openocd/src/target/target.c

2674 lines
65 KiB
C

/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "replacements.h"
#include "target.h"
#include "target_request.h"
#include "log.h"
#include "configuration.h"
#include "binarybuffer.h"
#include "jtag.h"
#include <string.h>
#include <stdlib.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <errno.h>
#include <sys/time.h>
#include <time.h>
#include <time_support.h>
#include <fileio.h>
#include <image.h>
int cli_target_callback_event_handler(struct target_s *target, enum target_event event, void *priv);
int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
/* targets
*/
extern target_type_t arm7tdmi_target;
extern target_type_t arm720t_target;
extern target_type_t arm9tdmi_target;
extern target_type_t arm920t_target;
extern target_type_t arm966e_target;
extern target_type_t arm926ejs_target;
extern target_type_t feroceon_target;
extern target_type_t xscale_target;
extern target_type_t cortexm3_target;
extern target_type_t arm11_target;
target_type_t *target_types[] =
{
&arm7tdmi_target,
&arm9tdmi_target,
&arm920t_target,
&arm720t_target,
&arm966e_target,
&arm926ejs_target,
&feroceon_target,
&xscale_target,
&cortexm3_target,
&arm11_target,
NULL,
};
target_t *targets = NULL;
target_event_callback_t *target_event_callbacks = NULL;
target_timer_callback_t *target_timer_callbacks = NULL;
char *target_state_strings[] =
{
"unknown",
"running",
"halted",
"reset",
"debug_running",
};
char *target_debug_reason_strings[] =
{
"debug request", "breakpoint", "watchpoint",
"watchpoint and breakpoint", "single step",
"target not halted", "undefined"
};
char *target_endianess_strings[] =
{
"big endian",
"little endian",
};
static int target_continous_poll = 1;
/* read a u32 from a buffer in target memory endianness */
u32 target_buffer_get_u32(target_t *target, u8 *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u32(buffer);
else
return be_to_h_u32(buffer);
}
/* read a u16 from a buffer in target memory endianness */
u16 target_buffer_get_u16(target_t *target, u8 *buffer)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
return le_to_h_u16(buffer);
else
return be_to_h_u16(buffer);
}
/* write a u32 to a buffer in target memory endianness */
void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u32_to_le(buffer, value);
else
h_u32_to_be(buffer, value);
}
/* write a u16 to a buffer in target memory endianness */
void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
{
if (target->endianness == TARGET_LITTLE_ENDIAN)
h_u16_to_le(buffer, value);
else
h_u16_to_be(buffer, value);
}
/* returns a pointer to the n-th configured target */
target_t* get_target_by_num(int num)
{
target_t *target = targets;
int i = 0;
while (target)
{
if (num == i)
return target;
target = target->next;
i++;
}
return NULL;
}
int get_num_by_target(target_t *query_target)
{
target_t *target = targets;
int i = 0;
while (target)
{
if (target == query_target)
return i;
target = target->next;
i++;
}
return -1;
}
target_t* get_current_target(command_context_t *cmd_ctx)
{
target_t *target = get_target_by_num(cmd_ctx->current_target);
if (target == NULL)
{
LOG_ERROR("BUG: current_target out of bounds");
exit(-1);
}
return target;
}
/* Process target initialization, when target entered debug out of reset
* the handler is unregistered at the end of this function, so it's only called once
*/
int target_init_handler(struct target_s *target, enum target_event event, void *priv)
{
struct command_context_s *cmd_ctx = priv;
if (event == TARGET_EVENT_HALTED)
{
target_unregister_event_callback(target_init_handler, priv);
target_invoke_script(cmd_ctx, target, "reset");
jtag_execute_queue();
}
return ERROR_OK;
}
int target_run_and_halt_handler(void *priv)
{
target_t *target = priv;
target_halt(target);
return ERROR_OK;
}
int target_poll(struct target_s *target)
{
/* We can't poll until after examine */
if (!target->type->examined)
{
/* Fail silently lest we pollute the log */
return ERROR_FAIL;
}
return target->type->poll(target);
}
int target_halt(struct target_s *target)
{
/* We can't poll until after examine */
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->halt(target);
}
int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
{
/* We can't poll until after examine */
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->resume(target, current, address, handle_breakpoints, debug_execution);
}
int target_process_reset(struct command_context_s *cmd_ctx)
{
int retval = ERROR_OK;
target_t *target;
struct timeval timeout, now;
jtag->speed(jtag_speed);
target = targets;
while (target)
{
target_invoke_script(cmd_ctx, target, "pre_reset");
target = target->next;
}
if ((retval = jtag_init_reset(cmd_ctx)) != ERROR_OK)
return retval;
/* First time this is executed after launching OpenOCD, it will read out
* the type of CPU, etc. and init Embedded ICE registers in host
* memory.
*
* It will also set up ICE registers in the target.
*
* However, if we assert TRST later, we need to set up the registers again.
*
* For the "reset halt/init" case we must only set up the registers here.
