openocd/src/flash/nor/max32xxx.c

998 lines
30 KiB
C

/***************************************************************************
* Copyright (C) 2016 by Maxim Integrated *
* Kevin Gillespie <kevin.gillespie@maximintegrated.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <target/algorithm.h>
#include <target/armv7m.h>
/* Register Addresses */
#define FLSH_ADDR 0x000
#define FLSH_CLKDIV 0x004
#define FLSH_CN 0x008
#define PR1E_ADDR 0x00C
#define PR2S_ADDR 0x010
#define PR2E_ADDR 0x014
#define PR3S_ADDR 0x018
#define PR3E_ADDR 0x01C
#define FLSH_MD 0x020
#define FLSH_INT 0x024
#define FLSH_DATA0 0x030
#define FLSH_DATA1 0x034
#define FLSH_DATA2 0x038
#define FLSH_DATA3 0x03C
#define FLSH_BL_CTRL 0x170
#define FLSH_PROT 0x300
#define ARM_PID_REG 0xE00FFFE0
#define MAX326XX_ID_REG 0x40000838
/* Register settings */
#define FLSH_INT_AF 0x00000002
#define FLSH_CN_UNLOCK_MASK 0xF0000000
#define FLSH_CN_UNLOCK_VALUE 0x20000000
#define FLSH_CN_PEND 0x01000000
#define FLSH_CN_ERASE_CODE_MASK 0x0000FF00
#define FLSH_CN_ERASE_CODE_PGE 0x00005500
#define FLSH_CN_ERASE_CODE_ME 0x0000AA00
#define FLSH_CN_PGE 0x00000004
#define FLSH_CN_ME 0x00000002
#define FLSH_CN_WR 0x00000001
#define FLASH_BL_CTRL_23 0x00020000
#define FLASH_BL_CTRL_IFREN 0x00000001
#define ARM_PID_DEFAULT_CM3 0xB4C3
#define ARM_PID_DEFAULT_CM4 0xB4C4
#define MAX326XX_ID 0x4D
static int max32xxx_mass_erase(struct flash_bank *bank);
struct max32xxx_flash_bank {
int probed;
int max326xx;
unsigned int flash_size;
unsigned int flc_base;
unsigned int sector_size;
unsigned int clkdiv_value;
unsigned int int_state;
unsigned int burst_size_bits;
};
/* see contib/loaders/flash/max32xxx/max32xxx.s for src */
static const uint8_t write_code[] = {
#include "../../contrib/loaders/flash/max32xxx/max32xxx.inc"
};
/* Config Command: flash bank name driver base size chip_width bus_width target [driver_option]
flash bank max32xxx <base> <size> 0 0 <target> <FLC base> <sector size> <clkdiv> [burst_bits]
*/
FLASH_BANK_COMMAND_HANDLER(max32xxx_flash_bank_command)
{
struct max32xxx_flash_bank *info;
if (CMD_ARGC < 9) {
LOG_WARNING("incomplete flash bank max32xxx configuration: <base> <size> 0 0 <target> <FLC base> <sector size> <clkdiv> [burst_bits]");
return ERROR_FLASH_BANK_INVALID;
}
info = calloc(sizeof(struct max32xxx_flash_bank), 1);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], info->flash_size);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[6], info->flc_base);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[7], info->sector_size);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[8], info->clkdiv_value);
if (CMD_ARGC > 9)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[9], info->burst_size_bits);
else
info->burst_size_bits = 32;
info->int_state = 0;
bank->driver_priv = info;
return ERROR_OK;
}
static int get_info(struct flash_bank *bank, char *buf, int buf_size)
{
int printed;
struct max32xxx_flash_bank *info = bank->driver_priv;
if (info->probed == 0)
return ERROR_FLASH_BANK_NOT_PROBED;
printed = snprintf(buf, buf_size, "\nMaxim Integrated max32xxx flash driver\n");
buf += printed;
buf_size -= printed;
return ERROR_OK;
}
/***************************************************************************
* flash operations
***************************************************************************/
static int max32xxx_flash_op_pre(struct flash_bank *bank)
{
struct target *target = bank->target;
struct max32xxx_flash_bank *info = bank->driver_priv;
uint32_t flsh_cn;
uint32_t bootloader;
/* Check if the flash controller is busy */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
if (flsh_cn & (FLSH_CN_PEND | FLSH_CN_ERASE_CODE_MASK | FLSH_CN_PGE |
