aarch64->system_control_reg_curr & 0x1U)) {
aarch64->system_control_reg_curr |= 0x1U;
switch (armv8->arm.core_mode) {
case ARMV8_64_EL0T:
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
retval = armv8->arm.msr(target, 3, /*op 0*/
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
aarch64->system_control_reg_curr);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
retval = armv8->arm.msr(target, 3, /*op 0*/
4, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
aarch64->system_control_reg_curr);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
retval = armv8->arm.msr(target, 3, /*op 0*/
6, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
aarch64->system_control_reg_curr);
if (retval != ERROR_OK)
return retval;
break;
default:
LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
}
}
} else {
if (aarch64->system_control_reg_curr & 0x4U) {
/* data cache is active */
aarch64->system_control_reg_curr &= ~0x4U;
/* flush data cache armv7 function to be called */
if (armv8->armv8_mmu.armv8_cache.flush_all_data_cache)
armv8->armv8_mmu.armv8_cache.flush_all_data_cache(target);
}
if ((aarch64->system_control_reg_curr & 0x1U)) {
aarch64->system_control_reg_curr &= ~0x1U;
switch (armv8->arm.core_mode) {
case ARMV8_64_EL0T:
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
retval = armv8->arm.msr(target, 3, /*op 0*/
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
aarch64->system_control_reg_curr);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
retval = armv8->arm.msr(target, 3, /*op 0*/
4, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
aarch64->system_control_reg_curr);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
retval = armv8->arm.msr(target, 3, /*op 0*/
6, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
aarch64->system_control_reg_curr);
if (retval != ERROR_OK)
return retval;
break;
default:
LOG_DEBUG("unknow cpu state 0x%x" PRIx32, armv8->arm.core_state);
break;
}
}
}
return retval;
}
/*
* Basic debug access, very low level assumes state is saved
*/
static int aarch64_init_debug_access(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
int retval;
uint32_t dummy;
LOG_DEBUG(" ");
/* Clear Sticky Power Down status Bit in PRSR to enable access to
the registers in the Core Power Domain */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_PRSR, &dummy);
if (retval != ERROR_OK)
return retval;
/*
* Static CTI configuration:
* Channel 0 -> trigger outputs HALT request to PE
* Channel 1 -> trigger outputs Resume request to PE
* Gate all channel trigger events from entering the CTM
*/
/* Enable CTI */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_CTR, 1);
/* By default, gate all channel triggers to and from the CTM */
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_GATE, 0);
/* output halt requests to PE on channel 0 trigger */
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_OUTEN0, CTI_CHNL(0));
/* output restart requests to PE on channel 1 trigger */
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_OUTEN1, CTI_CHNL(1));
if (retval != ERROR_OK)
return retval;
/* Resync breakpoint registers */
/* Since this is likely called from init or reset, update target state information*/
return aarch64_poll(target);
}
/* Write to memory mapped registers directly with no cache or mmu handling */
static int aarch64_dap_write_memap_register_u32(struct target *target,
uint32_t address,
uint32_t value)
{
int retval;
struct armv8_common *armv8 = target_to_armv8(target);
retval = mem_ap_write_atomic_u32(armv8->debug_ap, address, value);
return retval;
}
static int aarch64_dpm_setup(struct aarch64_common *a8, uint64_t debug)
{
struct arm_dpm *dpm = &a8->armv8_common.dpm;
int retval;
dpm->arm = &a8->armv8_common.arm;
dpm->didr = debug;
retval = armv8_dpm_setup(dpm);
if (retval == ERROR_OK)
retval = armv8_dpm_initialize(dpm);
return retval;
}
static int aarch64_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
{
struct armv8_common *armv8 = target_to_armv8(target);
uint32_t dscr;
/* Read DSCR */
int retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (ERROR_OK != retval)
return retval;
/* clear bitfield */
dscr &= ~bit_mask;
/* put new value */
dscr |= value & bit_mask;
/* write new DSCR */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
return retval;
}
static struct target *get_aarch64(struct target *target, int32_t coreid)
{
struct target_list *head;
struct target *curr;
head = target->head;
while (head != (struct target_list *)NULL) {
curr = head->target;
if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
return curr;
head = head->next;
}
return target;
}
static int aarch64_halt(struct target *target);
static int aarch64_halt_smp(struct target *target)
{
int retval = ERROR_OK;
struct target_list *head = target->head;
while (head != (struct target_list *)NULL) {
struct target *curr = head->target;
struct armv8_common *armv8 = target_to_armv8(curr);
/* open the gate for channel 0 to let HALT requests pass to the CTM */
if (curr->smp) {
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_GATE, CTI_CHNL(0));
if (retval == ERROR_OK)
retval = aarch64_set_dscr_bits(curr, DSCR_HDE, DSCR_HDE);
}
if (retval != ERROR_OK)
break;
head = head->next;
}
/* halt the target PE */
if (retval == ERROR_OK)
retval = aarch64_halt(target);
return retval;
}
static int update_halt_gdb(struct target *target)
{
int retval = 0;
if (target->gdb_service && target->gdb_service->core[0] == -1) {
target->gdb_service->target = target;
target->gdb_service->core[0] = target->coreid;
retval += aarch64_halt_smp(target);
}
return retval;
}
/*
* Cortex-A8 Run control
*/
static int aarch64_poll(struct target *target)
{
int retval = ERROR_OK;
uint32_t dscr;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
enum target_state prev_target_state = target->state;
/* toggle to another core is done by gdb as follow */
/* maint packet J core_id */
/* continue */
/* the next polling trigger an halt event sent to gdb */
if ((target->state == TARGET_HALTED) && (target->smp) &&
(target->gdb_service) &&
(target->gdb_service->target == NULL)) {
target->gdb_service->target =
get_aarch64(target, target->gdb_service->core[1]);
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return retval;
}
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
aarch64->cpudbg_dscr = dscr;
if (DSCR_RUN_MODE(dscr) == 0x3) {
if (prev_target_state != TARGET_HALTED) {
/* We have a halting debug event */
LOG_DEBUG("Target %s halted", target_name(target));
target->state = TARGET_HALTED;
if ((prev_target_state == TARGET_RUNNING)
|| (prev_target_state == TARGET_UNKNOWN)
|| (prev_target_state == TARGET_RESET)) {
retval = aarch64_debug_entry(target);