*/
if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
return retval;
/* prepare reset_halt where necessary */
target = targets;
while (target)
{
if (jtag_reset_config & RESET_SRST_PULLS_TRST)
{
switch (target->reset_mode)
{
case RESET_HALT:
command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_halt\"");
target->reset_mode = RESET_RUN_AND_HALT;
break;
case RESET_INIT:
command_print(cmd_ctx, "nSRST pulls nTRST, falling back to \"reset run_and_init\"");
target->reset_mode = RESET_RUN_AND_INIT;
break;
default:
break;
}
}
target = target->next;
}
target = targets;
while (target)
{
/* we have no idea what state the target is in, so we
* have to drop working areas
*/
target_free_all_working_areas_restore(target, 0);
target->type->assert_reset(target);
target = target->next;
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_WARNING("JTAG communication failed asserting reset.");
retval = ERROR_OK;
}
/* request target halt if necessary, and schedule further action */
target = targets;
while (target)
{
switch (target->reset_mode)
{
case RESET_RUN:
/* nothing to do if target just wants to be run */
break;
case RESET_RUN_AND_HALT:
/* schedule halt */
target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
break;
case RESET_RUN_AND_INIT:
/* schedule halt */
target_register_timer_callback(target_run_and_halt_handler, target->run_and_halt_time, 0, target);
target_register_event_callback(target_init_handler, cmd_ctx);
break;
case RESET_HALT:
target_halt(target);
break;
case RESET_INIT:
target_halt(target);
target_register_event_callback(target_init_handler, cmd_ctx);
break;
default:
LOG_ERROR("BUG: unknown target->reset_mode");
}
target = target->next;
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_WARNING("JTAG communication failed while reset was asserted. Consider using srst_only for reset_config.");
retval = ERROR_OK;
}
target = targets;
while (target)
{
target->type->deassert_reset(target);
target = target->next;
}
if ((retval = jtag_execute_queue()) != ERROR_OK)
{
LOG_WARNING("JTAG communication failed while deasserting reset.");
retval = ERROR_OK;
}
if (jtag_reset_config & RESET_SRST_PULLS_TRST)
{
/* If TRST was asserted we need to set up registers again */
if ((retval = target_examine(cmd_ctx)) != ERROR_OK)
return retval;
}
LOG_DEBUG("Waiting for halted stated as approperiate");
/* Wait for reset to complete, maximum 5 seconds. */
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, 5, 0);
for(;;)
{
gettimeofday(&now, NULL);
target_call_timer_callbacks_now();
target = targets;
while (target)
{
LOG_DEBUG("Polling target");
target_poll(target);
if ((target->reset_mode == RESET_RUN_AND_INIT) ||
(target->reset_mode == RESET_RUN_AND_HALT) ||
(target->reset_mode == RESET_HALT) ||
(target->reset_mode == RESET_INIT))
{
if (target->state != TARGET_HALTED)
{
if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
{
LOG_USER("Timed out waiting for halt after reset");
goto done;
}
/* this will send alive messages on e.g. GDB remote protocol. */
usleep(500*1000);
LOG_USER_N("%s", ""); /* avoid warning about zero length formatting message*/
goto again;
}
}
target = target->next;
}
/* All targets we're waiting for are halted */
break;
again:;
}
done:
/* We want any events to be processed before the prompt */
target_call_timer_callbacks_now();
/* if we timed out we need to unregister these handlers */
target = targets;
while (target)
{
target_unregister_timer_callback(target_run_and_halt_handler, target);
target = target->next;
}
target_unregister_event_callback(target_init_handler, cmd_ctx);
jtag->speed(jtag_speed_post_reset);
return retval;
}
static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
{
*physical = virtual;
return ERROR_OK;
}
static int default_mmu(struct target_s *target, int *enabled)
{
*enabled = 0;
return ERROR_OK;
}
static int default_examine(struct command_context_s *cmd_ctx, struct target_s *target)
{
target->type->examined = 1;
return ERROR_OK;
}
/* Targets that correctly implement init+examine, i.e.
* no communication with target during init:
*
* XScale
*/
int target_examine(struct command_context_s *cmd_ctx)
{
int retval = ERROR_OK;
target_t *target = targets;
while (target)
{
if ((retval = target->type->examine(cmd_ctx, target))!=ERROR_OK)
return retval;
target = target->next;
}
return retval;
}
static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
{
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->write_memory_imp(target, address, size, count, buffer);
}
static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
{
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->read_memory_imp(target, address, size, count, buffer);
}
static int target_soft_reset_halt_imp(struct target_s *target)
{
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->soft_reset_halt_imp(target);
}
static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
{
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
}
int target_init(struct command_context_s *cmd_ctx)
{
target_t *target = targets;
while (target)
{
target->type->examined = 0;
if (target->type->examine == NULL)
{
target->type->examine = default_examine;
}
if (target->type->init_target(cmd_ctx, target) != ERROR_OK)
{
LOG_ERROR("target '%s' init failed", target->type->name);
exit(-1);
}
/* Set up default functions if none are provided by target */
if (target->type->virt2phys == NULL)
{
target->type->virt2phys = default_virt2phys;
}
target->type->virt2phys = default_virt2phys;
/* a non-invasive way(in terms of patches) to add some code that
* runs before the type->write/read_memory implementation
*/
target->type->write_memory_imp = target->type->write_memory;
target->type->write_memory = target_write_memory_imp;
target->type->read_memory_imp = target->type->read_memory;
target->type->read_memory = target_read_memory_imp;
target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
target->type->soft_reset_halt = target_soft_reset_halt_imp;
target->type->run_algorithm_imp = target->type->run_algorithm;
target->type->run_algorithm = target_run_algorithm_imp;
if (target->type->mmu == NULL)
{
target->type->mmu = default_mmu;
}
target = target->next;
}
if (targets)
{
target_register_user_commands(cmd_ctx);
target_register_timer_callback(handle_target, 100, 1, NULL);
}
return ERROR_OK;
}
int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
{
target_event_callback_t **callbacks_p = &target_event_callbacks;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
(*callbacks_p) = malloc(sizeof(target_event_callback_t));
