openocd/src/flash/nor/stm32f1x.c

1743 lines
47 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2005 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2011 by Andreas Fritiofson *
* andreas.fritiofson@gmail.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <string.h>
#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/cortex_m.h>
/* stm32x register locations */
#define FLASH_REG_BASE_B0 0x40022000
#define FLASH_REG_BASE_B1 0x40022040
#define STM32_FLASH_ACR 0x00
#define STM32_FLASH_KEYR 0x04
#define STM32_FLASH_OPTKEYR 0x08
#define STM32_FLASH_SR 0x0C
#define STM32_FLASH_CR 0x10
#define STM32_FLASH_AR 0x14
#define STM32_FLASH_OBR 0x1C
#define STM32_FLASH_WRPR 0x20
/* TODO: Check if code using these really should be hard coded to bank 0.
* There are valid cases, on dual flash devices the protection of the
* second bank is done on the bank0 reg's. */
#define STM32_FLASH_ACR_B0 0x40022000
#define STM32_FLASH_KEYR_B0 0x40022004
#define STM32_FLASH_OPTKEYR_B0 0x40022008
#define STM32_FLASH_SR_B0 0x4002200C
#define STM32_FLASH_CR_B0 0x40022010
#define STM32_FLASH_AR_B0 0x40022014
#define STM32_FLASH_OBR_B0 0x4002201C
#define STM32_FLASH_WRPR_B0 0x40022020
/* option byte location */
#define STM32_OB_RDP 0x1FFFF800
#define STM32_OB_USER 0x1FFFF802
#define STM32_OB_DATA0 0x1FFFF804
#define STM32_OB_DATA1 0x1FFFF806
#define STM32_OB_WRP0 0x1FFFF808
#define STM32_OB_WRP1 0x1FFFF80A
#define STM32_OB_WRP2 0x1FFFF80C
#define STM32_OB_WRP3 0x1FFFF80E
/* FLASH_CR register bits */
#define FLASH_PG (1 << 0)
#define FLASH_PER (1 << 1)
#define FLASH_MER (1 << 2)
#define FLASH_OPTPG (1 << 4)
#define FLASH_OPTER (1 << 5)
#define FLASH_STRT (1 << 6)
#define FLASH_LOCK (1 << 7)
#define FLASH_OPTWRE (1 << 9)
#define FLASH_OBL_LAUNCH (1 << 13) /* except stm32f1x series */
/* FLASH_SR register bits */
#define FLASH_BSY (1 << 0)
#define FLASH_PGERR (1 << 2)
#define FLASH_WRPRTERR (1 << 4)
#define FLASH_EOP (1 << 5)
/* STM32_FLASH_OBR bit definitions (reading) */
#define OPT_ERROR 0
#define OPT_READOUT 1
#define OPT_RDWDGSW 2
#define OPT_RDRSTSTOP 3
#define OPT_RDRSTSTDBY 4
#define OPT_BFB2 5 /* dual flash bank only */
/* register unlock keys */
#define KEY1 0x45670123
#define KEY2 0xCDEF89AB
/* timeout values */
#define FLASH_WRITE_TIMEOUT 10
#define FLASH_ERASE_TIMEOUT 100
struct stm32x_options {
uint8_t rdp;
uint8_t user;
uint16_t data;
uint32_t protection;
};
struct stm32x_flash_bank {
struct stm32x_options option_bytes;
int ppage_size;
bool probed;
bool has_dual_banks;
/* used to access dual flash bank stm32xl */
bool can_load_options;
uint32_t register_base;
uint8_t default_rdp;
int user_data_offset;
int option_offset;
uint32_t user_bank_size;
};
static int stm32x_mass_erase(struct flash_bank *bank);
static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count);
/* flash bank stm32x <base> <size> 0 0 <target#>
*/
FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
{
struct stm32x_flash_bank *stm32x_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
bank->driver_priv = stm32x_info;
stm32x_info->probed = false;
stm32x_info->has_dual_banks = false;
stm32x_info->can_load_options = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
stm32x_info->user_bank_size = bank->size;
/* The flash write must be aligned to a halfword boundary */
bank->write_start_alignment = bank->write_end_alignment = 2;
return ERROR_OK;
}
static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
return reg + stm32x_info->register_base;
}
static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
struct target *target = bank->target;
return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
}
static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct target *target = bank->target;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32x_get_flash_status(bank, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & FLASH_BSY) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FLASH_BUSY;
}
alive_sleep(1);
}
if (status & FLASH_WRPRTERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FLASH_PROTECTED;