FLSH_CN_ME | FLSH_CN_WR))
return ERROR_FLASH_BUSY;
/* Refresh flash controller timing */
target_write_u32(target, info->flc_base + FLSH_CLKDIV, info->clkdiv_value);
/* Clear and disable flash programming interrupts */
target_read_u32(target, info->flc_base + FLSH_INT, &info->int_state);
target_write_u32(target, info->flc_base + FLSH_INT, 0x00000000);
/* Clear the lower bit in the bootloader configuration register in case flash page 0 has been replaced */
if (target_read_u32(target, info->flc_base + FLSH_BL_CTRL, &bootloader) != ERROR_OK) {
LOG_ERROR("Read failure on FLSH_BL_CTRL");
return ERROR_FAIL;
}
if (bootloader & FLASH_BL_CTRL_23) {
LOG_WARNING("FLSH_BL_CTRL indicates BL mode 2 or mode 3.");
if (bootloader & FLASH_BL_CTRL_IFREN) {
LOG_WARNING("Flash page 0 swapped out, attempting to swap back in for programming");
bootloader &= ~(FLASH_BL_CTRL_IFREN);
if (target_write_u32(target, info->flc_base + FLSH_BL_CTRL, bootloader) != ERROR_OK) {
LOG_ERROR("Write failure on FLSH_BL_CTRL");
return ERROR_FAIL;
}
if (target_read_u32(target, info->flc_base + FLSH_BL_CTRL, &bootloader) != ERROR_OK) {
LOG_ERROR("Read failure on FLSH_BL_CTRL");
return ERROR_FAIL;
}
if (bootloader & FLASH_BL_CTRL_IFREN) {
/* Bummer */
LOG_ERROR("Unable to swap flash page 0 back in. Writes to page 0 will fail.");
}
}
}
/* Unlock flash */
flsh_cn &= ~FLSH_CN_UNLOCK_MASK;
flsh_cn |= FLSH_CN_UNLOCK_VALUE;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Confirm flash is unlocked */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
if ((flsh_cn & FLSH_CN_UNLOCK_VALUE) != FLSH_CN_UNLOCK_VALUE)
return ERROR_FAIL;
return ERROR_OK;
}
static int max32xxx_flash_op_post(struct flash_bank *bank)
{
struct target *target = bank->target;
struct max32xxx_flash_bank *info = bank->driver_priv;
uint32_t flsh_cn;
/* Restore flash programming interrupts */
target_write_u32(target, info->flc_base + FLSH_INT, info->int_state);
/* Lock flash */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn &= ~FLSH_CN_UNLOCK_MASK;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
return ERROR_OK;
}
static int max32xxx_protect_check(struct flash_bank *bank)
{
struct max32xxx_flash_bank *info = bank->driver_priv;
struct target *target = bank->target;
int i;
uint32_t temp_reg;
if (info->probed == 0)
return ERROR_FLASH_BANK_NOT_PROBED;
if (!info->max326xx) {
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = -1;
return ERROR_FLASH_OPER_UNSUPPORTED;
}
/* Check the protection */
for (i = 0; i < bank->num_sectors; i++) {
if (i%32 == 0)
target_read_u32(target, info->flc_base + FLSH_PROT + ((i/32)*4), &temp_reg);
if (temp_reg & (0x1 << i%32))
bank->sectors[i].is_protected = 1;
else
bank->sectors[i].is_protected = 0;
}
return ERROR_OK;
}
static int max32xxx_erase(struct flash_bank *bank, int first, int last)
{
int banknr;
uint32_t flsh_cn, flsh_int;
struct max32xxx_flash_bank *info = bank->driver_priv;
struct target *target = bank->target;
int retval;
int retry;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (info->probed == 0)
return ERROR_FLASH_BANK_NOT_PROBED;
if ((first < 0) || (last < first) || (last >= bank->num_sectors))
return ERROR_FLASH_SECTOR_INVALID;
if ((first == 0) && (last == (bank->num_sectors - 1)))
return max32xxx_mass_erase(bank);
/* Prepare to issue flash operation */
retval = max32xxx_flash_op_pre(bank);
if (retval != ERROR_OK)
return retval;
int erased = 0;
for (banknr = first; banknr <= last; banknr++) {
/* Check the protection */
if (bank->sectors[banknr].is_protected == 1) {
LOG_WARNING("Flash sector %d is protected", banknr);
continue;
} else
erased = 1;
/* Address is first word in page */
