openocd/src/flash/nor/stm32l4x.c

2572 lines
79 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/***************************************************************************
* Copyright (C) 2015 by Uwe Bonnes *
* bon@elektron.ikp.physik.tu-darmstadt.de *
* *
* Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics *
* tarek.bouchkati@gmail.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include <helper/align.h>
#include <helper/binarybuffer.h>
#include <helper/bits.h>
#include <target/algorithm.h>
#include <target/arm_adi_v5.h>
#include <target/cortex_m.h>
#include "stm32l4x.h"
/* STM32L4xxx series for reference.
*
* RM0351 (STM32L4x5/STM32L4x6)
* http://www.st.com/resource/en/reference_manual/dm00083560.pdf
*
* RM0394 (STM32L43x/44x/45x/46x)
* http://www.st.com/resource/en/reference_manual/dm00151940.pdf
*
* RM0432 (STM32L4R/4Sxx)
* http://www.st.com/resource/en/reference_manual/dm00310109.pdf
*
* STM32L476RG Datasheet (for erase timing)
* http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
*
* The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
* an option byte is available to map all sectors to the first bank.
* Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
* handlers do!
*
* RM0394 devices have a single bank only.
*
* RM0432 devices have single and dual bank operating modes.
* - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
* - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
* Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
*
* Bank mode is controlled by two different bits in option bytes register.
* - for STM32L4R/Sxx
* In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
* In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
* - for STM32L4P5/Q5x
* In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
* In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
*/
/* STM32WBxxx series for reference.
*
* RM0434 (STM32WB55/WB35x)
* http://www.st.com/resource/en/reference_manual/dm00318631.pdf
*
* RM0471 (STM32WB50/WB30x)
* http://www.st.com/resource/en/reference_manual/dm00622834.pdf
*
* RM0473 (STM32WB15x)
* http://www.st.com/resource/en/reference_manual/dm00649196.pdf
*
* RM0478 (STM32WB10x)
* http://www.st.com/resource/en/reference_manual/dm00689203.pdf
*/
/* STM32WLxxx series for reference.
*
* RM0461 (STM32WLEx)
* http://www.st.com/resource/en/reference_manual/dm00530369.pdf
*
* RM0453 (STM32WL5x)
* http://www.st.com/resource/en/reference_manual/dm00451556.pdf
*/
/* STM32G0xxx series for reference.
*
* RM0444 (STM32G0x1)
* http://www.st.com/resource/en/reference_manual/dm00371828.pdf
*
* RM0454 (STM32G0x0)
* http://www.st.com/resource/en/reference_manual/dm00463896.pdf
*/
/* STM32G4xxx series for reference.
*
* RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
* http://www.st.com/resource/en/reference_manual/dm00355726.pdf
*
* Cat. 2 devices have single bank only, page size is 2kByte.
*
* Cat. 3 devices have single and dual bank operating modes,
* Page size is 2kByte (dual mode) or 4kByte (single mode).
*
* Bank mode is controlled by bit 22 (DBANK) in option bytes register.
* Both banks are treated as a single OpenOCD bank.
*
* Cat. 4 devices have single bank only, page size is 2kByte.
*/
/* STM32L5xxx series for reference.