}
if (status & FLASH_PGERR) {
LOG_ERROR("stm32x device programming failed / flash not erased");
retval = ERROR_FLASH_OPERATION_FAILED;
}
/* Clear but report errors */
if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
/* If this operation fails, we ignore it and report the original
* retval
*/
target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
FLASH_WRPRTERR | FLASH_PGERR);
}
return retval;
}
static int stm32x_check_operation_supported(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
/* if we have a dual flash bank device then
* we need to perform option byte stuff on bank0 only */
if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
LOG_ERROR("Option byte operations must use bank 0");
return ERROR_FLASH_OPERATION_FAILED;
}
return ERROR_OK;
}
static int stm32x_read_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t option_bytes;
int retval;
/* read user and read protection option bytes, user data option bytes */
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &option_bytes);
if (retval != ERROR_OK)
return retval;
stm32x_info->option_bytes.rdp = (option_bytes & (1 << OPT_READOUT)) ? 0 : stm32x_info->default_rdp;
stm32x_info->option_bytes.user = (option_bytes >> stm32x_info->option_offset >> 2) & 0xff;
stm32x_info->option_bytes.data = (option_bytes >> stm32x_info->user_data_offset) & 0xffff;
/* read write protection option bytes */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &stm32x_info->option_bytes.protection);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_erase_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
/* read current options */
stm32x_read_options(bank);
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* erase option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
/* clear read protection option byte
* this will also force a device unlock if set */
stm32x_info->option_bytes.rdp = stm32x_info->default_rdp;
return ERROR_OK;
flash_lock:
target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
return retval;
}
static int stm32x_write_options(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = NULL;
struct target *target = bank->target;
stm32x_info = bank->driver_priv;
/* unlock flash registers */
int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* unlock option flash registers */
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* program option bytes */
retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
if (retval != ERROR_OK)
goto flash_lock;
uint8_t opt_bytes[16];
target_buffer_set_u16(target, opt_bytes, stm32x_info->option_bytes.rdp);
target_buffer_set_u16(target, opt_bytes + 2, stm32x_info->option_bytes.user);
target_buffer_set_u16(target, opt_bytes + 4, stm32x_info->option_bytes.data & 0xff);
target_buffer_set_u16(target, opt_bytes + 6, (stm32x_info->option_bytes.data >> 8) & 0xff);
target_buffer_set_u16(target, opt_bytes + 8, stm32x_info->option_bytes.protection & 0xff);
target_buffer_set_u16(target, opt_bytes + 10, (stm32x_info->option_bytes.protection >> 8) & 0xff);
target_buffer_set_u16(target, opt_bytes + 12, (stm32x_info->option_bytes.protection >> 16) & 0xff);
target_buffer_set_u16(target, opt_bytes + 14, (stm32x_info->option_bytes.protection >> 24) & 0xff);
/* Block write is preferred in favour of operation with ancient ST-Link
* firmwares without 16-bit memory access. See
* 480: flash: stm32f1x: write option bytes using the loader
* https://review.openocd.org/c/openocd/+/480
*/
retval = stm32x_write_block(bank, opt_bytes, STM32_OB_RDP, sizeof(opt_bytes) / 2);
flash_lock:
{
int retval2 = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
}
return retval;
}
static int stm32x_protect_check(struct flash_bank *bank)
{
struct target *target = bank->target;
uint32_t protection;
int retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
/* medium density - each bit refers to a 4 sector protection block
* high density - each bit refers to a 2 sector protection block
* bit 31 refers to all remaining sectors in a bank */