target_write_u32(target, info->flc_base + FLSH_ADDR, banknr * info->sector_size);
/* Write page erase code */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn |= FLSH_CN_ERASE_CODE_PGE;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Issue page erase command */
flsh_cn |= 0x4;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Wait until erase complete */
retry = 1000;
do {
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
} while ((--retry > 0) && (flsh_cn & FLSH_CN_PEND));
if (retry <= 0) {
LOG_ERROR("Timed out waiting for flash page erase @ 0x%08x",
banknr * info->sector_size);
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check access violations */
target_read_u32(target, info->flc_base + FLSH_INT, &flsh_int);
if (flsh_int & FLSH_INT_AF) {
LOG_ERROR("Error erasing flash page %i", banknr);
target_write_u32(target, info->flc_base + FLSH_INT, 0);
max32xxx_flash_op_post(bank);
return ERROR_FLASH_OPERATION_FAILED;
}
bank->sectors[banknr].is_erased = 1;
}
if (!erased) {
LOG_ERROR("All pages protected %d to %d", first, last);
max32xxx_flash_op_post(bank);
return ERROR_FAIL;
}
if (max32xxx_flash_op_post(bank) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int max32xxx_protect(struct flash_bank *bank, int set, int first, int last)
{
struct max32xxx_flash_bank *info = bank->driver_priv;
struct target *target = bank->target;
int page;
uint32_t temp_reg;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (info->probed == 0)
return ERROR_FLASH_BANK_NOT_PROBED;
if (!info->max326xx)
return ERROR_FLASH_OPER_UNSUPPORTED;
if ((first < 0) || (last < first) || (last >= bank->num_sectors))
return ERROR_FLASH_SECTOR_INVALID;
/* Setup the protection on the pages given */
for (page = first; page <= last; page++) {
if (set) {
/* Set the write/erase bit for this page */
target_read_u32(target, info->flc_base + FLSH_PROT + (page/32), &temp_reg);
temp_reg |= (0x1 << page%32);
target_write_u32(target, info->flc_base + FLSH_PROT + (page/32), temp_reg);
bank->sectors[page].is_protected = 1;
} else {
/* Clear the write/erase bit for this page */
target_read_u32(target, info->flc_base + FLSH_PROT + (page/32), &temp_reg);
temp_reg &= ~(0x1 << page%32);
target_write_u32(target, info->flc_base + FLSH_PROT + (page/32), temp_reg);
bank->sectors[page].is_protected = 0;
}
}
return ERROR_OK;
}
static int max32xxx_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t wcount)
{
struct max32xxx_flash_bank *info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size = 16384;
struct working_area *source;
struct working_area *write_algorithm;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
/* power of two, and multiple of word size */
static const unsigned buf_min = 128;
/* for small buffers it's faster not to download an algorithm */
if (wcount * 4 < buf_min)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
LOG_DEBUG("(bank=%p buffer=%p offset=%08" PRIx32 " wcount=%08" PRIx32 "",
bank, buffer, offset, wcount);
/* flash write code */
if (target_alloc_working_area(target, sizeof(write_code), &write_algorithm) != ERROR_OK) {
LOG_DEBUG("no working area for block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
/* plus a buffer big enough for this data */
if (wcount * 4 < buffer_size)
buffer_size = wcount * 4;
/* memory buffer */
while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
buffer_size /= 2;
if (buffer_size <= buf_min) {
target_free_working_area(target, write_algorithm);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
LOG_DEBUG("retry target_alloc_working_area(%s, size=%u)",
target_name(target), (unsigned) buffer_size);
}
target_write_buffer(target, write_algorithm->address, sizeof(write_code),