(*callbacks_p)->callback = callback;
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
return ERROR_OK;
}
int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
{
target_timer_callback_t **callbacks_p = &target_timer_callbacks;
struct timeval now;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
if (*callbacks_p)
{
while ((*callbacks_p)->next)
callbacks_p = &((*callbacks_p)->next);
callbacks_p = &((*callbacks_p)->next);
}
(*callbacks_p) = malloc(sizeof(target_timer_callback_t));
(*callbacks_p)->callback = callback;
(*callbacks_p)->periodic = periodic;
(*callbacks_p)->time_ms = time_ms;
gettimeofday(&now, NULL);
(*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
time_ms -= (time_ms % 1000);
(*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
if ((*callbacks_p)->when.tv_usec > 1000000)
{
(*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
(*callbacks_p)->when.tv_sec += 1;
}
(*callbacks_p)->priv = priv;
(*callbacks_p)->next = NULL;
return ERROR_OK;
}
int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
{
target_event_callback_t **p = &target_event_callbacks;
target_event_callback_t *c = target_event_callbacks;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
while (c)
{
target_event_callback_t *next = c->next;
if ((c->callback == callback) && (c->priv == priv))
{
*p = next;
free(c);
return ERROR_OK;
}
else
p = &(c->next);
c = next;
}
return ERROR_OK;
}
int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
{
target_timer_callback_t **p = &target_timer_callbacks;
target_timer_callback_t *c = target_timer_callbacks;
if (callback == NULL)
{
return ERROR_INVALID_ARGUMENTS;
}
while (c)
{
target_timer_callback_t *next = c->next;
if ((c->callback == callback) && (c->priv == priv))
{
*p = next;
free(c);
return ERROR_OK;
}
else
p = &(c->next);
c = next;
}
return ERROR_OK;
}
int target_call_event_callbacks(target_t *target, enum target_event event)
{
target_event_callback_t *callback = target_event_callbacks;
target_event_callback_t *next_callback;
LOG_DEBUG("target event %i", event);
while (callback)
{
next_callback = callback->next;
callback->callback(target, event, callback->priv);
callback = next_callback;
}
return ERROR_OK;
}
static int target_call_timer_callbacks_check_time(int checktime)
{
target_timer_callback_t *callback = target_timer_callbacks;
target_timer_callback_t *next_callback;
struct timeval now;
gettimeofday(&now, NULL);
while (callback)
{
next_callback = callback->next;
if ((!checktime&&callback->periodic)||
(((now.tv_sec >= callback->when.tv_sec) && (now.tv_usec >= callback->when.tv_usec))
|| (now.tv_sec > callback->when.tv_sec)))
{
if(callback->callback != NULL)
{
callback->callback(callback->priv);
if (callback->periodic)
{
int time_ms = callback->time_ms;
callback->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
time_ms -= (time_ms % 1000);
callback->when.tv_sec = now.tv_sec + time_ms / 1000;
if (callback->when.tv_usec > 1000000)
{
callback->when.tv_usec = callback->when.tv_usec - 1000000;
callback->when.tv_sec += 1;
}
}
else
target_unregister_timer_callback(callback->callback, callback->priv);
}
}
callback = next_callback;
}
return ERROR_OK;
}
int target_call_timer_callbacks()
{
return target_call_timer_callbacks_check_time(1);
}
/* invoke periodic callbacks immediately */
int target_call_timer_callbacks_now()
{
return target_call_timer_callbacks(0);
}
int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
{
working_area_t *c = target->working_areas;
working_area_t *new_wa = NULL;
/* Reevaluate working area address based on MMU state*/
if (target->working_areas == NULL)
{
int retval;
int enabled;
retval = target->type->mmu(target, &enabled);
if (retval != ERROR_OK)
{
return retval;
}
if (enabled)
{
target->working_area = target->working_area_virt;
}
else
{
target->working_area = target->working_area_phys;
}
}
/* only allocate multiples of 4 byte */
if (size % 4)
{
LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
size = CEIL(size, 4);
}
/* see if there's already a matching working area */
while (c)
{
if ((c->free) && (c->size == size))
{
new_wa = c;
break;
}
c = c->next;
}
/* if not, allocate a new one */
if (!new_wa)
{
working_area_t **p = &target->working_areas;
u32 first_free = target->working_area;
u32 free_size = target->working_area_size;
LOG_DEBUG("allocating new working area");
c = target->working_areas;
while (c)
{
first_free += c->size;
free_size -= c->size;
p = &c->next;
c = c->next;
}
if (free_size < size)
{
LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
new_wa = malloc(sizeof(working_area_t));
new_wa->next = NULL;
new_wa->size = size;
new_wa->address = first_free;
if (target->backup_working_area)
{
new_wa->backup = malloc(new_wa->size);
target->type->read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup);
}
else
{
new_wa->backup = NULL;
}
/* put new entry in list */
*p = new_wa;
}
/* mark as used, and return the new (reused) area */
new_wa->free = 0;
*area = new_wa;
/* user pointer */
new_wa->user = area;
return ERROR_OK;
}
int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
{
if (area->free)
return ERROR_OK;
if (restore&&target->backup_working_area)
target->type->write_memory(target, area->address, 4, area->size / 4, area->backup);
area->free = 1;
/* mark user pointer invalid */
*area->user = NULL;
area->user = NULL;
return ERROR_OK;
}
int target_free_working_area(struct target_s *target, working_area_t *area)
{
return target_free_working_area_restore(target, area, 1);
}
int target_free_all_working_areas_restore(struct target_s *target, int restore)
{
working_area_t *c = target->working_areas;
while (c)
{
working_area_t *next = c->next;
target_free_working_area_restore(target, c, restore);
if (c->backup)
free(c->backup);
free(c);
c = next;
}
target->working_areas = NULL;
return ERROR_OK;
}
int target_free_all_working_areas(struct target_s *target)
{
return target_free_all_working_areas_restore(target, 1);
}
int target_register_commands(struct command_context_s *cmd_ctx)
{
register_command(cmd_ctx, NULL, "target", handle_target_command, COMMAND_CONFIG, "target <cpu> [reset_init default - DEPRECATED] <chainpos> <endianness> <variant> [cpu type specifc args]");
register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, NULL);
register_command(cmd_ctx, NULL, "target_script", handle_target_script_command, COMMAND_CONFIG,
"target_script <target#> <event=reset/pre_reset/post_halt/pre_resume/gdb_program_config> <script_file>");