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
for (unsigned int i = 0; i < bank->num_prot_blocks; i++)
bank->prot_blocks[i].is_protected = (protection & (1 << i)) ? 0 : 1;
return ERROR_OK;
}
static int stm32x_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if ((first == 0) && (last == (bank->num_sectors - 1)))
return stm32x_mass_erase(bank);
/* unlock flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto flash_lock;
for (unsigned int i = first; i <= last; i++) {
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
bank->base + bank->sectors[i].offset);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target,
stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
goto flash_lock;
}
flash_lock:
{
int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
}
return retval;
}
static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
unsigned int last)
{
struct target *target = bank->target;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
int retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_erase_options(bank);
if (retval != ERROR_OK) {
LOG_ERROR("stm32x failed to erase options");
return retval;
}
for (unsigned int i = first; i <= last; i++) {
if (set)
stm32x_info->option_bytes.protection &= ~(1 << i);
else
stm32x_info->option_bytes.protection |= (1 << i);
}
return stm32x_write_options(bank);
}
static int stm32x_write_block_async(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
struct armv7m_algorithm armv7m_info;
int retval;
static const uint8_t stm32x_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32f1x.inc"
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32x_flash_write_code), stm32x_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
buffer_size = target_get_working_area_avail(target);
buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
/* Normally we allocate all available working area.
* MIN shrinks buffer_size if the size of the written block is smaller.
* MAX prevents using async algo if the available working area is smaller
* than 256, the following allocation fails with
* ERROR_TARGET_RESOURCE_NOT_AVAILABLE and slow flashing takes place.
*/
retval = target_alloc_working_area(target, buffer_size, &source);
/* Allocated size is always 32-bit word aligned */
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
/* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
* convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
*/
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
struct reg_param reg_params[5];
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
buf_set_u32(reg_params[1].value, 0, 32, hwords_count);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[4].value, 0, 32, address);
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
retval = target_run_flash_async_algorithm(target, buffer, hwords_count, 2,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address, source->size,
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
/* Actually we just need to check for programming errors
* stm32x_wait_status_busy also reports error and clears status bits.
*
* Target algo returns flash status in r0 only if properly finished.
* It is safer to re-read status register.
*/
int retval2 = stm32x_wait_status_busy(bank, 5);
if (retval2 != ERROR_OK)
retval = retval2;
LOG_ERROR("flash write failed just before address 0x%"PRIx32,
buf_get_u32(reg_params[4].value, 0, 32));
}
for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(&reg_params[i]);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
return retval;
}
static int stm32x_write_block_riscv(struct flash_bank *bank, const uint8_t *buffer,
uint32_t address, uint32_t hwords_count)
{
struct target *target = bank->target;
uint32_t buffer_size;
struct working_area *write_algorithm;
struct working_area *source;
static const uint8_t gd32vf103_flash_write_code[] = {
#include "../../../contrib/loaders/flash/gd32vf103/gd32vf103.inc"
};
/* flash write code */
if (target_alloc_working_area(target, sizeof(gd32vf103_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