if (retval != ERROR_OK)
return retval;
if (target->smp) {
retval = update_halt_gdb(target);
if (retval != ERROR_OK)
return retval;
}
target_call_event_callbacks(target,
TARGET_EVENT_HALTED);
}
if (prev_target_state == TARGET_DEBUG_RUNNING) {
LOG_DEBUG(" ");
retval = aarch64_debug_entry(target);
if (retval != ERROR_OK)
return retval;
if (target->smp) {
retval = update_halt_gdb(target);
if (retval != ERROR_OK)
return retval;
}
target_call_event_callbacks(target,
TARGET_EVENT_DEBUG_HALTED);
}
}
} else
target->state = TARGET_RUNNING;
return retval;
}
static int aarch64_halt(struct target *target)
{
int retval = ERROR_OK;
uint32_t dscr;
struct armv8_common *armv8 = target_to_armv8(target);
/*
* add HDE in halting debug mode
*/
retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
if (retval != ERROR_OK)
return retval;
/* trigger an event on channel 0, this outputs a halt request to the PE */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_APPPULSE, CTI_CHNL(0));
if (retval != ERROR_OK)
return retval;
long long then = timeval_ms();
for (;; ) {
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
if ((dscr & DSCRV8_HALT_MASK) != 0)
break;
if (timeval_ms() > then + 1000) {
LOG_ERROR("Timeout waiting for halt");
return ERROR_FAIL;
}
}
target->debug_reason = DBG_REASON_DBGRQ;
return ERROR_OK;
}
static int aarch64_internal_restore(struct target *target, int current,
uint64_t *address, int handle_breakpoints, int debug_execution)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
int retval;
uint64_t resume_pc;
if (!debug_execution)
target_free_all_working_areas(target);
/* current = 1: continue on current pc, otherwise continue at <address> */
resume_pc = buf_get_u64(arm->pc->value, 0, 64);
if (!current)
resume_pc = *address;
else
*address = resume_pc;
/* Make sure that the Armv7 gdb thumb fixups does not
* kill the return address
*/
switch (arm->core_state) {
case ARM_STATE_ARM:
resume_pc &= 0xFFFFFFFC;
break;
case ARM_STATE_AARCH64:
resume_pc &= 0xFFFFFFFFFFFFFFFC;
break;
case ARM_STATE_THUMB:
case ARM_STATE_THUMB_EE:
/* When the return address is loaded into PC
* bit 0 must be 1 to stay in Thumb state
*/
resume_pc |= 0x1;
break;
case ARM_STATE_JAZELLE:
LOG_ERROR("How do I resume into Jazelle state??");
return ERROR_FAIL;
}
LOG_DEBUG("resume pc = 0x%016" PRIx64, resume_pc);
buf_set_u64(arm->pc->value, 0, 64, resume_pc);
arm->pc->dirty = 1;
arm->pc->valid = 1;
/* called it now before restoring context because it uses cpu
* register r0 for restoring system control register */
retval = aarch64_restore_system_control_reg(target);
if (retval == ERROR_OK)
retval = aarch64_restore_context(target, handle_breakpoints);
return retval;
}
static int aarch64_internal_restart(struct target *target, bool slave_pe)
{
struct armv8_common *armv8 = target_to_armv8(target);
struct arm *arm = &armv8->arm;
int retval;
uint32_t dscr;
/*
* * Restart core and wait for it to be started. Clear ITRen and sticky
* * exception flags: see ARMv7 ARM, C5.9.
*
* REVISIT: for single stepping, we probably want to
* disable IRQs by default, with optional override...
*/
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
if ((dscr & DSCR_ITE) == 0)
LOG_ERROR("DSCR.ITE must be set before leaving debug!");
if ((dscr & DSCR_ERR) != 0)
LOG_ERROR("DSCR.ERR must be cleared before leaving debug!");
/* make sure to acknowledge the halt event before resuming */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_INACK, CTI_TRIG(HALT));
/*
* open the CTI gate for channel 1 so that the restart events
* get passed along to all PEs
*/
if (retval == ERROR_OK)
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_GATE, CTI_CHNL(1));
if (retval != ERROR_OK)
return retval;
if (!slave_pe) {
/* trigger an event on channel 1, generates a restart request to the PE */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->cti_base + CTI_APPPULSE, CTI_CHNL(1));
if (retval != ERROR_OK)
return retval;
long long then = timeval_ms();
for (;; ) {
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
return retval;
if ((dscr & DSCR_HDE) != 0)
break;
if (timeval_ms() > then + 1000) {
LOG_ERROR("Timeout waiting for resume");
return ERROR_FAIL;
}
}
}
target->debug_reason = DBG_REASON_NOTHALTED;
target->state = TARGET_RUNNING;
/* registers are now invalid */
register_cache_invalidate(arm->core_cache);
register_cache_invalidate(arm->core_cache->next);
return ERROR_OK;
}
static int aarch64_restore_smp(struct target *target, int handle_breakpoints)
{
int retval = 0;
struct target_list *head;
struct target *curr;
uint64_t address;
head = target->head;
while (head != (struct target_list *)NULL) {
curr = head->target;
if ((curr != target) && (curr->state != TARGET_RUNNING)) {
/* resume current address , not in step mode */
retval += aarch64_internal_restore(curr, 1, &address,
handle_breakpoints, 0);
retval += aarch64_internal_restart(curr, true);
}
head = head->next;
}
return retval;
}
static int aarch64_resume(struct target *target, int current,
target_addr_t address, int handle_breakpoints, int debug_execution)
{
int retval = 0;
uint64_t addr = address;
/* dummy resume for smp toggle in order to reduce gdb impact */
if ((target->smp) && (target->gdb_service->core[1] != -1)) {
/* simulate a start and halt of target */
target->gdb_service->target = NULL;
target->gdb_service->core[0] = target->gdb_service->core[1];
/* fake resume at next poll we play the target core[1], see poll*/
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
return 0;
}
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
aarch64_internal_restore(target, current, &addr, handle_breakpoints,
debug_execution);
if (target->smp) {
target->gdb_service->core[0] = -1;
retval = aarch64_restore_smp(target, handle_breakpoints);
if (retval != ERROR_OK)
return retval;
}
aarch64_internal_restart(target, false);
if (!debug_execution) {
target->state = TARGET_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
LOG_DEBUG("target resumed at 0x%" PRIx64, addr);
} else {
target->state = TARGET_DEBUG_RUNNING;
target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
LOG_DEBUG("target debug resumed at 0x%" PRIx64, addr);
}
return ERROR_OK;
}
static int aarch64_debug_entry(struct target *target)
{
int retval = ERROR_OK;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
enum arm_state core_state;
LOG_DEBUG("%s dscr = 0x%08" PRIx32, target_name(target), aarch64->cpudbg_dscr);
dpm->dscr = aarch64->cpudbg_dscr;
core_state = armv8_dpm_get_core_state(dpm);
armv8_select_opcodes(armv8, core_state == ARM_STATE_AARCH64);
armv8_select_reg_access(armv8, core_state == ARM_STATE_AARCH64);
/* make sure to clear all sticky errors */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DRCR, DRCR_CSE);
