openocd/src/target/mips32.c
David Brownell 04b514707f target: remove unused "bitfield" infrastructure
We have too many different registers, and too many version and
context dependent interpretations, for this type of bitfield
management to be scalable.

(Anyone who really wants bitfield interpretation *can* do that
in Tcl code...)

There are ... quite a few copies of the same ARM dummy registers.
There should eventually be one copy; this many is craziness.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
2009-11-13 16:22:36 -08:00

465 lines
12 KiB
C

/***************************************************************************
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by David T.L. Wong *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mips32.h"
char* mips32_core_reg_list[] =
{
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra",
"status", "lo", "hi", "badvaddr", "cause", "pc"
};
struct mips32_core_reg mips32_core_reg_list_arch_info[MIPS32NUMCOREREGS] =
{
{0, NULL, NULL},
{1, NULL, NULL},
{2, NULL, NULL},
{3, NULL, NULL},
{4, NULL, NULL},
{5, NULL, NULL},
{6, NULL, NULL},
{7, NULL, NULL},
{8, NULL, NULL},
{9, NULL, NULL},
{10, NULL, NULL},
{11, NULL, NULL},
{12, NULL, NULL},
{13, NULL, NULL},
{14, NULL, NULL},
{15, NULL, NULL},
{16, NULL, NULL},
{17, NULL, NULL},
{18, NULL, NULL},
{19, NULL, NULL},
{20, NULL, NULL},
{21, NULL, NULL},
{22, NULL, NULL},
{23, NULL, NULL},
{24, NULL, NULL},
{25, NULL, NULL},
{26, NULL, NULL},
{27, NULL, NULL},
{28, NULL, NULL},
{29, NULL, NULL},
{30, NULL, NULL},
{31, NULL, NULL},
{32, NULL, NULL},
{33, NULL, NULL},
{34, NULL, NULL},
{35, NULL, NULL},
{36, NULL, NULL},
{37, NULL, NULL},
};
/* number of mips dummy fp regs fp0 - fp31 + fsr and fir
* we also add 18 unknown registers to handle gdb requests */
#define MIPS32NUMFPREGS 34 + 18
uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
struct reg mips32_gdb_dummy_fp_reg =
{
.name = "GDB dummy floating-point register",
.value = mips32_gdb_dummy_fp_value,
.dirty = 0,
.valid = 1,
.size = 32,
.arch_info = NULL,
.arch_type = 0,
};
int mips32_core_reg_arch_type = -1;
int mips32_get_core_reg(struct reg *reg)
{
int retval;
struct mips32_core_reg *mips32_reg = reg->arch_info;
struct target *target = mips32_reg->target;
struct mips32_common *mips32_target = target->arch_info;
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
retval = mips32_target->read_core_reg(target, mips32_reg->num);
return retval;
}
int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct mips32_core_reg *mips32_reg = reg->arch_info;
struct target *target = mips32_reg->target;
uint32_t value = buf_get_u32(buf, 0, 32);
if (target->state != TARGET_HALTED)
{
return ERROR_TARGET_NOT_HALTED;
}
buf_set_u32(reg->value, 0, 32, value);
reg->dirty = 1;
reg->valid = 1;
return ERROR_OK;
}
int mips32_read_core_reg(struct target *target, int num)
{
uint32_t reg_value;
struct mips32_core_reg *mips_core_reg;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
if ((num < 0) || (num >= MIPS32NUMCOREREGS))
return ERROR_INVALID_ARGUMENTS;
mips_core_reg = mips32->core_cache->reg_list[num].arch_info;
reg_value = mips32->core_regs[num];
buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
mips32->core_cache->reg_list[num].valid = 1;
mips32->core_cache->reg_list[num].dirty = 0;
return ERROR_OK;
}
int mips32_write_core_reg(struct target *target, int num)
{
uint32_t reg_value;
struct mips32_core_reg *mips_core_reg;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
if ((num < 0) || (num >= MIPS32NUMCOREREGS))
return ERROR_INVALID_ARGUMENTS;
reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
mips_core_reg = mips32->core_cache->reg_list[num].arch_info;
mips32->core_regs[num] = reg_value;
LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
mips32->core_cache->reg_list[num].valid = 1;
mips32->core_cache->reg_list[num].dirty = 0;
return ERROR_OK;
}
int mips32_invalidate_core_regs(struct target *target)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
int i;
for (i = 0; i < mips32->core_cache->num_regs; i++)
{
mips32->core_cache->reg_list[i].valid = 0;
mips32->core_cache->reg_list[i].dirty = 0;
}
return ERROR_OK;
}
int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[], int *reg_list_size)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
int i;
/* include floating point registers */
*reg_list_size = MIPS32NUMCOREREGS + MIPS32NUMFPREGS;
*reg_list = malloc(sizeof(struct reg*) * (*reg_list_size));
for (i = 0; i < MIPS32NUMCOREREGS; i++)
{
(*reg_list)[i] = &mips32->core_cache->reg_list[i];
}
/* add dummy floating points regs */
for (i = MIPS32NUMCOREREGS; i < (MIPS32NUMCOREREGS + MIPS32NUMFPREGS); i++)
{
(*reg_list)[i] = &mips32_gdb_dummy_fp_reg;
}
return ERROR_OK;
}
int mips32_save_context(struct target *target)
{
int i;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
/* read core registers */
mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