int retval = target_write_buffer(target, write_algorithm->address,
sizeof(gd32vf103_flash_write_code), gd32vf103_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* memory buffer */
buffer_size = target_get_working_area_avail(target);
buffer_size = MIN(hwords_count * 2, MAX(buffer_size, 256));
retval = target_alloc_working_area(target, buffer_size, &source);
/* Allocated size is always word aligned */
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
LOG_WARNING("no large enough working area available, can't do block memory writes");
/* target_alloc_working_area() may return ERROR_FAIL if area backup fails:
* convert any error to ERROR_TARGET_RESOURCE_NOT_AVAILABLE
*/
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
struct reg_param reg_params[4];
init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT); /* poiner to FLASH_SR */
init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT); /* count (halfword-16bit) */
init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT); /* buffer start */
init_reg_param(&reg_params[3], "a3", 32, PARAM_IN_OUT); /* target address */
while (hwords_count > 0) {
uint32_t thisrun_hwords = source->size / 2;
/* Limit to the amount of data we actually want to write */
if (thisrun_hwords > hwords_count)
thisrun_hwords = hwords_count;
/* Write data to buffer */
retval = target_write_buffer(target, source->address,
thisrun_hwords * 2, buffer);
if (retval != ERROR_OK)
break;
buf_set_u32(reg_params[0].value, 0, 32, stm32x_get_flash_reg(bank, STM32_FLASH_SR));
buf_set_u32(reg_params[1].value, 0, 32, thisrun_hwords);
buf_set_u32(reg_params[2].value, 0, 32, source->address);
buf_set_u32(reg_params[3].value, 0, 32, address);
retval = target_run_algorithm(target,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
write_algorithm->address,
write_algorithm->address + sizeof(gd32vf103_flash_write_code) - 4,
10000, NULL);
if (retval != ERROR_OK) {
LOG_ERROR("Failed to execute algorithm at 0x%" TARGET_PRIxADDR ": %d",
write_algorithm->address, retval);
break;
}
/* Actually we just need to check for programming errors
* stm32x_wait_status_busy also reports error and clears status bits
*/
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK) {
LOG_ERROR("flash write failed at address 0x%"PRIx32,
buf_get_u32(reg_params[3].value, 0, 32));
break;
}
/* Update counters */
buffer += thisrun_hwords * 2;
address += thisrun_hwords * 2;
hwords_count -= thisrun_hwords;
}
for (unsigned int i = 0; i < ARRAY_SIZE(reg_params); i++)
destroy_reg_param(&reg_params[i]);
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
return retval;
}
/** Writes a block to flash either using target algorithm
* or use fallback, host controlled halfword-by-halfword access.
* Flash controller must be unlocked before this call.
*/
static int stm32x_write_block(struct flash_bank *bank,
const uint8_t *buffer, uint32_t address, uint32_t hwords_count)
{
struct target *target = bank->target;
/* The flash write must be aligned to a halfword boundary.
* The flash infrastructure ensures it, do just a security check
*/
assert(address % 2 == 0);
int retval;
struct arm *arm = target_to_arm(target);
if (is_arm(arm)) {
/* try using a block write - on ARM architecture or... */
retval = stm32x_write_block_async(bank, buffer, address, hwords_count);
} else {
/* ... RISC-V architecture */
retval = stm32x_write_block_riscv(bank, buffer, address, hwords_count);
}
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
/* if block write failed (no sufficient working area),
* we use normal (slow) single halfword accesses */
LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
while (hwords_count > 0) {
retval = target_write_memory(target, address, 2, 1, buffer);
if (retval != ERROR_OK)
return retval;
retval = stm32x_wait_status_busy(bank, 5);
if (retval != ERROR_OK)
return retval;
hwords_count--;
buffer += 2;
address += 2;
}
}
return retval;
}
static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* The flash write must be aligned to a halfword boundary.