/* discard async exceptions */
if (retval == ERROR_OK)
retval = dpm->instr_cpsr_sync(dpm);
if (retval != ERROR_OK)
return retval;
/* Examine debug reason */
armv8_dpm_report_dscr(dpm, aarch64->cpudbg_dscr);
/* save address of instruction that triggered the watchpoint? */
if (target->debug_reason == DBG_REASON_WATCHPOINT) {
uint32_t tmp;
uint64_t wfar = 0;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_WFAR1,
&tmp);
if (retval != ERROR_OK)
return retval;
wfar = tmp;
wfar = (wfar << 32);
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_WFAR0,
&tmp);
if (retval != ERROR_OK)
return retval;
wfar |= tmp;
armv8_dpm_report_wfar(&armv8->dpm, wfar);
}
retval = armv8_dpm_read_current_registers(&armv8->dpm);
if (retval == ERROR_OK && armv8->post_debug_entry)
retval = armv8->post_debug_entry(target);
return retval;
}
static int aarch64_post_debug_entry(struct target *target)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
int retval;
switch (armv8->arm.core_mode) {
case ARMV8_64_EL0T:
armv8_dpm_modeswitch(&armv8->dpm, ARMV8_64_EL1H);
/* fall through */
case ARMV8_64_EL1T:
case ARMV8_64_EL1H:
retval = armv8->arm.mrs(target, 3, /*op 0*/
0, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL2T:
case ARMV8_64_EL2H:
retval = armv8->arm.mrs(target, 3, /*op 0*/
4, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
case ARMV8_64_EL3H:
case ARMV8_64_EL3T:
retval = armv8->arm.mrs(target, 3, /*op 0*/
6, 0, /* op1, op2 */
1, 0, /* CRn, CRm */
&aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
case ARM_MODE_SVC:
retval = armv8->arm.mrc(target, 15, 0, 0, 1, 0, &aarch64->system_control_reg);
if (retval != ERROR_OK)
return retval;
break;
default:
LOG_INFO("cannot read system control register in this mode");
break;
}
armv8_dpm_modeswitch(&armv8->dpm, ARM_MODE_ANY);
LOG_DEBUG("System_register: %8.8" PRIx32, aarch64->system_control_reg);
aarch64->system_control_reg_curr = aarch64->system_control_reg;
if (armv8->armv8_mmu.armv8_cache.info == -1) {
armv8_identify_cache(armv8);
armv8_read_mpidr(armv8);
}
armv8->armv8_mmu.mmu_enabled =
(aarch64->system_control_reg & 0x1U) ? 1 : 0;
armv8->armv8_mmu.armv8_cache.d_u_cache_enabled =
(aarch64->system_control_reg & 0x4U) ? 1 : 0;
armv8->armv8_mmu.armv8_cache.i_cache_enabled =
(aarch64->system_control_reg & 0x1000U) ? 1 : 0;
aarch64->curr_mode = armv8->arm.core_mode;
return ERROR_OK;
}
static int aarch64_step(struct target *target, int current, target_addr_t address,
int handle_breakpoints)
{
struct armv8_common *armv8 = target_to_armv8(target);
int retval;
uint32_t edecr;
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, &edecr);
if (retval != ERROR_OK)
return retval;
/* make sure EDECR.SS is not set when restoring the register */
edecr &= ~0x4;
/* set EDECR.SS to enter hardware step mode */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, (edecr|0x4));
if (retval != ERROR_OK)
return retval;
/* disable interrupts while stepping */
retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0x3 << 22);
if (retval != ERROR_OK)
return ERROR_OK;
/* resume the target */
retval = aarch64_resume(target, current, address, 0, 0);
if (retval != ERROR_OK)
return retval;
long long then = timeval_ms();
while (target->state != TARGET_HALTED) {
retval = aarch64_poll(target);
if (retval != ERROR_OK)
return retval;
if (timeval_ms() > then + 1000) {
LOG_ERROR("timeout waiting for target halt");
return ERROR_FAIL;
}
}
/* restore EDECR */
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_EDECR, edecr);
if (retval != ERROR_OK)
return retval;
/* restore interrupts */
retval = aarch64_set_dscr_bits(target, 0x3 << 22, 0);
if (retval != ERROR_OK)
return ERROR_OK;
return ERROR_OK;
}
static int aarch64_restore_context(struct target *target, bool bpwp)
{
struct armv8_common *armv8 = target_to_armv8(target);
LOG_DEBUG("%s", target_name(target));
if (armv8->pre_restore_context)
armv8->pre_restore_context(target);
return armv8_dpm_write_dirty_registers(&armv8->dpm, bpwp);
}
/*
* Cortex-A8 Breakpoint and watchpoint functions
*/
/* Setup hardware Breakpoint Register Pair */
static int aarch64_set_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode)
{
int retval;
int brp_i = 0;
uint32_t control;
uint8_t byte_addr_select = 0x0F;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (breakpoint->set) {
LOG_WARNING("breakpoint already set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
int64_t bpt_value;
while (brp_list[brp_i].used && (brp_i < aarch64->brp_num))
brp_i++;
if (brp_i >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
breakpoint->set = brp_i + 1;
if (breakpoint->length == 2)
byte_addr_select = (3 << (breakpoint->address & 0x02));
control = ((matchmode & 0x7) << 20)
| (1 << 13)
| (byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_i].used = 1;
brp_list[brp_i].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
brp_list[brp_i].control = control;
bpt_value = brp_list[brp_i].value;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
(uint32_t)(bpt_value & 0xFFFFFFFF));
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
(uint32_t)(bpt_value >> 32));
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
brp_list[brp_i].control,
brp_list[brp_i].value);
} else if (breakpoint->type == BKPT_SOFT) {
uint8_t code[4];
buf_set_u32(code, 0, 32, armv8_opcode(armv8, ARMV8_OPC_HLT));
retval = target_read_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length, 1,
breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length, 1, code);
if (retval != ERROR_OK)
return retval;
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
armv8_cache_i_inner_inval_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
breakpoint->set = 0x11; /* Any nice value but 0 */
}
/* Ensure that halting debug mode is enable */
retval = aarch64_set_dscr_bits(target, DSCR_HDE, DSCR_HDE);
if (retval != ERROR_OK) {
LOG_DEBUG("Failed to set DSCR.HDE");
return retval;
}
return ERROR_OK;
}
static int aarch64_set_context_breakpoint(struct target *target,
struct breakpoint *breakpoint, uint8_t matchmode)
{
int retval = ERROR_FAIL;
int brp_i = 0;
uint32_t control;
uint8_t byte_addr_select = 0x0F;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (breakpoint->set) {
LOG_WARNING("breakpoint already set");
return retval;
}
/*check available context BRPs*/
while ((brp_list[brp_i].used ||
(brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < aarch64->brp_num))
brp_i++;
if (brp_i >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
breakpoint->set = brp_i + 1;
control = ((matchmode & 0x7) << 20)
| (1 << 13)
| (byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_i].used = 1;
brp_list[brp_i].value = (breakpoint->asid);