register_command(cmd_ctx, NULL, "run_and_halt_time", handle_run_and_halt_time_command, COMMAND_CONFIG, "<target> <run time ms>");
register_command(cmd_ctx, NULL, "working_area", handle_working_area_command, COMMAND_ANY, "working_area <target#> <address> <size> <'backup'|'nobackup'> [virtual address]");
register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "virt2phys <virtual address>");
register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "PRELIMINARY! - profile <seconds> <gmon.out>");
return ERROR_OK;
}
int target_arch_state(struct target_s *target)
{
int retval;
if (target==NULL)
{
LOG_USER("No target has been configured");
return ERROR_OK;
}
LOG_USER("target state: %s", target_state_strings[target->state]);
if (target->state!=TARGET_HALTED)
return ERROR_OK;
retval=target->type->arch_state(target);
return retval;
}
/* Single aligned words are guaranteed to use 16 or 32 bit access
* mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
{
int retval;
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
if (((address % 2) == 0) && (size == 2))
{
return target->type->write_memory(target, address, 2, 1, buffer);
}
/* handle unaligned head bytes */
if (address % 4)
{
int unaligned = 4 - (address % 4);
if (unaligned > size)
unaligned = size;
if ((retval = target->type->write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
return retval;
buffer += unaligned;
address += unaligned;
size -= unaligned;
}
/* handle aligned words */
if (size >= 4)
{
int aligned = size - (size % 4);
/* use bulk writes above a certain limit. This may have to be changed */
if (aligned > 128)
{
if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
return retval;
}
else
{
if ((retval = target->type->write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
return retval;
}
buffer += aligned;
address += aligned;
size -= aligned;
}
/* handle tail writes of less than 4 bytes */
if (size > 0)
{
if ((retval = target->type->write_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}
/* Single aligned words are guaranteed to use 16 or 32 bit access
* mode respectively, otherwise data is handled as quickly as
* possible
*/
int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
{
int retval;
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
if (((address % 2) == 0) && (size == 2))
{
return target->type->read_memory(target, address, 2, 1, buffer);
}
/* handle unaligned head bytes */
if (address % 4)
{
int unaligned = 4 - (address % 4);
if (unaligned > size)
unaligned = size;
if ((retval = target->type->read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
return retval;
buffer += unaligned;
address += unaligned;
size -= unaligned;
}
/* handle aligned words */
if (size >= 4)
{
int aligned = size - (size % 4);
if ((retval = target->type->read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
return retval;
buffer += aligned;
address += aligned;
size -= aligned;
}
/* handle tail writes of less than 4 bytes */
if (size > 0)
{
if ((retval = target->type->read_memory(target, address, 1, size, buffer)) != ERROR_OK)
return retval;
}
return ERROR_OK;
}
int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
{
u8 *buffer;
int retval;
int i;
u32 checksum = 0;
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if ((retval = target->type->checksum_memory(target, address,
size, &checksum)) == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
{
buffer = malloc(size);
if (buffer == NULL)
{
LOG_ERROR("error allocating buffer for section (%d bytes)", size);
return ERROR_INVALID_ARGUMENTS;
}
retval = target_read_buffer(target, address, size, buffer);
if (retval != ERROR_OK)
{
free(buffer);
return retval;
}
/* convert to target endianess */
for (i = 0; i < (size/sizeof(u32)); i++)
{
u32 target_data;
target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
}
retval = image_calculate_checksum( buffer, size, &checksum );
free(buffer);
}
*crc = checksum;
return retval;
}
int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
{
int retval;
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (target->type->blank_check_memory == 0)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
retval = target->type->blank_check_memory(target, address, size, blank);
return retval;
}
int target_read_u32(struct target_s *target, u32 address, u32 *value)
{
u8 value_buf[4];
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target->type->read_memory(target, address, 4, 1, value_buf);
if (retval == ERROR_OK)
{
*value = target_buffer_get_u32(target, value_buf);
LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
}
else
{
*value = 0x0;
LOG_DEBUG("address: 0x%8.8x failed", address);
}
return retval;
}
int target_read_u16(struct target_s *target, u32 address, u16 *value)
{
u8 value_buf[2];
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
int retval = target->type->read_memory(target, address, 2, 1, value_buf);
if (retval == ERROR_OK)
{
*value = target_buffer_get_u16(target, value_buf);
LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
}
else
{
*value = 0x0;
LOG_DEBUG("address: 0x%8.8x failed", address);
}
return retval;
}
int target_read_u8(struct target_s *target, u32 address, u8 *value)
{
int retval = target->type->read_memory(target, address, 1, 1, value);
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
if (retval == ERROR_OK)
{
LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
}
else
{
*value = 0x0;
LOG_DEBUG("address: 0x%8.8x failed", address);
}
return retval;
}
int target_write_u32(struct target_s *target, u32 address, u32 value)
{
int retval;
u8 value_buf[4];
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
target_buffer_set_u32(target, value_buf, value);
if ((retval = target->type->write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
return retval;
}
int target_write_u16(struct target_s *target, u32 address, u16 value)
{
int retval;
u8 value_buf[2];
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
target_buffer_set_u16(target, value_buf, value);
if ((retval = target->type->write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
return retval;
}
int target_write_u8(struct target_s *target, u32 address, u8 value)
{
int retval;
if (!target->type->examined)
{
LOG_ERROR("Target not examined yet");
return ERROR_FAIL;
}
LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
if ((retval = target->type->read_memory(target, address, 1, 1, &value)) != ERROR_OK)
{
LOG_DEBUG("failed: %i", retval);
}
return retval;
}
int target_register_user_commands(struct command_context_s *cmd_ctx)
{
register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, NULL);