for (i = 0; i < MIPS32NUMCOREREGS; i++)
{
if (!mips32->core_cache->reg_list[i].valid)
{
mips32->read_core_reg(target, i);
}
}
return ERROR_OK;
}
int mips32_restore_context(struct target *target)
{
int i;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
for (i = 0; i < MIPS32NUMCOREREGS; i++)
{
if (mips32->core_cache->reg_list[i].dirty)
{
mips32->write_core_reg(target, i);
}
}
/* write core regs */
mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
return ERROR_OK;
}
int mips32_arch_state(struct target *target)
{
struct mips32_common *mips32 = target->arch_info;
if (mips32->common_magic != MIPS32_COMMON_MAGIC)
{
LOG_ERROR("BUG: called for a non-MIPS32 target");
exit(-1);
}
LOG_USER("target halted due to %s, pc: 0x%8.8" PRIx32 "",
Jim_Nvp_value2name_simple(nvp_target_debug_reason, target->debug_reason)->name ,
buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
return ERROR_OK;
}
struct reg_cache *mips32_build_reg_cache(struct target *target)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
int num_regs = MIPS32NUMCOREREGS;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = malloc(sizeof(struct reg) * num_regs);
struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
int i;
if (mips32_core_reg_arch_type == -1)
mips32_core_reg_arch_type = register_reg_arch_type(mips32_get_core_reg, mips32_set_core_reg);
register_init_dummy(&mips32_gdb_dummy_fp_reg);
/* Build the process context cache */
cache->name = "mips32 registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
mips32->core_cache = cache;
for (i = 0; i < num_regs; i++)
{
arch_info[i] = mips32_core_reg_list_arch_info[i];
arch_info[i].target = target;
arch_info[i].mips32_common = mips32;
reg_list[i].name = mips32_core_reg_list[i];
reg_list[i].size = 32;
reg_list[i].value = calloc(1, 4);
reg_list[i].dirty = 0;
reg_list[i].valid = 0;
reg_list[i].arch_type = mips32_core_reg_arch_type;
reg_list[i].arch_info = &arch_info[i];
}
return cache;
}
int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
{
target->arch_info = mips32;
mips32->common_magic = MIPS32_COMMON_MAGIC;
/* has breakpoint/watchpint unit been scanned */
mips32->bp_scanned = 0;
mips32->data_break_list = NULL;
mips32->ejtag_info.tap = tap;
mips32->read_core_reg = mips32_read_core_reg;
mips32->write_core_reg = mips32_write_core_reg;
return ERROR_OK;
}
int mips32_register_commands(struct command_context *cmd_ctx)
{
return ERROR_OK;
}
int mips32_run_algorithm(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
{
/*TODO*/
return ERROR_OK;
}
int mips32_examine(struct target *target)
{
struct mips32_common *mips32 = target->arch_info;
if (!target_was_examined(target))
{
target_set_examined(target);
/* we will configure later */
mips32->bp_scanned = 0;
mips32->num_inst_bpoints = 0;
mips32->num_data_bpoints = 0;
mips32->num_inst_bpoints_avail = 0;
mips32->num_data_bpoints_avail = 0;
}
return ERROR_OK;
}
int mips32_configure_break_unit(struct target *target)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target->arch_info;
int retval;
uint32_t dcr, bpinfo;
int i;
if (mips32->bp_scanned)
return ERROR_OK;
/* get info about breakpoint support */
if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
return retval;
if (dcr & (1 << 16))
{
/* get number of inst breakpoints */
if ((retval = target_read_u32(target, EJTAG_IBS, &bpinfo)) != ERROR_OK)
return retval;
mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
mips32->inst_break_list = calloc(mips32->num_inst_bpoints, sizeof(struct mips32_comparator));
for (i = 0; i < mips32->num_inst_bpoints; i++)
{
mips32->inst_break_list[i].reg_address = EJTAG_IBA1 + (0x100 * i);
}
/* clear IBIS reg */
if ((retval = target_write_u32(target, EJTAG_IBS, 0)) != ERROR_OK)
return retval;
}
if (dcr & (1 << 17))
{
/* get number of data breakpoints */
if ((retval = target_read_u32(target, EJTAG_DBS, &bpinfo)) != ERROR_OK)
return retval;
mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
mips32->data_break_list = calloc(mips32->num_data_bpoints, sizeof(struct mips32_comparator));
for (i = 0; i < mips32->num_data_bpoints; i++)
{
mips32->data_break_list[i].reg_address = EJTAG_DBA1 + (0x100 * i);
}
/* clear DBIS reg */
if ((retval = target_write_u32(target, EJTAG_DBS, 0)) != ERROR_OK)
return retval;
}
LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints, mips32->num_data_bpoints);
mips32->bp_scanned = 1;
return ERROR_OK;
}
int mips32_enable_interrupts(struct target *target, int enable)
{
int retval;
int update = 0;
uint32_t dcr;
/* read debug control register */
if ((retval = target_read_u32(target, EJTAG_DCR, &dcr)) != ERROR_OK)
return retval;
if (enable)
{
if (!(dcr & (1 << 4)))
{
/* enable interrupts */
dcr |= (1 << 4);
update = 1;
}
}
else
{
if (dcr & (1 << 4))
{
/* disable interrupts */
dcr &= ~(1 << 4);
update = 1;
}
}
if (update)
{
if ((retval = target_write_u32(target, EJTAG_DCR, dcr)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}