brp_list[brp_i].control = control;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
brp_list[brp_i].control,
brp_list[brp_i].value);
return ERROR_OK;
}
static int aarch64_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval = ERROR_FAIL;
int brp_1 = 0; /* holds the contextID pair */
int brp_2 = 0; /* holds the IVA pair */
uint32_t control_CTX, control_IVA;
uint8_t CTX_byte_addr_select = 0x0F;
uint8_t IVA_byte_addr_select = 0x0F;
uint8_t CTX_machmode = 0x03;
uint8_t IVA_machmode = 0x01;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (breakpoint->set) {
LOG_WARNING("breakpoint already set");
return retval;
}
/*check available context BRPs*/
while ((brp_list[brp_1].used ||
(brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < aarch64->brp_num))
brp_1++;
printf("brp(CTX) found num: %d\n", brp_1);
if (brp_1 >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
while ((brp_list[brp_2].used ||
(brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < aarch64->brp_num))
brp_2++;
printf("brp(IVA) found num: %d\n", brp_2);
if (brp_2 >= aarch64->brp_num) {
LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
return ERROR_FAIL;
}
breakpoint->set = brp_1 + 1;
breakpoint->linked_BRP = brp_2;
control_CTX = ((CTX_machmode & 0x7) << 20)
| (brp_2 << 16)
| (0 << 14)
| (CTX_byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_1].used = 1;
brp_list[brp_1].value = (breakpoint->asid);
brp_list[brp_1].control = control_CTX;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_1].BRPn,
brp_list[brp_1].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_1].BRPn,
brp_list[brp_1].control);
if (retval != ERROR_OK)
return retval;
control_IVA = ((IVA_machmode & 0x7) << 20)
| (brp_1 << 16)
| (1 << 13)
| (IVA_byte_addr_select << 5)
| (3 << 1) | 1;
brp_list[brp_2].used = 1;
brp_list[brp_2].value = breakpoint->address & 0xFFFFFFFFFFFFFFFC;
brp_list[brp_2].control = control_IVA;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_2].BRPn,
brp_list[brp_2].value & 0xFFFFFFFF);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_2].BRPn,
brp_list[brp_2].value >> 32);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_2].BRPn,
brp_list[brp_2].control);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int aarch64_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
int retval;
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct aarch64_brp *brp_list = aarch64->brp_list;
if (!breakpoint->set) {
LOG_WARNING("breakpoint not set");
return ERROR_OK;
}
if (breakpoint->type == BKPT_HARD) {
if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
int brp_i = breakpoint->set - 1;
int brp_j = breakpoint->linked_BRP;
if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%" TARGET_PRIxADDR, brp_i,
brp_list[brp_i].control, brp_list[brp_i].value);
brp_list[brp_i].used = 0;
brp_list[brp_i].value = 0;
brp_list[brp_i].control = 0;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
(uint32_t)brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
(uint32_t)brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
if ((brp_j < 0) || (brp_j >= aarch64->brp_num)) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_j,
brp_list[brp_j].control, brp_list[brp_j].value);
brp_list[brp_j].used = 0;
brp_list[brp_j].value = 0;
brp_list[brp_j].control = 0;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_j].BRPn,
brp_list[brp_j].control);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_j].BRPn,
(uint32_t)brp_list[brp_j].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_j].BRPn,
(uint32_t)brp_list[brp_j].value);
if (retval != ERROR_OK)
return retval;
breakpoint->linked_BRP = 0;
breakpoint->set = 0;
return ERROR_OK;
} else {
int brp_i = breakpoint->set - 1;
if ((brp_i < 0) || (brp_i >= aarch64->brp_num)) {
LOG_DEBUG("Invalid BRP number in breakpoint");
return ERROR_OK;
}
LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx64, brp_i,
brp_list[brp_i].control, brp_list[brp_i].value);
brp_list[brp_i].used = 0;
brp_list[brp_i].value = 0;
brp_list[brp_i].control = 0;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BCR_BASE + 16 * brp_list[brp_i].BRPn,
brp_list[brp_i].control);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 16 * brp_list[brp_i].BRPn,
brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
retval = aarch64_dap_write_memap_register_u32(target, armv8->debug_base
+ CPUV8_DBG_BVR_BASE + 4 + 16 * brp_list[brp_i].BRPn,
(uint32_t)brp_list[brp_i].value);
if (retval != ERROR_OK)
return retval;
breakpoint->set = 0;
return ERROR_OK;
}
} else {
/* restore original instruction (kept in target endianness) */
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
if (breakpoint->length == 4) {
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
4, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
} else {
retval = target_write_memory(target,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
2, 1, breakpoint->orig_instr);
if (retval != ERROR_OK)
return retval;
}
armv8_cache_d_inner_flush_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
armv8_cache_i_inner_inval_virt(armv8,
breakpoint->address & 0xFFFFFFFFFFFFFFFE,
breakpoint->length);
}
breakpoint->set = 0;
return ERROR_OK;
}
static int aarch64_add_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available--;
return aarch64_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
}
static int aarch64_add_context_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available--;
return aarch64_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
}
static int aarch64_add_hybrid_breakpoint(struct target *target,
struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
if ((breakpoint->type == BKPT_HARD) && (aarch64->brp_num_available < 1)) {
LOG_INFO("no hardware breakpoint available");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available--;
return aarch64_set_hybrid_breakpoint(target, breakpoint); /* ??? */
}
static int aarch64_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
#if 0
/* It is perfectly possible to remove breakpoints while the target is running */
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
#endif
if (breakpoint->set) {
aarch64_unset_breakpoint(target, breakpoint);
if (breakpoint->type == BKPT_HARD)
aarch64->brp_num_available++;
}
return ERROR_OK;
}
/*
* Cortex-A8 Reset functions
*/
static int aarch64_assert_reset(struct target *target)
{
struct armv8_common *armv8 = target_to_armv8(target);
LOG_DEBUG(" ");
/* FIXME when halt is requested, make it work somehow... */
/* Issue some kind of warm reset. */
if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
else if (jtag_get_reset_config() & RESET_HAS_SRST) {
/* REVISIT handle "pulls" cases, if there's
* hardware that needs them to work.