register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init|run_and_halt|run_and_init]");
register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19']");
register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
register_command(cmd_ctx, NULL, "load_binary", handle_load_image_command, COMMAND_EXEC, "[DEPRECATED] load_binary <file> <address>");
register_command(cmd_ctx, NULL, "dump_binary", handle_dump_image_command, COMMAND_EXEC, "[DEPRECATED] dump_binary <file> <address> <size>");
target_request_register_commands(cmd_ctx);
trace_register_commands(cmd_ctx);
return ERROR_OK;
}
int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = targets;
int count = 0;
if (argc == 1)
{
int num = strtoul(args[0], NULL, 0);
while (target)
{
count++;
target = target->next;
}
if (num < count)
cmd_ctx->current_target = num;
else
command_print(cmd_ctx, "%i is out of bounds, only %i targets are configured", num, count);
return ERROR_OK;
}
while (target)
{
command_print(cmd_ctx, "%i: %s (%s), state: %s", count++, target->type->name, target_endianess_strings[target->endianness], target_state_strings[target->state]);
target = target->next;
}
return ERROR_OK;
}
int handle_target_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int i;
int found = 0;
if (argc < 3)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* search for the specified target */
if (args[0] && (args[0][0] != 0))
{
for (i = 0; target_types[i]; i++)
{
if (strcmp(args[0], target_types[i]->name) == 0)
{
target_t **last_target_p = &targets;
/* register target specific commands */
if (target_types[i]->register_commands(cmd_ctx) != ERROR_OK)
{
LOG_ERROR("couldn't register '%s' commands", args[0]);
exit(-1);
}
if (*last_target_p)
{
while ((*last_target_p)->next)
last_target_p = &((*last_target_p)->next);
last_target_p = &((*last_target_p)->next);
}
*last_target_p = malloc(sizeof(target_t));
/* allocate memory for each unique target type */
(*last_target_p)->type = (target_type_t*)malloc(sizeof(target_type_t));
*((*last_target_p)->type) = *target_types[i];
if (strcmp(args[1], "big") == 0)
(*last_target_p)->endianness = TARGET_BIG_ENDIAN;
else if (strcmp(args[1], "little") == 0)
(*last_target_p)->endianness = TARGET_LITTLE_ENDIAN;
else
{
LOG_ERROR("endianness must be either 'little' or 'big', not '%s'", args[1]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* what to do on a target reset */
(*last_target_p)->reset_mode = RESET_INIT; /* default */
if (strcmp(args[2], "reset_halt") == 0)
(*last_target_p)->reset_mode = RESET_HALT;
else if (strcmp(args[2], "reset_run") == 0)
(*last_target_p)->reset_mode = RESET_RUN;
else if (strcmp(args[2], "reset_init") == 0)
(*last_target_p)->reset_mode = RESET_INIT;
else if (strcmp(args[2], "run_and_halt") == 0)
(*last_target_p)->reset_mode = RESET_RUN_AND_HALT;
else if (strcmp(args[2], "run_and_init") == 0)
(*last_target_p)->reset_mode = RESET_RUN_AND_INIT;
else
{
/* Kludge! we want to make this reset arg optional while remaining compatible! */
args--;
argc++;
}
(*last_target_p)->run_and_halt_time = 1000; /* default 1s */
(*last_target_p)->working_area = 0x0;
(*last_target_p)->working_area_size = 0x0;
(*last_target_p)->working_areas = NULL;
(*last_target_p)->backup_working_area = 0;
(*last_target_p)->state = TARGET_UNKNOWN;
(*last_target_p)->debug_reason = DBG_REASON_UNDEFINED;
(*last_target_p)->reg_cache = NULL;
(*last_target_p)->breakpoints = NULL;
(*last_target_p)->watchpoints = NULL;
(*last_target_p)->next = NULL;
(*last_target_p)->arch_info = NULL;
/* initialize trace information */
(*last_target_p)->trace_info = malloc(sizeof(trace_t));
(*last_target_p)->trace_info->num_trace_points = 0;
(*last_target_p)->trace_info->trace_points_size = 0;
(*last_target_p)->trace_info->trace_points = NULL;
(*last_target_p)->trace_info->trace_history_size = 0;
(*last_target_p)->trace_info->trace_history = NULL;
(*last_target_p)->trace_info->trace_history_pos = 0;
(*last_target_p)->trace_info->trace_history_overflowed = 0;
(*last_target_p)->dbgmsg = NULL;
(*last_target_p)->dbg_msg_enabled = 0;
(*last_target_p)->type->target_command(cmd_ctx, cmd, args, argc, *last_target_p);
found = 1;
break;
}
}
}
/* no matching target found */
if (!found)
{
LOG_ERROR("target '%s' not found", args[0]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
int target_invoke_script(struct command_context_s *cmd_ctx, target_t *target, char *name)
{
return command_run_linef(cmd_ctx, " if {[catch {info body target_%s_%d} t]==0} {target_%s_%d}",
name, get_num_by_target(target),
name, get_num_by_target(target));
}
int handle_target_script_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = NULL;
if (argc < 3)
{
LOG_ERROR("incomplete target_script command");
return ERROR_COMMAND_SYNTAX_ERROR;
}
target = get_target_by_num(strtoul(args[0], NULL, 0));
if (!target)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
/* Define a tcl procedure which we'll invoke upon some event */
command_run_linef(cmd_ctx,
"proc target_%s_%d {} {"
"openocd {script %s}"
"}",
args[1],
get_num_by_target(target),
args[2]);
return ERROR_OK;
}
int handle_run_and_halt_time_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = NULL;
if (argc < 2)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
target = get_target_by_num(strtoul(args[0], NULL, 0));
if (!target)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
target->run_and_halt_time = strtoul(args[1], NULL, 0);
return ERROR_OK;
}
int handle_working_area_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = NULL;
if ((argc < 4) || (argc > 5))
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
target = get_target_by_num(strtoul(args[0], NULL, 0));
if (!target)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
target_free_all_working_areas(target);
target->working_area_phys = target->working_area_virt = strtoul(args[1], NULL, 0);
if (argc == 5)
{
target->working_area_virt = strtoul(args[4], NULL, 0);
}
target->working_area_size = strtoul(args[2], NULL, 0);
if (strcmp(args[3], "backup") == 0)
{
target->backup_working_area = 1;
}
else if (strcmp(args[3], "nobackup") == 0)
{
target->backup_working_area = 0;
}
else
{
LOG_ERROR("unrecognized <backup|nobackup> argument (%s)", args[3]);
return ERROR_COMMAND_SYNTAX_ERROR;
}
return ERROR_OK;
}
/* process target state changes */
int handle_target(void *priv)
{
target_t *target = targets;
while (target)
{
if (target_continous_poll)
{
/* polling may fail silently until the target has been examined */
target_poll(target);