write_code);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, wcount);
buf_set_u32(reg_params[4].value, 0, 32, info->flc_base);
retval = target_run_flash_async_algorithm(target, buffer, wcount, 4, 0, NULL,
5, reg_params, source->address, source->size, write_algorithm->address, 0, &armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED)
LOG_ERROR("error %d executing max32xxx flash write algorithm", retval);
target_free_working_area(target, write_algorithm);
target_free_working_area(target, source);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
static int max32xxx_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct max32xxx_flash_bank *info = bank->driver_priv;
struct target *target = bank->target;
uint32_t flsh_cn, flsh_int;
uint32_t address = offset;
uint32_t remaining = count;
uint32_t words_remaining;
int retval;
int retry;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
LOG_DEBUG("bank=%p buffer=%p offset=%08" PRIx32 " count=%08" PRIx32 "",
bank, buffer, offset, count);
if (info->probed == 0)
return ERROR_FLASH_BANK_NOT_PROBED;
if (offset & 0x3) {
LOG_WARNING("offset size must be word aligned");
return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
}
if (offset + count > bank->size)
return ERROR_FLASH_DST_OUT_OF_BANK;
/* Prepare to issue flash operation */
retval = max32xxx_flash_op_pre(bank);
if (retval != ERROR_OK)
return retval;
if (remaining >= 4) {
/* write in 32-bit units */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn &= 0xF7FFFFFF;
flsh_cn |= 0x00000010;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* try using a block write */
words_remaining = remaining / 4;
retval = max32xxx_write_block(bank, buffer, offset, words_remaining);
if (retval != ERROR_OK) {
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
LOG_DEBUG("writing flash word-at-a-time");
else {
max32xxx_flash_op_post(bank);
return ERROR_FLASH_OPERATION_FAILED;
}
} else {
/* all 32-bit words have been written */
buffer += words_remaining * 4;
address += words_remaining * 4;
remaining -= words_remaining * 4;
}
}
if ((remaining >= 4) && ((address & 0x1F) != 0)) {
/* write in 32-bit units until we are 128-bit aligned */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn &= 0xF7FFFFFF;
flsh_cn |= 0x00000010;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
while ((remaining >= 4) && ((address & 0x1F) != 0)) {
target_write_u32(target, info->flc_base + FLSH_ADDR, address);
target_write_buffer(target, info->flc_base + FLSH_DATA0, 4, buffer);
flsh_cn |= 0x00000001;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Wait until flash operation is complete */
retry = 10;
do {
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
} while ((--retry > 0) && (flsh_cn & FLSH_CN_PEND));
if (retry <= 0) {
LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
return ERROR_FLASH_OPERATION_FAILED;
}
buffer += 4;
address += 4;
remaining -= 4;
}
}
if ((info->burst_size_bits == 128) && (remaining >= 16)) {
/* write in 128-bit bursts while we can */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn &= 0xFFFFFFEF;
flsh_cn |= 0x08000000;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
target_write_u32(target, info->flc_base + FLSH_ADDR, address);
while (remaining >= 16) {
if ((address & 0xFFF) == 0)
LOG_DEBUG("Writing @ 0x%08x", address);
target_write_buffer(target, info->flc_base + FLSH_DATA0, 16, buffer);
flsh_cn |= 0x00000001;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Wait until flash operation is complete */
retry = 10;
do {
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
} while ((--retry > 0) && (flsh_cn & FLSH_CN_PEND));
if (retry <= 0) {
LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