* The flash infrastructure ensures it, do just a security check
*/
assert(offset % 2 == 0);
assert(count % 2 == 0);
int retval, retval2;
/* unlock flash registers */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
/* enable flash programming */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
if (retval != ERROR_OK)
goto reset_pg_and_lock;
/* write to flash */
retval = stm32x_write_block(bank, buffer, bank->base + offset, count / 2);
reset_pg_and_lock:
retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
return retval;
}
struct stm32x_property_addr {
uint32_t device_id;
uint32_t flash_size;
};
static int stm32x_get_property_addr(struct target *target, struct stm32x_property_addr *addr)
{
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_TARGET_NOT_EXAMINED;
}
switch (cortex_m_get_partno_safe(target)) {
case CORTEX_M0_PARTNO: /* STM32F0x devices */
addr->device_id = 0x40015800;
addr->flash_size = 0x1FFFF7CC;
return ERROR_OK;
case CORTEX_M3_PARTNO: /* STM32F1x devices */
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;
case CORTEX_M4_PARTNO: /* STM32F3x devices */
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7CC;
return ERROR_OK;
case CORTEX_M23_PARTNO: /* GD32E23x devices */
addr->device_id = 0x40015800;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;
case CORTEX_M_PARTNO_INVALID:
/* Check for GD32VF103 with RISC-V CPU */
if (strcmp(target_type_name(target), "riscv") == 0
&& target_address_bits(target) == 32) {
/* There is nothing like arm common_magic in riscv_info_t
* check text name of target and if target is 32-bit
*/
addr->device_id = 0xE0042000;
addr->flash_size = 0x1FFFF7E0;
return ERROR_OK;
}
/* fallthrough */
default:
LOG_ERROR("Cannot identify target as a stm32x");
return ERROR_FAIL;
}
}
static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
{
struct target *target = bank->target;
struct stm32x_property_addr addr;
int retval = stm32x_get_property_addr(target, &addr);
if (retval != ERROR_OK)
return retval;
return target_read_u32(target, addr.device_id, device_id);
}
static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
{
struct target *target = bank->target;
struct stm32x_property_addr addr;
int retval = stm32x_get_property_addr(target, &addr);
if (retval != ERROR_OK)
return retval;
return target_read_u16(target, addr.flash_size, flash_size_in_kb);
}
static int stm32x_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
uint16_t flash_size_in_kb;
uint16_t max_flash_size_in_kb;
uint32_t dbgmcu_idcode;
int page_size;
uint32_t base_address = 0x08000000;
stm32x_info->probed = false;
stm32x_info->register_base = FLASH_REG_BASE_B0;
stm32x_info->user_data_offset = 10;
stm32x_info->option_offset = 0;
/* default factory read protection level 0 */
stm32x_info->default_rdp = 0xA5;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
LOG_INFO("device id = 0x%08" PRIx32 "", dbgmcu_idcode);
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
/* set page size, protection granularity and max flash size depending on family */
switch (device_id) {
case 0x440: /* stm32f05x */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 64;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x444: /* stm32f03x */
case 0x445: /* stm32f04x */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 32;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x448: /* stm32f07x */
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x442: /* stm32f09x */
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x410: /* stm32f1x medium-density */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
/* GigaDevice GD32F1x0 & GD32F3x0 & GD32E23x series devices
share DEV_ID with STM32F101/2/3 medium-density line,
however they use a REV_ID different from any STM32 device.
The main difference is another offset of user option bits
(like WDG_SW, nRST_STOP, nRST_STDBY) in option byte register
(FLASH_OBR/FMC_OBSTAT 0x4002201C).
This caused problems e.g. during flash block programming
because of unexpected active hardware watchog. */
switch (rev_id) {
case 0x1303: /* gd32f1x0 */
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
max_flash_size_in_kb = 64;
stm32x_info->can_load_options = true;
break;
case 0x1704: /* gd32f3x0 */
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->can_load_options = true;
break;
case 0x1906: /* gd32vf103 */
break;
case 0x1909: /* gd32e23x */
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
max_flash_size_in_kb = 64;
stm32x_info->can_load_options = true;