}
target = target->next;
}
return ERROR_OK;
}
int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target;
reg_t *reg = NULL;
int count = 0;
char *value;
LOG_DEBUG("-");
target = get_current_target(cmd_ctx);
/* list all available registers for the current target */
if (argc == 0)
{
reg_cache_t *cache = target->reg_cache;
count = 0;
while(cache)
{
int i;
for (i = 0; i < cache->num_regs; i++)
{
value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
free(value);
}
cache = cache->next;
}
return ERROR_OK;
}
/* access a single register by its ordinal number */
if ((args[0][0] >= '0') && (args[0][0] <= '9'))
{
int num = strtoul(args[0], NULL, 0);
reg_cache_t *cache = target->reg_cache;
count = 0;
while(cache)
{
int i;
for (i = 0; i < cache->num_regs; i++)
{
if (count++ == num)
{
reg = &cache->reg_list[i];
break;
}
}
if (reg)
break;
cache = cache->next;
}
if (!reg)
{
command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
return ERROR_OK;
}
} else /* access a single register by its name */
{
reg = register_get_by_name(target->reg_cache, args[0], 1);
if (!reg)
{
command_print(cmd_ctx, "register %s not found in current target", args[0]);
return ERROR_OK;
}
}
/* display a register */
if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
{
if ((argc == 2) && (strcmp(args[1], "force") == 0))
reg->valid = 0;
if (reg->valid == 0)
{
reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
if (arch_type == NULL)
{
LOG_ERROR("BUG: encountered unregistered arch type");
return ERROR_OK;
}
arch_type->get(reg);
}
value = buf_to_str(reg->value, reg->size, 16);
command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
free(value);
return ERROR_OK;
}
/* set register value */
if (argc == 2)
{
u8 *buf = malloc(CEIL(reg->size, 8));
str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
if (arch_type == NULL)
{
LOG_ERROR("BUG: encountered unregistered arch type");
return ERROR_OK;
}
arch_type->set(reg, buf);
value = buf_to_str(reg->value, reg->size, 16);
command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
free(value);
free(buf);
return ERROR_OK;
}
command_print(cmd_ctx, "usage: reg <#|name> [value]");
return ERROR_OK;
}
static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms);
int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
if (argc == 0)
{
target_poll(target);
target_arch_state(target);
}
else
{
if (strcmp(args[0], "on") == 0)
{
target_continous_poll = 1;
}
else if (strcmp(args[0], "off") == 0)
{
target_continous_poll = 0;
}
else
{
command_print(cmd_ctx, "arg is \"on\" or \"off\"");
}
}
return ERROR_OK;
}
int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int ms = 5000;
if (argc > 0)
{
char *end;
ms = strtoul(args[0], &end, 0) * 1000;
if (*end)
{
command_print(cmd_ctx, "usage: %s [seconds]", cmd);
return ERROR_OK;
}
}
return wait_state(cmd_ctx, cmd, TARGET_HALTED, ms);
}
static void target_process_events(struct command_context_s *cmd_ctx)
{
target_t *target = get_current_target(cmd_ctx);
target_poll(target);
target_call_timer_callbacks_now();
}
static int wait_state(struct command_context_s *cmd_ctx, char *cmd, enum target_state state, int ms)
{
int retval;
struct timeval timeout, now;
int once=1;
gettimeofday(&timeout, NULL);
timeval_add_time(&timeout, 0, ms * 1000);
target_t *target = get_current_target(cmd_ctx);
for (;;)
{
if ((retval=target_poll(target))!=ERROR_OK)
return retval;
target_call_timer_callbacks_now();
if (target->state == state)
{
break;
}
if (once)
{
once=0;
command_print(cmd_ctx, "waiting for target %s...", target_state_strings[state]);
}
gettimeofday(&now, NULL);
if ((now.tv_sec > timeout.tv_sec) || ((now.tv_sec == timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
{
LOG_ERROR("timed out while waiting for target %s", target_state_strings[state]);
break;
}
}
return ERROR_OK;
}
int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int retval;
target_t *target = get_current_target(cmd_ctx);
LOG_DEBUG("-");
if ((retval = target_halt(target)) != ERROR_OK)
{
return retval;
}
return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
}
int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
LOG_USER("requesting target halt and executing a soft reset");
target->type->soft_reset_halt(target);
return ERROR_OK;
}
int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
enum target_reset_mode reset_mode = target->reset_mode;
enum target_reset_mode save = target->reset_mode;
LOG_DEBUG("-");
if (argc >= 1)
{
if (strcmp("run", args[0]) == 0)
reset_mode = RESET_RUN;
else if (strcmp("halt", args[0]) == 0)
reset_mode = RESET_HALT;
else if (strcmp("init", args[0]) == 0)
reset_mode = RESET_INIT;
else if (strcmp("run_and_halt", args[0]) == 0)
{
reset_mode = RESET_RUN_AND_HALT;
if (argc >= 2)
{
target->run_and_halt_time = strtoul(args[1], NULL, 0);
}
}
else if (strcmp("run_and_init", args[0]) == 0)
{
reset_mode = RESET_RUN_AND_INIT;
if (argc >= 2)
{
target->run_and_halt_time = strtoul(args[1], NULL, 0);
}
}
else
{
command_print(cmd_ctx, "usage: reset ['run', 'halt', 'init', 'run_and_halt', 'run_and_init]");
return ERROR_OK;
}
}
/* temporarily modify mode of current reset target */
target->reset_mode = reset_mode;
/* reset *all* targets */
target_process_reset(cmd_ctx);
/* Restore default reset mode for this target */
target->reset_mode = save;
return ERROR_OK;
}
int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int retval;
target_t *target = get_current_target(cmd_ctx);
if (argc == 0)
retval = target_resume(target, 1, 0, 1, 0); /* current pc, addr = 0, handle breakpoints, not debugging */
else if (argc == 1)
retval = target_resume(target, 0, strtoul(args[0], NULL, 0), 1, 0); /* addr = args[0], handle breakpoints, not debugging */
else
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
target_process_events(cmd_ctx);
return retval;
}
int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
LOG_DEBUG("-");
if (argc == 0)
target->type->step(target, 1, 0, 1); /* current pc, addr = 0, handle breakpoints */
if (argc == 1)
target->type->step(target, 0, strtoul(args[0], NULL, 0), 1); /* addr = args[0], handle breakpoints */
return ERROR_OK;
}
int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
const int line_bytecnt = 32;
int count = 1;
int size = 4;
u32 address = 0;
int line_modulo;
int i;
char output[128];
int output_len;
int retval;
u8 *buffer;
target_t *target = get_current_target(cmd_ctx);
if (argc < 1)
return ERROR_OK;
if (argc == 2)
count = strtoul(args[1], NULL, 0);
address = strtoul(args[0], NULL, 0);
switch (cmd[2])
{
case 'w':