return ERROR_FLASH_OPERATION_FAILED;
}
buffer += 16;
address += 16;
remaining -= 16;
}
}
if (remaining >= 4) {
/* write in 32-bit units while we can */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn &= 0xF7FFFFFF;
flsh_cn |= 0x00000010;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
while (remaining >= 4) {
target_write_u32(target, info->flc_base + FLSH_ADDR, address);
target_write_buffer(target, info->flc_base + FLSH_DATA0, 4, buffer);
flsh_cn |= 0x00000001;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Wait until flash operation is complete */
retry = 10;
do {
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
} while ((--retry > 0) && (flsh_cn & FLSH_CN_PEND));
if (retry <= 0) {
LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
return ERROR_FLASH_OPERATION_FAILED;
}
buffer += 4;
address += 4;
remaining -= 4;
}
}
if (remaining > 0) {
/* write remaining bytes in a 32-bit unit */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn &= 0xF7FFFFFF;
flsh_cn |= 0x00000010;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
uint8_t last_word[4] = {0xff, 0xff, 0xff, 0xff};
int i = 0;
while (remaining > 0) {
last_word[i++] = *buffer;
buffer++;
remaining--;
}
target_write_u32(target, info->flc_base + FLSH_ADDR, address);
target_write_buffer(target, info->flc_base + FLSH_DATA0, 4, last_word);
flsh_cn |= 0x00000001;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Wait until flash operation is complete */
retry = 10;
do {
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
} while ((--retry > 0) && (flsh_cn & FLSH_CN_PEND));
if (retry <= 0) {
LOG_ERROR("Timed out waiting for flash write @ 0x%08x", address);
return ERROR_FLASH_OPERATION_FAILED;
}
}
/* Check access violations */
target_read_u32(target, info->flc_base + FLSH_INT, &flsh_int);
if (flsh_int & FLSH_INT_AF) {
LOG_ERROR("Flash Error writing 0x%x bytes at 0x%08x", count, offset);
max32xxx_flash_op_post(bank);
return ERROR_FLASH_OPERATION_FAILED;
}
if (max32xxx_flash_op_post(bank) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
static int max32xxx_probe(struct flash_bank *bank)
{
struct max32xxx_flash_bank *info = bank->driver_priv;
struct target *target = bank->target;
uint32_t arm_id[2];
uint16_t arm_pid;
if (bank->sectors) {
free(bank->sectors);
bank->sectors = NULL;
}
/* provide this for the benefit of the NOR flash framework */
bank->size = info->flash_size;
bank->num_sectors = info->flash_size / info->sector_size;
bank->sectors = calloc(bank->num_sectors, sizeof(struct flash_sector));
for (int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = i * info->sector_size;
bank->sectors[i].size = info->sector_size;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = -1;
}
/* Probe to determine if this part is in the max326xx family */
info->max326xx = 0;
target_read_u32(target, ARM_PID_REG, &arm_id[0]);
target_read_u32(target, ARM_PID_REG+4, &arm_id[1]);
arm_pid = (arm_id[1] << 8) + arm_id[0];
LOG_DEBUG("arm_pid = 0x%x", arm_pid);
if ((arm_pid == ARM_PID_DEFAULT_CM3) || arm_pid == ARM_PID_DEFAULT_CM4) {
uint32_t max326xx_id;
target_read_u32(target, MAX326XX_ID_REG, &max326xx_id);
LOG_DEBUG("max326xx_id = 0x%x", max326xx_id);
max326xx_id = ((max326xx_id & 0xFF000000) >> 24);
if (max326xx_id == MAX326XX_ID)
info->max326xx = 1;
}
LOG_DEBUG("info->max326xx = %d", info->max326xx);
/* Initialize the protection bits for each flash page */
if (max32xxx_protect_check(bank) == ERROR_FLASH_OPER_UNSUPPORTED)
LOG_WARNING("Flash protection not supported on this device");
info->probed = 1;
return ERROR_OK;
}
static int max32xxx_mass_erase(struct flash_bank *bank)
{
struct target *target = NULL;
struct max32xxx_flash_bank *info = NULL;