break;
}
break;
case 0x412: /* stm32f1x low-density */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 32;
break;
case 0x414: /* stm32f1x high-density */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 512;
break;
case 0x418: /* stm32f1x connectivity */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
break;
case 0x430: /* stm32f1 XL-density (dual flash banks) */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 1024;
stm32x_info->has_dual_banks = true;
break;
case 0x420: /* stm32f100xx low- and medium-density value line */
page_size = 1024;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 128;
break;
case 0x428: /* stm32f100xx high-density value line */
page_size = 2048;
stm32x_info->ppage_size = 4;
max_flash_size_in_kb = 512;
break;
case 0x422: /* stm32f302/3xb/c */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x446: /* stm32f303xD/E */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 512;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x432: /* stm32f37x */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 256;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
case 0x438: /* stm32f33x */
case 0x439: /* stm32f302x6/8 */
page_size = 2048;
stm32x_info->ppage_size = 2;
max_flash_size_in_kb = 64;
stm32x_info->user_data_offset = 16;
stm32x_info->option_offset = 6;
stm32x_info->default_rdp = 0xAA;
stm32x_info->can_load_options = true;
break;
default:
LOG_WARNING("Cannot identify target as a STM32 family.");
return ERROR_FAIL;
}
/* get flash size from target. */
retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
max_flash_size_in_kb);
flash_size_in_kb = max_flash_size_in_kb;
}
if (stm32x_info->has_dual_banks) {
/* split reported size into matching bank */
if (bank->base != 0x08080000) {
/* bank 0 will be fixed 512k */
flash_size_in_kb = 512;
} else {
flash_size_in_kb -= 512;
/* bank1 also uses a register offset */
stm32x_info->register_base = FLASH_REG_BASE_B1;
base_address = 0x08080000;
}
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32x_info->user_bank_size) {
LOG_INFO("ignoring flash probed value, using configured bank size");
flash_size_in_kb = stm32x_info->user_bank_size / 1024;
}
LOG_INFO("flash size = %d KiB", flash_size_in_kb);
/* did we assign flash size? */
assert(flash_size_in_kb != 0xffff);
/* calculate numbers of pages */
int num_pages = flash_size_in_kb * 1024 / page_size;
/* check that calculation result makes sense */
assert(num_pages > 0);
free(bank->sectors);
bank->sectors = NULL;
free(bank->prot_blocks);
bank->prot_blocks = NULL;
bank->base = base_address;
bank->size = (num_pages * page_size);
bank->num_sectors = num_pages;
bank->sectors = alloc_block_array(0, page_size, num_pages);
if (!bank->sectors)
return ERROR_FAIL;
/* calculate number of write protection blocks */
int num_prot_blocks = num_pages / stm32x_info->ppage_size;
if (num_prot_blocks > 32)
num_prot_blocks = 32;
bank->num_prot_blocks = num_prot_blocks;
bank->prot_blocks = alloc_block_array(0, stm32x_info->ppage_size * page_size, num_prot_blocks);
if (!bank->prot_blocks)
return ERROR_FAIL;
if (num_prot_blocks == 32)
bank->prot_blocks[31].size = (num_pages - (31 * stm32x_info->ppage_size)) * page_size;
stm32x_info->probed = true;
return ERROR_OK;
}
static int stm32x_auto_probe(struct flash_bank *bank)
{
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (stm32x_info->probed)
return ERROR_OK;
return stm32x_probe(bank);
}
#if 0
COMMAND_HANDLER(stm32x_handle_part_id_command)
{
return ERROR_OK;
}
#endif
static const char *get_stm32f0_revision(uint16_t rev_id)
{
const char *rev_str = NULL;
switch (rev_id) {
case 0x1000:
rev_str = "1.0";
break;
case 0x2000:
rev_str = "2.0";
break;
}
return rev_str;
}
static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
{
uint32_t dbgmcu_idcode;
/* read stm32 device id register */
int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
if (retval != ERROR_OK)
return retval;
uint16_t device_id = dbgmcu_idcode & 0xfff;
uint16_t rev_id = dbgmcu_idcode >> 16;
const char *device_str;
const char *rev_str = NULL;
switch (device_id) {
case 0x410:
device_str = "STM32F10x (Medium Density)";
switch (rev_id) {
case 0x0000:
rev_str = "A";
break;
case 0x1303: /* gd32f1x0 */
device_str = "GD32F1x0";
break;
case 0x1704: /* gd32f3x0 */
device_str = "GD32F3x0";
break;
case 0x1906:
device_str = "GD32VF103";
break;
case 0x1909: /* gd32e23x */
device_str = "GD32E23x";
break;
case 0x2000:
rev_str = "B";
break;
case 0x2001:
rev_str = "Z";
break;