size = 4; line_modulo = line_bytecnt / 4;
break;
case 'h':
size = 2; line_modulo = line_bytecnt / 2;
break;
case 'b':
size = 1; line_modulo = line_bytecnt / 1;
break;
default:
return ERROR_OK;
}
buffer = calloc(count, size);
retval = target->type->read_memory(target, address, size, count, buffer);
if (retval == ERROR_OK)
{
output_len = 0;
for (i = 0; i < count; i++)
{
if (i%line_modulo == 0)
output_len += snprintf(output + output_len, 128 - output_len, "0x%8.8x: ", address + (i*size));
switch (size)
{
case 4:
output_len += snprintf(output + output_len, 128 - output_len, "%8.8x ", target_buffer_get_u32(target, &buffer[i*4]));
break;
case 2:
output_len += snprintf(output + output_len, 128 - output_len, "%4.4x ", target_buffer_get_u16(target, &buffer[i*2]));
break;
case 1:
output_len += snprintf(output + output_len, 128 - output_len, "%2.2x ", buffer[i*1]);
break;
}
if ((i%line_modulo == line_modulo-1) || (i == count - 1))
{
command_print(cmd_ctx, output);
output_len = 0;
}
}
}
free(buffer);
return retval;
}
int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
u32 address = 0;
u32 value = 0;
int count = 1;
int i;
int wordsize;
target_t *target = get_current_target(cmd_ctx);
u8 value_buf[4];
if ((argc < 2) || (argc > 3))
return ERROR_COMMAND_SYNTAX_ERROR;
address = strtoul(args[0], NULL, 0);
value = strtoul(args[1], NULL, 0);
if (argc == 3)
count = strtoul(args[2], NULL, 0);
switch (cmd[2])
{
case 'w':
wordsize = 4;
target_buffer_set_u32(target, value_buf, value);
break;
case 'h':
wordsize = 2;
target_buffer_set_u16(target, value_buf, value);
break;
case 'b':
wordsize = 1;
value_buf[0] = value;
break;
default:
return ERROR_COMMAND_SYNTAX_ERROR;
}
for (i=0; i<count; i++)
{
int retval;
switch (wordsize)
{
case 4:
retval = target->type->write_memory(target, address + i*wordsize, 4, 1, value_buf);
break;
case 2:
retval = target->type->write_memory(target, address + i*wordsize, 2, 1, value_buf);
break;
case 1:
retval = target->type->write_memory(target, address + i*wordsize, 1, 1, value_buf);
break;
default:
return ERROR_OK;
}
if (retval!=ERROR_OK)
{
return retval;
}
}
return ERROR_OK;
}
int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
u8 *buffer;
u32 buf_cnt;
u32 image_size;
int i;
int retval;
image_t image;
duration_t duration;
char *duration_text;
target_t *target = get_current_target(cmd_ctx);
if (argc < 1)
{
command_print(cmd_ctx, "usage: load_image <filename> [address] [type]");
return ERROR_OK;
}
/* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
if (argc >= 2)
{
image.base_address_set = 1;
image.base_address = strtoul(args[1], NULL, 0);
}
else
{
image.base_address_set = 0;
}
image.start_address_set = 0;
duration_start_measure(&duration);
if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
{
return ERROR_OK;
}
image_size = 0x0;
retval = ERROR_OK;
for (i = 0; i < image.num_sections; i++)
{
buffer = malloc(image.sections[i].size);
if (buffer == NULL)
{
command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
break;
}
if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
{
free(buffer);
break;
}
if ((retval = target_write_buffer(target, image.sections[i].base_address, buf_cnt, buffer)) != ERROR_OK)
{
free(buffer);
break;
}
image_size += buf_cnt;
command_print(cmd_ctx, "%u byte written at address 0x%8.8x", buf_cnt, image.sections[i].base_address);
free(buffer);
}
duration_stop_measure(&duration, &duration_text);
if (retval==ERROR_OK)
{
command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
}
free(duration_text);
image_close(&image);
return retval;
}
int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
fileio_t fileio;
u32 address;
u32 size;
u8 buffer[560];
int retval=ERROR_OK;
duration_t duration;
char *duration_text;
target_t *target = get_current_target(cmd_ctx);
if (argc != 3)
{
command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
return ERROR_OK;
}
address = strtoul(args[1], NULL, 0);
size = strtoul(args[2], NULL, 0);
if ((address & 3) || (size & 3))
{
command_print(cmd_ctx, "only 32-bit aligned address and size are supported");
return ERROR_OK;
}
if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
{
return ERROR_OK;
}
duration_start_measure(&duration);
while (size > 0)
{
u32 size_written;
u32 this_run_size = (size > 560) ? 560 : size;
retval = target->type->read_memory(target, address, 4, this_run_size / 4, buffer);
if (retval != ERROR_OK)
{
break;
}
retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
if (retval != ERROR_OK)
{
break;
}
size -= this_run_size;
address += this_run_size;
}
fileio_close(&fileio);
duration_stop_measure(&duration, &duration_text);
if (retval==ERROR_OK)
{
command_print(cmd_ctx, "dumped %"PRIi64" byte in %s", fileio.size, duration_text);
}
free(duration_text);
return ERROR_OK;
}
int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
u8 *buffer;
u32 buf_cnt;
u32 image_size;
int i;
int retval;
u32 checksum = 0;
u32 mem_checksum = 0;
image_t image;
duration_t duration;
char *duration_text;
target_t *target = get_current_target(cmd_ctx);
if (argc < 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (!target)
{
LOG_ERROR("no target selected");
return ERROR_FAIL;
}
duration_start_measure(&duration);
if (argc >= 2)
{
image.base_address_set = 1;
image.base_address = strtoul(args[1], NULL, 0);
}
else
{
image.base_address_set = 0;
image.base_address = 0x0;
}
image.start_address_set = 0;
if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
{
return retval;
}
image_size = 0x0;
retval=ERROR_OK;
for (i = 0; i < image.num_sections; i++)
{
buffer = malloc(image.sections[i].size);
if (buffer == NULL)
{
command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
break;
}
if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
{
free(buffer);
break;
}
/* calculate checksum of image */
image_calculate_checksum( buffer, buf_cnt, &checksum );
retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
if( retval != ERROR_OK )
{
free(buffer);
break;
}
if( checksum != mem_checksum )
{
/* failed crc checksum, fall back to a binary compare */
u8 *data;
command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
data = (u8*)malloc(buf_cnt);
/* Can we use 32bit word accesses? */
int size = 1;
int count = buf_cnt;
if ((count % 4) == 0)
{
size *= 4;
count /= 4;
}
retval = target->type->read_memory(target, image.sections[i].base_address, size, count, data);
if (retval == ERROR_OK)
{
int t;
for (t = 0; t < buf_cnt; t++)
{
if (data[t] != buffer[t])
{
command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
free(data);
free(buffer);