uint32_t flsh_cn, flsh_int;
int retval;
int retry;
info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (info->probed == 0)
return ERROR_FLASH_BANK_NOT_PROBED;
int not_protected = 0;
for (int i = 0; i < bank->num_sectors; i++) {
if (bank->sectors[i].is_protected == 1)
LOG_WARNING("Flash sector %d is protected", i);
else
not_protected = 1;
}
if (!not_protected) {
LOG_ERROR("All pages protected");
return ERROR_FAIL;
}
/* Prepare to issue flash operation */
retval = max32xxx_flash_op_pre(bank);
if (retval != ERROR_OK)
return retval;
/* Write mass erase code */
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
flsh_cn |= FLSH_CN_ERASE_CODE_ME;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Issue mass erase command */
flsh_cn |= 0x2;
target_write_u32(target, info->flc_base + FLSH_CN, flsh_cn);
/* Wait until erase complete */
retry = 1000;
do {
target_read_u32(target, info->flc_base + FLSH_CN, &flsh_cn);
} while ((--retry > 0) && (flsh_cn & FLSH_CN_PEND));
if (retry <= 0) {
LOG_ERROR("Timed out waiting for flash mass erase");
return ERROR_FLASH_OPERATION_FAILED;
}
/* Check access violations */
target_read_u32(target, info->flc_base + FLSH_INT, &flsh_int);
if (flsh_int & FLSH_INT_AF) {
LOG_ERROR("Error mass erasing");
target_write_u32(target, info->flc_base + FLSH_INT, 0);
return ERROR_FLASH_OPERATION_FAILED;
}
if (max32xxx_flash_op_post(bank) != ERROR_OK)
return ERROR_FAIL;
return ERROR_OK;
}
COMMAND_HANDLER(max32xxx_handle_mass_erase_command)
{
int i;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (CMD_ARGC < 1) {
command_print(CMD_CTX, "max32xxx mass_erase <bank>");
return ERROR_OK;
}
if (ERROR_OK != retval)
return retval;
if (max32xxx_mass_erase(bank) == ERROR_OK) {
/* set all sectors as erased */
for (i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_erased = 1;
command_print(CMD_CTX, "max32xxx mass erase complete");
} else
command_print(CMD_CTX, "max32xxx mass erase failed");
return ERROR_OK;
}
COMMAND_HANDLER(max32xxx_handle_protection_set_command)
{
struct flash_bank *bank;
int retval;
struct max32xxx_flash_bank *info;
uint32_t addr, len;
if (CMD_ARGC != 3) {
command_print(CMD_CTX, "max32xxx protection_set <bank> <addr> <size>");
return ERROR_OK;
}
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
info = bank->driver_priv;
/* Convert the range to the page numbers */
if (1 != sscanf(CMD_ARGV[1], "0x%"SCNx32, &addr)) {
LOG_WARNING("Error parsing address");
command_print(CMD_CTX, "max32xxx protection_set <bank> <addr> <size>");
return ERROR_FAIL;
}
/* Mask off the top portion on the address */
addr = (addr & 0x0FFFFFFF);
if (1 != sscanf(CMD_ARGV[2], "0x%"SCNx32, &len)) {
LOG_WARNING("Error parsing length");
command_print(CMD_CTX, "max32xxx protection_set <bank> <addr> <size>");
return ERROR_FAIL;
}
/* Check the address is in the range of the flash */
if ((addr+len) >= info->flash_size)
return ERROR_FLASH_SECTOR_INVALID;
if (len == 0)
return ERROR_OK;
/* Convert the address and length to the page boundaries */
addr = addr - (addr % info->sector_size);
if (len % info->sector_size)
len = len + info->sector_size - (len % info->sector_size);
/* Convert the address and length to page numbers */
addr = (addr / info->sector_size);
len = addr + (len / info->sector_size) - 1;
if (max32xxx_protect(bank, 1, addr, len) == ERROR_OK)
command_print(CMD_CTX, "max32xxx protection set complete");
else
command_print(CMD_CTX, "max32xxx protection set failed");
return ERROR_OK;
}
COMMAND_HANDLER(max32xxx_handle_protection_clr_command)
{
struct flash_bank *bank;
int retval;
struct max32xxx_flash_bank *info;
uint32_t addr, len;
if (CMD_ARGC != 3) {
command_print(CMD_CTX, "max32xxx protection_clr <bank> <addr> <size>");