case 0x2003:
rev_str = "Y";
break;
}
break;
case 0x412:
device_str = "STM32F10x (Low Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x414:
device_str = "STM32F10x (High Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
case 0x1003:
rev_str = "Y";
break;
}
break;
case 0x418:
device_str = "STM32F10x (Connectivity)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x420:
device_str = "STM32F100 (Low/Medium Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x422:
device_str = "STM32F302xB/C";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
case 0x1003:
rev_str = "Y";
break;
case 0x2000:
rev_str = "B";
break;
}
break;
case 0x428:
device_str = "STM32F100 (High Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x430:
device_str = "STM32F10x (XL Density)";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x432:
device_str = "STM32F37x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x2000:
rev_str = "B";
break;
}
break;
case 0x438:
device_str = "STM32F33x";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x439:
device_str = "STM32F302x6/8";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
case 0x1001:
rev_str = "Z";
break;
}
break;
case 0x444:
device_str = "STM32F03x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x440:
device_str = "STM32F05x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x445:
device_str = "STM32F04x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x446:
device_str = "STM32F303xD/E";
switch (rev_id) {
case 0x1000:
rev_str = "A";
break;
}
break;
case 0x448:
device_str = "STM32F07x";
rev_str = get_stm32f0_revision(rev_id);
break;
case 0x442:
device_str = "STM32F09x";
rev_str = get_stm32f0_revision(rev_id);
break;
default:
command_print_sameline(cmd, "Cannot identify target as a STM32F0/1/3\n");
return ERROR_FAIL;
}
if (rev_str)
command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
else
command_print_sameline(cmd, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_lock_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}
/* set readout protection */
stm32x_info->option_bytes.rdp = 0;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to lock device");
return ERROR_OK;
}
command_print(CMD, "stm32x locked");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to unlock device");
return ERROR_OK;
}
command_print(CMD, "stm32x unlocked.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_read_command)
{
uint32_t optionbyte, protection;
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
if (retval != ERROR_OK)
return retval;
uint16_t user_data = optionbyte >> stm32x_info->user_data_offset;
retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
if (retval != ERROR_OK)
return retval;
if (optionbyte & (1 << OPT_ERROR))
command_print(CMD, "option byte complement error");
command_print(CMD, "option byte register = 0x%" PRIx32 "", optionbyte);
command_print(CMD, "write protection register = 0x%" PRIx32 "", protection);
command_print(CMD, "read protection: %s",
(optionbyte & (1 << OPT_READOUT)) ? "on" : "off");
/* user option bytes are offset depending on variant */
optionbyte >>= stm32x_info->option_offset;
command_print(CMD, "watchdog: %sware",
(optionbyte & (1 << OPT_RDWDGSW)) ? "soft" : "hard");
command_print(CMD, "stop mode: %sreset generated upon entry",
(optionbyte & (1 << OPT_RDRSTSTOP)) ? "no " : "");
command_print(CMD, "standby mode: %sreset generated upon entry",
(optionbyte & (1 << OPT_RDRSTSTDBY)) ? "no " : "");
if (stm32x_info->has_dual_banks)
command_print(CMD, "boot: bank %d", (optionbyte & (1 << OPT_BFB2)) ? 0 : 1);
command_print(CMD, "user data = 0x%02" PRIx16 "", user_data);
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_write_command)
{
struct target *target = NULL;
struct stm32x_flash_bank *stm32x_info = NULL;
uint8_t optionbyte;
uint16_t useropt;
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
stm32x_info = bank->driver_priv;
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_read_options(bank);
if (retval != ERROR_OK)
return retval;
/* start with current options */
optionbyte = stm32x_info->option_bytes.user;
useropt = stm32x_info->option_bytes.data;
/* skip over flash bank */
CMD_ARGC--;
CMD_ARGV++;
while (CMD_ARGC) {
if (strcmp("SWWDG", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 0);
else if (strcmp("HWWDG", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 0);
else if (strcmp("NORSTSTOP", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 1);
else if (strcmp("RSTSTOP", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 1);