retval=ERROR_FAIL;
goto done;
}
}
}
free(data);
}
free(buffer);
image_size += buf_cnt;
}
done:
duration_stop_measure(&duration, &duration_text);
if (retval==ERROR_OK)
{
command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
}
free(duration_text);
image_close(&image);
return retval;
}
int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
int retval;
target_t *target = get_current_target(cmd_ctx);
if (argc == 0)
{
breakpoint_t *breakpoint = target->breakpoints;
while (breakpoint)
{
if (breakpoint->type == BKPT_SOFT)
{
char* buf = buf_to_str(breakpoint->orig_instr, breakpoint->length, 16);
command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s", breakpoint->address, breakpoint->length, breakpoint->set, buf);
free(buf);
}
else
{
command_print(cmd_ctx, "0x%8.8x, 0x%x, %i", breakpoint->address, breakpoint->length, breakpoint->set);
}
breakpoint = breakpoint->next;
}
}
else if (argc >= 2)
{
int hw = BKPT_SOFT;
u32 length = 0;
length = strtoul(args[1], NULL, 0);
if (argc >= 3)
if (strcmp(args[2], "hw") == 0)
hw = BKPT_HARD;
if ((retval = breakpoint_add(target, strtoul(args[0], NULL, 0), length, hw)) != ERROR_OK)
{
LOG_ERROR("Failure setting breakpoints");
}
else
{
command_print(cmd_ctx, "breakpoint added at address 0x%8.8x", strtoul(args[0], NULL, 0));
}
}
else
{
command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
}
return ERROR_OK;
}
int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
if (argc > 0)
breakpoint_remove(target, strtoul(args[0], NULL, 0));
return ERROR_OK;
}
int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
int retval;
if (argc == 0)
{
watchpoint_t *watchpoint = target->watchpoints;
while (watchpoint)
{
command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
watchpoint = watchpoint->next;
}
}
else if (argc >= 2)
{
enum watchpoint_rw type = WPT_ACCESS;
u32 data_value = 0x0;
u32 data_mask = 0xffffffff;
if (argc >= 3)
{
switch(args[2][0])
{
case 'r':
type = WPT_READ;
break;
case 'w':
type = WPT_WRITE;
break;
case 'a':
type = WPT_ACCESS;
break;
default:
command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
return ERROR_OK;
}
}
if (argc >= 4)
{
data_value = strtoul(args[3], NULL, 0);
}
if (argc >= 5)
{
data_mask = strtoul(args[4], NULL, 0);
}
if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
{
LOG_ERROR("Failure setting breakpoints");
}
}
else
{
command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
}
return ERROR_OK;
}
int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
if (argc > 0)
watchpoint_remove(target, strtoul(args[0], NULL, 0));
return ERROR_OK;
}
int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc)
{
int retval;
target_t *target = get_current_target(cmd_ctx);
u32 va;
u32 pa;
if (argc != 1)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
va = strtoul(args[0], NULL, 0);
retval = target->type->virt2phys(target, va, &pa);
if (retval == ERROR_OK)
{
command_print(cmd_ctx, "Physical address 0x%08x", pa);
}
else
{
/* lower levels will have logged a detailed error which is
* forwarded to telnet/GDB session.
*/
}
return retval;
}
static void writeLong(FILE *f, int l)
{
int i;
for (i=0; i<4; i++)
{
char c=(l>>(i*8))&0xff;
fwrite(&c, 1, 1, f);
}
}
static void writeString(FILE *f, char *s)
{
fwrite(s, 1, strlen(s), f);
}
// Dump a gmon.out histogram file.
static void writeGmon(u32 *samples, int sampleNum, char *filename)
{
int i;
FILE *f=fopen(filename, "w");
if (f==NULL)
return;
fwrite("gmon", 1, 4, f);
writeLong(f, 0x00000001); // Version
writeLong(f, 0); // padding
writeLong(f, 0); // padding
writeLong(f, 0); // padding
fwrite("", 1, 1, f); // GMON_TAG_TIME_HIST
// figure out bucket size
u32 min=samples[0];
u32 max=samples[0];
for (i=0; i<sampleNum; i++)
{
if (min>samples[i])
{
min=samples[i];
}
if (max<samples[i])
{
max=samples[i];
}
}
int addressSpace=(max-min+1);
static int const maxBuckets=256*1024; // maximum buckets.
int length=addressSpace;
if (length > maxBuckets)
{
length=maxBuckets;
}
int *buckets=malloc(sizeof(int)*length);
if (buckets==NULL)
{
fclose(f);
return;
}
memset(buckets, 0, sizeof(int)*length);
for (i=0; i<sampleNum;i++)
{
u32 address=samples[i];
long long a=address-min;
long long b=length-1;
long long c=addressSpace-1;
int index=(a*b)/c; // danger!!!! int32 overflows
buckets[index]++;
}
// append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr))
writeLong(f, min); // low_pc
writeLong(f, max); // high_pc
writeLong(f, length); // # of samples
writeLong(f, 64000000); // 64MHz
writeString(f, "seconds");
for (i=0; i<(15-strlen("seconds")); i++)
{
fwrite("", 1, 1, f); // padding
}
writeString(f, "s");
// append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size)
char *data=malloc(2*length);
if (data!=NULL)
{
for (i=0; i<length;i++)
{
int val;
val=buckets[i];
if (val>65535)
{
val=65535;
}
data[i*2]=val&0xff;
data[i*2+1]=(val>>8)&0xff;
}
free(buckets);
fwrite(data, 1, length*2, f);
free(data);
} else
{
free(buckets);
}
fclose(f);
}
/* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
{
target_t *target = get_current_target(cmd_ctx);
struct timeval timeout, now;
gettimeofday(&timeout, NULL);
if (argc!=2)
{
return ERROR_COMMAND_SYNTAX_ERROR;
}
char *end;
timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
if (*end)
{
return ERROR_OK;
}
command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
static const int maxSample=10000;
u32 *samples=malloc(sizeof(u32)*maxSample);
if (samples==NULL)
return ERROR_OK;
int numSamples=0;
int retval=ERROR_OK;
// hopefully it is safe to cache! We want to stop/restart as quickly as possible.
reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
for (;;)
{
target_poll(target);
if (target->state == TARGET_HALTED)
{
u32 t=*((u32 *)reg->value);
samples[numSamples++]=t;
retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
target_poll(target);
usleep(10*1000); // sleep 10ms, i.e. <100 samples/second.
} else if (target->state == TARGET_RUNNING)
{
// We want to quickly sample the PC.
target_halt(target);
} else
{
command_print(cmd_ctx, "Target not halted or running");
retval=ERROR_OK;
break;
}
if (retval!=ERROR_OK)
{
break;
}
gettimeofday(&now, NULL);
if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
{
command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
target_poll(target);
if (target->state == TARGET_HALTED)
{
target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
}
target_poll(target);
writeGmon(samples, numSamples, args[1]);
command_print(cmd_ctx, "Wrote %s", args[1]);
break;
}
}
free(samples);
return ERROR_OK;
}