*/
jtag_add_reset(0, 1);
} else {
LOG_ERROR("%s: how to reset?", target_name(target));
return ERROR_FAIL;
}
/* registers are now invalid */
if (target_was_examined(target))
register_cache_invalidate(armv8->arm.core_cache);
target->state = TARGET_RESET;
return ERROR_OK;
}
static int aarch64_deassert_reset(struct target *target)
{
int retval;
LOG_DEBUG(" ");
/* be certain SRST is off */
jtag_add_reset(0, 0);
if (!target_was_examined(target))
return ERROR_OK;
retval = aarch64_poll(target);
if (retval != ERROR_OK)
return retval;
if (target->reset_halt) {
if (target->state != TARGET_HALTED) {
LOG_WARNING("%s: ran after reset and before halt ...",
target_name(target));
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
}
}
return ERROR_OK;
}
static int aarch64_write_apb_ap_memory(struct target *target,
uint64_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
/* write memory through APB-AP */
int retval = ERROR_COMMAND_SYNTAX_ERROR;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
struct arm *arm = &armv8->arm;
int total_bytes = count * size;
int total_u32;
int start_byte = address & 0x3;
int end_byte = (address + total_bytes) & 0x3;
struct reg *reg;
uint32_t dscr;
uint8_t *tmp_buff = NULL;
LOG_DEBUG("Writing APB-AP memory address 0x%" PRIx64 " size %" PRIu32 " count %" PRIu32,
address, size, count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
/* Mark register R0 as dirty, as it will be used
* for transferring the data.
* It will be restored automatically when exiting
* debug mode
*/
reg = armv8_reg_current(arm, 1);
reg->dirty = true;
reg = armv8_reg_current(arm, 0);
reg->dirty = true;
/* This algorithm comes from DDI0487A.g, chapter J9.1 */
/* The algorithm only copies 32 bit words, so the buffer
* should be expanded to include the words at either end.
* The first and last words will be read first to avoid
* corruption if needed.
*/
tmp_buff = malloc(total_u32 * 4);
if ((start_byte != 0) && (total_u32 > 1)) {
/* First bytes not aligned - read the 32 bit word to avoid corrupting
* the other bytes in the word.
*/
retval = aarch64_read_apb_ap_memory(target, (address & ~0x3), 4, 1, tmp_buff);
if (retval != ERROR_OK)
goto error_free_buff_w;
}
/* If end of write is not aligned, or the write is less than 4 bytes */
if ((end_byte != 0) ||
((total_u32 == 1) && (total_bytes != 4))) {
/* Read the last word to avoid corruption during 32 bit write */
int mem_offset = (total_u32-1) * 4;
retval = aarch64_read_apb_ap_memory(target, (address & ~0x3) + mem_offset, 4, 1, &tmp_buff[mem_offset]);
if (retval != ERROR_OK)
goto error_free_buff_w;
}
/* Copy the write buffer over the top of the temporary buffer */
memcpy(&tmp_buff[start_byte], buffer, total_bytes);
/* We now have a 32 bit aligned buffer that can be written */
/* Read DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_w;
/* Set Normal access mode */
dscr = (dscr & ~DSCR_MA);
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
if (arm->core_state == ARM_STATE_AARCH64) {
/* Write X0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
/* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
retval = dpm->instr_write_data_dcc_64(dpm,
ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
} else {
/* Write R0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTRRX */
/* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
}
/* Step 1.d - Change DCC to memory mode */
dscr = dscr | DSCR_MA;
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Step 2.a - Do the write */
retval = mem_ap_write_buf_noincr(armv8->debug_ap,
tmp_buff, 4, total_u32, armv8->debug_base + CPUV8_DBG_DTRRX);
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Step 3.a - Switch DTR mode back to Normal mode */
dscr = (dscr & ~DSCR_MA);
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_unset_dtr_w;
/* Check for sticky abort flags in the DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_w;
dpm->dscr = dscr;
if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
/* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
armv8_dpm_handle_exception(dpm);
goto error_free_buff_w;
}
/* Done */
free(tmp_buff);
return ERROR_OK;
error_unset_dtr_w:
/* Unset DTR mode */
mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
dscr = (dscr & ~DSCR_MA);
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
error_free_buff_w:
LOG_ERROR("error");
free(tmp_buff);
return ERROR_FAIL;
}
static int aarch64_read_apb_ap_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
/* read memory through APB-AP */
int retval = ERROR_COMMAND_SYNTAX_ERROR;
struct armv8_common *armv8 = target_to_armv8(target);
struct arm_dpm *dpm = &armv8->dpm;
struct arm *arm = &armv8->arm;
int total_bytes = count * size;
int total_u32;
int start_byte = address & 0x3;
int end_byte = (address + total_bytes) & 0x3;
struct reg *reg;
uint32_t dscr;
uint8_t *tmp_buff = NULL;
uint8_t *u8buf_ptr;
uint32_t value;
LOG_DEBUG("Reading APB-AP memory address 0x%" TARGET_PRIxADDR " size %" PRIu32 " count %" PRIu32,
address, size, count);
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
total_u32 = DIV_ROUND_UP((address & 3) + total_bytes, 4);
/* Mark register X0, X1 as dirty, as it will be used
* for transferring the data.