else if (strcmp("NORSTSTNDBY", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 2);
else if (strcmp("RSTSTNDBY", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 2);
else if (strcmp("USEROPT", CMD_ARGV[0]) == 0) {
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], useropt);
CMD_ARGC--;
CMD_ARGV++;
} else if (stm32x_info->has_dual_banks) {
if (strcmp("BOOT0", CMD_ARGV[0]) == 0)
optionbyte |= (1 << 3);
else if (strcmp("BOOT1", CMD_ARGV[0]) == 0)
optionbyte &= ~(1 << 3);
else
return ERROR_COMMAND_SYNTAX_ERROR;
} else
return ERROR_COMMAND_SYNTAX_ERROR;
CMD_ARGC--;
CMD_ARGV++;
}
if (stm32x_erase_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to erase options");
return ERROR_OK;
}
stm32x_info->option_bytes.user = optionbyte;
stm32x_info->option_bytes.data = useropt;
if (stm32x_write_options(bank) != ERROR_OK) {
command_print(CMD, "stm32x failed to write options");
return ERROR_OK;
}
command_print(CMD, "stm32x write options complete.\n"
"INFO: %spower cycle is required "
"for the new settings to take effect.",
stm32x_info->can_load_options
? "'stm32f1x options_load' command or " : "");
return ERROR_OK;
}
COMMAND_HANDLER(stm32x_handle_options_load_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
if (!stm32x_info->can_load_options) {
LOG_ERROR("Command not applicable to stm32f1x devices - power cycle is "
"required instead.");
return ERROR_FAIL;
}
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
retval = stm32x_check_operation_supported(bank);
if (retval != ERROR_OK)
return retval;
/* unlock option flash registers */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK) {
(void)target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
return retval;
}
/* force re-load of option bytes - generates software reset */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_OBL_LAUNCH);
if (retval != ERROR_OK)
return retval;
return ERROR_OK;
}
static int stm32x_mass_erase(struct flash_bank *bank)
{
struct target *target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* unlock option flash registers */
int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
if (retval != ERROR_OK)
return retval;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
if (retval != ERROR_OK)
goto flash_lock;
/* mass erase flash memory */
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
if (retval != ERROR_OK)
goto flash_lock;
retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
FLASH_MER | FLASH_STRT);
if (retval != ERROR_OK)
goto flash_lock;
retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
flash_lock:
{
int retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
if (retval == ERROR_OK)
retval = retval2;
}
return retval;
}
COMMAND_HANDLER(stm32x_handle_mass_erase_command)
{
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32x_mass_erase(bank);
if (retval == ERROR_OK)
command_print(CMD, "stm32x mass erase complete");
else
command_print(CMD, "stm32x mass erase failed");
return retval;
}
static const struct command_registration stm32f1x_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32x_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32x_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32x_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "options_read",
.handler = stm32x_handle_options_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Read and display device option bytes.",
},
{
.name = "options_write",
.handler = stm32x_handle_options_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id ('SWWDG'|'HWWDG') "
"('RSTSTNDBY'|'NORSTSTNDBY') "
"('RSTSTOP'|'NORSTSTOP') ('USEROPT' user_data)",
.help = "Replace bits in device option bytes.",
},
{
.name = "options_load",
.handler = stm32x_handle_options_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device option bytes.",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32f1x_command_handlers[] = {
{
.name = "stm32f1x",
.mode = COMMAND_ANY,
.help = "stm32f1x flash command group",
.usage = "",
.chain = stm32f1x_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32f1x_flash = {
.name = "stm32f1x",
.commands = stm32f1x_command_handlers,
.flash_bank_command = stm32x_flash_bank_command,
.erase = stm32x_erase,
.protect = stm32x_protect,
.write = stm32x_write,
.read = default_flash_read,
.probe = stm32x_probe,
.auto_probe = stm32x_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32x_protect_check,
.info = get_stm32x_info,
.free_driver_priv = default_flash_free_driver_priv,
};