return ERROR_OK;
}
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
info = bank->driver_priv;
/* Convert the range to the page numbers */
if (1 != sscanf(CMD_ARGV[1], "0x%"SCNx32, &addr)) {
LOG_WARNING("Error parsing address");
command_print(CMD_CTX, "max32xxx protection_clr <bank> <addr> <size>");
return ERROR_FAIL;
}
/* Mask off the top portion on the address */
addr = (addr & 0x0FFFFFFF);
if (1 != sscanf(CMD_ARGV[2], "0x%"SCNx32, &len)) {
LOG_WARNING("Error parsing length");
command_print(CMD_CTX, "max32xxx protection_clr <bank> <addr> <size>");
return ERROR_FAIL;
}
/* Check the address is in the range of the flash */
if ((addr+len) >= info->flash_size)
return ERROR_FLASH_SECTOR_INVALID;
if (len == 0)
return ERROR_OK;
/* Convert the address and length to the page boundaries */
addr = addr - (addr % info->sector_size);
if (len % info->sector_size)
len = len + info->sector_size - (len % info->sector_size);
/* Convert the address and length to page numbers */
addr = (addr / info->sector_size);
len = addr + (len / info->sector_size) - 1;
if (max32xxx_protect(bank, 0, addr, len) == ERROR_OK)
command_print(CMD_CTX, "max32xxx protection clear complete");
else
command_print(CMD_CTX, "max32xxx protection clear failed");
return ERROR_OK;
}
COMMAND_HANDLER(max32xxx_handle_protection_check_command)
{
struct flash_bank *bank;
int retval;
struct max32xxx_flash_bank *info;
int i;
if (CMD_ARGC < 1) {
command_print(CMD_CTX, "max32xxx protection_check <bank>");
return ERROR_OK;
}
retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (ERROR_OK != retval)
return retval;
info = bank->driver_priv;
/* Update the protection array */
retval = max32xxx_protect_check(bank);
if (ERROR_OK != retval) {
LOG_WARNING("Error updating the protection array");
return retval;
}
LOG_WARNING("s:<sector number> a:<address> p:<protection bit>");
for (i = 0; i < bank->num_sectors; i += 4) {
LOG_WARNING("s:%03d a:0x%06x p:%d | s:%03d a:0x%06x p:%d | s:%03d a:0x%06x p:%d | s:%03d a:0x%06x p:%d",
(i+0), (i+0)*info->sector_size, bank->sectors[(i+0)].is_protected,
(i+1), (i+1)*info->sector_size, bank->sectors[(i+1)].is_protected,
(i+2), (i+2)*info->sector_size, bank->sectors[(i+2)].is_protected,
(i+3), (i+3)*info->sector_size, bank->sectors[(i+3)].is_protected);
}
return ERROR_OK;
}
static const struct command_registration max32xxx_exec_command_handlers[] = {
{
.name = "mass_erase",
.handler = max32xxx_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "mass erase flash",
},
{
.name = "protection_set",
.handler = max32xxx_handle_protection_set_command,
.mode = COMMAND_EXEC,
.usage = "bank_id addr size",
.help = "set flash protection for address range",
},
{
.name = "protection_clr",
.handler = max32xxx_handle_protection_clr_command,
.mode = COMMAND_EXEC,
.usage = "bank_id addr size",
.help = "clear flash protection for address range",
},
{
.name = "protection_check",
.handler = max32xxx_handle_protection_check_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "check flash protection",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration max32xxx_command_handlers[] = {
{
.name = "max32xxx",
.mode = COMMAND_EXEC,
.help = "max32xxx flash command group",
.chain = max32xxx_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
struct flash_driver max32xxx_flash = {
.name = "max32xxx",
.commands = max32xxx_command_handlers,
.flash_bank_command = max32xxx_flash_bank_command,
.erase = max32xxx_erase,
.protect = max32xxx_protect,
.write = max32xxx_write,
.read = default_flash_read,
.probe = max32xxx_probe,
.auto_probe = max32xxx_probe,
.erase_check = default_flash_blank_check,
.protect_check = max32xxx_protect_check,
.info = get_info,
};