* It will be restored automatically when exiting
* debug mode
*/
reg = armv8_reg_current(arm, 1);
reg->dirty = true;
reg = armv8_reg_current(arm, 0);
reg->dirty = true;
/* Read DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
/* This algorithm comes from DDI0487A.g, chapter J9.1 */
/* Set Normal access mode */
dscr = (dscr & ~DSCR_MA);
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
if (arm->core_state == ARM_STATE_AARCH64) {
/* Write X0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTR_EL0 */
/* Step 1.c - Copy value from DTR to R0 using instruction mrs DBGDTR_EL0, x0 */
retval += dpm->instr_write_data_dcc_64(dpm,
ARMV8_MRS(SYSTEM_DBG_DBGDTR_EL0, 0), address & ~0x3ULL);
/* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
retval += dpm->instr_execute(dpm, ARMV8_MSR_GP(SYSTEM_DBG_DBGDTR_EL0, 0));
/* Step 1.e - Change DCC to memory mode */
dscr = dscr | DSCR_MA;
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
/* Step 1.f - read DBGDTRTX and discard the value */
retval += mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &value);
} else {
/* Write R0 with value 'address' using write procedure */
/* Step 1.a+b - Write the address for read access into DBGDTRRXint */
/* Step 1.c - Copy value from DTR to R0 using instruction mrc DBGDTRTXint, r0 */
retval += dpm->instr_write_data_dcc(dpm,
ARMV4_5_MRC(14, 0, 0, 0, 5, 0), address & ~0x3ULL);
/* Step 1.d - Dummy operation to ensure EDSCR.Txfull == 1 */
retval += dpm->instr_execute(dpm, ARMV4_5_MCR(14, 0, 0, 0, 5, 0));
/* Step 1.e - Change DCC to memory mode */
dscr = dscr | DSCR_MA;
retval += mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
/* Step 1.f - read DBGDTRTX and discard the value */
retval += mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &value);
}
if (retval != ERROR_OK)
goto error_unset_dtr_r;
/* Optimize the read as much as we can, either way we read in a single pass */
if ((start_byte) || (end_byte)) {
/* The algorithm only copies 32 bit words, so the buffer
* should be expanded to include the words at either end.
* The first and last words will be read into a temp buffer
* to avoid corruption
*/
tmp_buff = malloc(total_u32 * 4);
if (!tmp_buff)
goto error_unset_dtr_r;
/* use the tmp buffer to read the entire data */
u8buf_ptr = tmp_buff;
} else
/* address and read length are aligned so read directly into the passed buffer */
u8buf_ptr = buffer;
/* Read the data - Each read of the DTRTX register causes the instruction to be reissued
* Abort flags are sticky, so can be read at end of transactions
*
* This data is read in aligned to 32 bit boundary.
*/
/* Step 2.a - Loop n-1 times, each read of DBGDTRTX reads the data from [X0] and
* increments X0 by 4. */
retval = mem_ap_read_buf_noincr(armv8->debug_ap, u8buf_ptr, 4, total_u32-1,
armv8->debug_base + CPUV8_DBG_DTRTX);
if (retval != ERROR_OK)
goto error_unset_dtr_r;
/* Step 3.a - set DTR access mode back to Normal mode */
dscr = (dscr & ~DSCR_MA);
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
if (retval != ERROR_OK)
goto error_free_buff_r;
/* Step 3.b - read DBGDTRTX for the final value */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &value);
memcpy(u8buf_ptr + (total_u32-1) * 4, &value, 4);
/* Check for sticky abort flags in the DSCR */
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
if (retval != ERROR_OK)
goto error_free_buff_r;
dpm->dscr = dscr;
if (dscr & (DSCR_ERR | DSCR_SYS_ERROR_PEND)) {
/* Abort occurred - clear it and exit */
LOG_ERROR("abort occurred - dscr = 0x%08" PRIx32, dscr);
armv8_dpm_handle_exception(dpm);
goto error_free_buff_r;
}
/* check if we need to copy aligned data by applying any shift necessary */
if (tmp_buff) {
memcpy(buffer, tmp_buff + start_byte, total_bytes);
free(tmp_buff);
}
/* Done */
return ERROR_OK;
error_unset_dtr_r:
/* Unset DTR mode */
mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
dscr = (dscr & ~DSCR_MA);
mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, dscr);
error_free_buff_r:
LOG_ERROR("error");
free(tmp_buff);
return ERROR_FAIL;
}
static int aarch64_read_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, uint8_t *buffer)
{
int retval = ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("Reading memory at real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32,
address, size, count);
if (count && buffer) {
/* read memory through APB-AP */
retval = aarch64_mmu_modify(target, 0);
if (retval != ERROR_OK)
return retval;
retval = aarch64_read_apb_ap_memory(target, address, size, count, buffer);
}
return retval;
}
static int aarch64_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
int mmu_enabled = 0;
int retval;
/* aarch64 handles unaligned memory access */
LOG_DEBUG("Reading memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
size, count);
/* determine if MMU was enabled on target stop */
retval = aarch64_mmu(target, &mmu_enabled);
if (retval != ERROR_OK)
return retval;
if (mmu_enabled) {
retval = aarch64_check_address(target, address);
if (retval != ERROR_OK)
return retval;
/* enable MMU as we could have disabled it for phys access */
retval = aarch64_mmu_modify(target, 1);
if (retval != ERROR_OK)
return retval;
}
return aarch64_read_apb_ap_memory(target, address, size, count, buffer);
}
static int aarch64_write_phys_memory(struct target *target,
target_addr_t address, uint32_t size,
uint32_t count, const uint8_t *buffer)
{
int retval = ERROR_COMMAND_SYNTAX_ERROR;
LOG_DEBUG("Writing memory to real address 0x%" TARGET_PRIxADDR "; size %" PRId32 "; count %" PRId32, address,
size, count);
if (count && buffer) {
/* write memory through APB-AP */
retval = aarch64_mmu_modify(target, 0);
if (retval != ERROR_OK)
return retval;
return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
}
return retval;
}
static int aarch64_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
int mmu_enabled = 0;
int retval;
/* aarch64 handles unaligned memory access */
LOG_DEBUG("Writing memory at address 0x%" TARGET_PRIxADDR "; size %" PRId32
"; count %" PRId32, address, size, count);
/* determine if MMU was enabled on target stop */
retval = aarch64_mmu(target, &mmu_enabled);
if (retval != ERROR_OK)
return retval;
if (mmu_enabled) {
retval = aarch64_check_address(target, address);
if (retval != ERROR_OK)
return retval;
/* enable MMU as we could have disabled it for phys access */
retval = aarch64_mmu_modify(target, 1);
if (retval != ERROR_OK)
return retval;
}
return aarch64_write_apb_ap_memory(target, address, size, count, buffer);
}
static int aarch64_handle_target_request(void *priv)
{
struct target *target = priv;
struct armv8_common *armv8 = target_to_armv8(target);
int retval;
if (!target_was_examined(target))
return ERROR_OK;
if (!target->dbg_msg_enabled)
return ERROR_OK;
if (target->state == TARGET_RUNNING) {
uint32_t request;
uint32_t dscr;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
/* check if we have data */
while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DTRTX, &request);
if (retval == ERROR_OK) {
target_request(target, request);
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DSCR, &dscr);
}
}
}
return ERROR_OK;
}
static int aarch64_examine_first(struct target *target)
{
struct aarch64_common *aarch64 = target_to_aarch64(target);
struct armv8_common *armv8 = &aarch64->armv8_common;
struct adiv5_dap *swjdp = armv8->arm.dap;
int i;
int retval = ERROR_OK;
uint64_t debug, ttypr;
uint32_t cpuid;
uint32_t tmp0, tmp1;
debug = ttypr = cpuid = 0;
/* We do one extra read to ensure DAP is configured,
* we call ahbap_debugport_init(swjdp) instead
*/
retval = dap_dp_init(swjdp);
if (retval != ERROR_OK)
return retval;
/* Search for the APB-AB - it is needed for access to debug registers */
retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv8->debug_ap);
if (retval != ERROR_OK) {
LOG_ERROR("Could not find APB-AP for debug access");
return retval;
}
retval = mem_ap_init(armv8->debug_ap);
if (retval != ERROR_OK) {
LOG_ERROR("Could not initialize the APB-AP");
return retval;
}
armv8->debug_ap->memaccess_tck = 80;
if (!target->dbgbase_set) {
uint32_t dbgbase;
/* Get ROM Table base */
uint32_t apid;
int32_t coreidx = target->coreid;
retval = dap_get_debugbase(armv8->debug_ap, &dbgbase, &apid);
if (retval != ERROR_OK)
return retval;
/* Lookup 0x15 -- Processor DAP */
retval = dap_lookup_cs_component(armv8->debug_ap, dbgbase, 0x15,
&armv8->debug_base, &coreidx);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32
" apid: %08" PRIx32, coreidx, armv8->debug_base, apid);
} else
armv8->debug_base = target->dbgbase;
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_LOCKACCESS, 0xC5ACCE55);
if (retval != ERROR_OK) {
LOG_DEBUG("LOCK debug access fail");
return retval;
}
retval = mem_ap_write_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_OSLAR, 0);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "oslock");
return retval;
}
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_MAINID0, &cpuid);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "CPUID");
return retval;
}
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_MEMFEATURE0, &tmp0);
retval += mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_MEMFEATURE0 + 4, &tmp1);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "Memory Model Type");
return retval;
}
ttypr |= tmp1;
ttypr = (ttypr << 32) | tmp0;
retval = mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DBGFEATURE0, &tmp0);
retval += mem_ap_read_atomic_u32(armv8->debug_ap,
armv8->debug_base + CPUV8_DBG_DBGFEATURE0 + 4, &tmp1);
if (retval != ERROR_OK) {
LOG_DEBUG("Examine %s failed", "ID_AA64DFR0_EL1");
return retval;
}
debug |= tmp1;
debug = (debug << 32) | tmp0;
LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
LOG_DEBUG("ttypr = 0x%08" PRIx64, ttypr);
LOG_DEBUG("debug = 0x%08" PRIx64, debug);
if (target->ctibase == 0) {
/* assume a v8 rom table layout */
armv8->cti_base = target->ctibase = armv8->debug_base + 0x10000;
LOG_INFO("Target ctibase is not set, assuming 0x%0" PRIx32, target->ctibase);
} else
armv8->cti_base = target->ctibase;
armv8->arm.core_type = ARM_MODE_MON;
retval = aarch64_dpm_setup(aarch64, debug);
if (retval != ERROR_OK)
return retval;
/* Setup Breakpoint Register Pairs */
aarch64->brp_num = (uint32_t)((debug >> 12) & 0x0F) + 1;
aarch64->brp_num_context = (uint32_t)((debug >> 28) & 0x0F) + 1;
aarch64->brp_num_available = aarch64->brp_num;
aarch64->brp_list = calloc(aarch64->brp_num, sizeof(struct aarch64_brp));
for (i = 0; i < aarch64->brp_num; i++) {
aarch64->brp_list[i].used = 0;
if (i < (aarch64->brp_num-aarch64->brp_num_context))
aarch64->brp_list[i].type = BRP_NORMAL;
else
aarch64->brp_list[i].type = BRP_CONTEXT;
aarch64->brp_list[i].value = 0;
aarch64->brp_list[i].control = 0;
aarch64->brp_list[i].BRPn = i;
}
LOG_DEBUG("Configured %i hw breakpoints", aarch64->brp_num);
target_set_examined(target);
return ERROR_OK;
}
static int aarch64_examine(struct target *target)
{
int retval = ERROR_OK;
/* don't re-probe hardware after each reset */
if (!target_was_examined(target))
retval = aarch64_examine_first(target);
/* Configure core debug access */
if (retval == ERROR_OK)
retval = aarch64_init_debug_access(target);
return retval;
}
/*
* Cortex-A8 target creation and initialization
*/
static int aarch64_init_target(struct command_context *cmd_ctx,
struct target *target)
{
/* examine_first() does a bunch of this */
return ERROR_OK;
}
static int aarch64_init_arch_info(struct target *target,
struct aarch64_common *aarch64, struct jtag_tap *tap)
{
struct armv8_common *armv8 = &aarch64->armv8_common;
struct adiv5_dap *dap = armv8->arm.dap;
armv8->arm.dap = dap;
/* Setup struct aarch64_common */
aarch64->common_magic = AARCH64_COMMON_MAGIC;
/* tap has no dap initialized */
if (!tap->dap) {
tap->dap = dap_init();
/* Leave (only) generic DAP stuff for debugport_init() */
tap->dap->tap = tap;
}
armv8->arm.dap = tap->dap;
aarch64->fast_reg_read = 0;
/* register arch-specific functions */
armv8->examine_debug_reason = NULL;
armv8->post_debug_entry = aarch64_post_debug_entry;
armv8->pre_restore_context = NULL;
armv8->armv8_mmu.read_physical_memory = aarch64_read_phys_memory;
/* REVISIT v7a setup should be in a v7a-specific routine */
armv8_init_arch_info(target, armv8);
target_register_timer_callback(aarch64_handle_target_request, 1, 1, target);
return ERROR_OK;
}
static int aarch64_target_create(struct target *target, Jim_Interp *interp)
{
struct aarch64_common *aarch64 = calloc(1, sizeof(struct aarch64_common));
return aarch64_init_arch_info(target, aarch64, target->tap);
}
static int aarch64_mmu(struct target *target, int *enabled)
{
if (target->state != TARGET_HALTED) {
LOG_ERROR("%s: target not halted", __func__);
return ERROR_TARGET_INVALID;
}
*enabled = target_to_aarch64(target)->armv8_common.armv8_mmu.mmu_enabled;
return ERROR_OK;
}
static int aarch64_virt2phys(struct target *target, target_addr_t virt,
target_addr_t *phys)
{
return armv8_mmu_translate_va_pa(target, virt, phys, 1);
}
COMMAND_HANDLER(aarch64_handle_cache_info_command)
{
struct target *target = get_current_target(CMD_CTX);
struct armv8_common *armv8 = target_to_armv8(target);
return armv8_handle_cache_info_command(CMD_CTX,
&armv8->armv8_mmu.armv8_cache);
}
COMMAND_HANDLER(aarch64_handle_dbginit_command)
{
struct target *target = get_current_target(CMD_CTX);
if (!target_was_examined(target)) {
LOG_ERROR("target not examined yet");
return ERROR_FAIL;
}
return aarch64_init_debug_access(target);
}
COMMAND_HANDLER(aarch64_handle_smp_off_command)
{
struct target *target = get_current_target(CMD_CTX);
/* check target is an smp target */
struct target_list *head;
struct target *curr;
head = target->head;
target->smp = 0;
if (head != (struct target_list *)NULL) {
while (head != (struct target_list *)NULL) {
curr = head->target;
curr->smp = 0;
head = head->next;
}
/* fixes the target display to the debugger */
target->gdb_service->target = target;
}
return ERROR_OK;
}
COMMAND_HANDLER(aarch64_handle_smp_on_command)
{
struct target *target = get_current_target(CMD_CTX);
struct target_list *head;
struct target *curr;
head = target->head;
if (head != (struct target_list *)NULL) {
target->smp = 1;
while (head != (struct target_list *)NULL) {
curr = head->target;
curr->smp = 1;
head = head->next;
}
}
return ERROR_OK;
}
COMMAND_HANDLER(aarch64_handle_smp_gdb_command)
{
struct target *target = get_current_target(CMD_CTX);
int retval = ERROR_OK;
struct target_list *head;
head = target->head;
if (head != (struct target_list *)NULL) {
if (CMD_ARGC == 1) {
int coreid = 0;
COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
if (ERROR_OK != retval)
return retval;
target->gdb_service->core[1] = coreid;
}
command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
, target->gdb_service->core[1]);
}
return ERROR_OK;
}
static const struct command_registration aarch64_exec_command_handlers[] = {
{
.name = "cache_info",
.handler = aarch64_handle_cache_info_command,
.mode = COMMAND_EXEC,
.help = "display information about target caches",
.usage = "",
},
{
.name = "dbginit",
.handler = aarch64_handle_dbginit_command,
.mode = COMMAND_EXEC,
.help = "Initialize core debug",
.usage = "",
},
{ .name = "smp_off",
.handler = aarch64_handle_smp_off_command,
.mode = COMMAND_EXEC,
.help = "Stop smp handling",
.usage = "",
},
{
.name = "smp_on",
.handler = aarch64_handle_smp_on_command,
.mode = COMMAND_EXEC,
.help = "Restart smp handling",
.usage = "",
},
{
.name = "smp_gdb",
.handler = aarch64_handle_smp_gdb_command,
.mode = COMMAND_EXEC,
.help = "display/fix current core played to gdb",
.usage = "",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration aarch64_command_handlers[] = {
{
.chain = armv8_command_handlers,
},
{
.name = "cortex_a",
.mode = COMMAND_ANY,
.help = "Cortex-A command group",
.usage = "",
.chain = aarch64_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct target_type aarch64_target = {
.name = "aarch64",
.poll = aarch64_poll,
.arch_state = armv8_arch_state,
.halt = aarch64_halt,
.resume = aarch64_resume,
.step = aarch64_step,
.assert_reset = aarch64_assert_reset,
.deassert_reset = aarch64_deassert_reset,
/* REVISIT allow exporting VFP3 registers ... */
.get_gdb_reg_list = armv8_get_gdb_reg_list,
.read_memory = aarch64_read_memory,
.write_memory = aarch64_write_memory,
.checksum_memory = arm_checksum_memory,
.blank_check_memory = arm_blank_check_memory,
.run_algorithm = armv4_5_run_algorithm,
.add_breakpoint = aarch64_add_breakpoint,
.add_context_breakpoint = aarch64_add_context_breakpoint,
.add_hybrid_breakpoint = aarch64_add_hybrid_breakpoint,
.remove_breakpoint = aarch64_remove_breakpoint,
.add_watchpoint = NULL,
.remove_watchpoint = NULL,
.commands = aarch64_command_handlers,
.target_create = aarch64_target_create,
.init_target = aarch64_init_target,
.examine = aarch64_examine,
.read_phys_memory = aarch64_read_phys_memory,
.write_phys_memory = aarch64_write_phys_memory,
.mmu = aarch64_mmu,
.virt2phys = aarch64_virt2phys,
};