*
* RM0428 (STM32L552xx/STM32L562xx)
* http://www.st.com/resource/en/reference_manual/dm00346336.pdf
*/
/* Erase time can be as high as 25ms, 10x this and assume it's toast... */
#define FLASH_ERASE_TIMEOUT 250
#define FLASH_WRITE_TIMEOUT 50
/* relevant STM32L4 flags ****************************************************/
#define F_NONE 0
/* this flag indicates if the device flash is with dual bank architecture */
#define F_HAS_DUAL_BANK BIT(0)
/* this flags is used for dual bank devices only, it indicates if the
* 4 WRPxx are usable if the device is configured in single-bank mode */
#define F_USE_ALL_WRPXX BIT(1)
/* this flag indicates if the device embeds a TrustZone security feature */
#define F_HAS_TZ BIT(2)
/* this flag indicates if the device has the same flash registers as STM32L5 */
#define F_HAS_L5_FLASH_REGS BIT(3)
/* this flag indicates that programming should be done in quad-word
* the default programming word size is double-word */
#define F_QUAD_WORD_PROG BIT(4)
/* end of STM32L4 flags ******************************************************/
enum stm32l4_flash_reg_index {
STM32_FLASH_ACR_INDEX,
STM32_FLASH_KEYR_INDEX,
STM32_FLASH_OPTKEYR_INDEX,
STM32_FLASH_SR_INDEX,
STM32_FLASH_CR_INDEX,
/* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
* so it uses the C2CR for flash operations and CR for checking locks and locking */
STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
STM32_FLASH_OPTR_INDEX,
STM32_FLASH_WRP1AR_INDEX,
STM32_FLASH_WRP1BR_INDEX,
STM32_FLASH_WRP2AR_INDEX,
STM32_FLASH_WRP2BR_INDEX,
STM32_FLASH_REG_INDEX_NUM,
};
enum stm32l4_rdp {
RDP_LEVEL_0 = 0xAA,
RDP_LEVEL_0_5 = 0x55, /* for devices with TrustZone enabled */
RDP_LEVEL_1 = 0x00,
RDP_LEVEL_2 = 0xCC
};
static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x00C,
[STM32_FLASH_SR_INDEX] = 0x010,
[STM32_FLASH_CR_INDEX] = 0x014,
[STM32_FLASH_OPTR_INDEX] = 0x020,
[STM32_FLASH_WRP1AR_INDEX] = 0x02C,
[STM32_FLASH_WRP1BR_INDEX] = 0x030,
[STM32_FLASH_WRP2AR_INDEX] = 0x04C,
[STM32_FLASH_WRP2BR_INDEX] = 0x050,
};
static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008,
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x060,
[STM32_FLASH_CR_INDEX] = 0x064,
[STM32_FLASH_CR_WLK_INDEX] = 0x014,
[STM32_FLASH_OPTR_INDEX] = 0x020,
[STM32_FLASH_WRP1AR_INDEX] = 0x02C,
[STM32_FLASH_WRP1BR_INDEX] = 0x030,
};
static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x008, /* NSKEYR */
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x020, /* NSSR */
[STM32_FLASH_CR_INDEX] = 0x028, /* NSCR */
[STM32_FLASH_OPTR_INDEX] = 0x040,
[STM32_FLASH_WRP1AR_INDEX] = 0x058,
[STM32_FLASH_WRP1BR_INDEX] = 0x05C,
[STM32_FLASH_WRP2AR_INDEX] = 0x068,
[STM32_FLASH_WRP2BR_INDEX] = 0x06C,
};
static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
[STM32_FLASH_ACR_INDEX] = 0x000,
[STM32_FLASH_KEYR_INDEX] = 0x00C, /* SECKEYR */
[STM32_FLASH_OPTKEYR_INDEX] = 0x010,
[STM32_FLASH_SR_INDEX] = 0x024, /* SECSR */
[STM32_FLASH_CR_INDEX] = 0x02C, /* SECCR */
[STM32_FLASH_OPTR_INDEX] = 0x040,
[STM32_FLASH_WRP1AR_INDEX] = 0x058,
[STM32_FLASH_WRP1BR_INDEX] = 0x05C,
[STM32_FLASH_WRP2AR_INDEX] = 0x068,
[STM32_FLASH_WRP2BR_INDEX] = 0x06C,
};
struct stm32l4_rev {
const uint16_t rev;
const char *str;
};
struct stm32l4_part_info {
uint16_t id;
const char *device_str;
const struct stm32l4_rev *revs;
const size_t num_revs;
const uint16_t max_flash_size_kb;
const uint32_t flags; /* one bit per feature, see STM32L4 flags: macros F_XXX */
const uint32_t flash_regs_base;
const uint32_t fsize_addr;
const uint32_t otp_base;
const uint32_t otp_size;
};
struct stm32l4_flash_bank {
bool probed;
uint32_t idcode;
unsigned int bank1_sectors;
bool dual_bank_mode;
int hole_sectors;
uint32_t user_bank_size;
uint32_t data_width;
uint32_t cr_bker_mask;
uint32_t sr_bsy_mask;
uint32_t wrpxxr_mask;
const struct stm32l4_part_info *part_info;
uint32_t flash_regs_base;
const uint32_t *flash_regs;
bool otp_enabled;
enum stm32l4_rdp rdp;
bool tzen;
uint32_t optr;
};
enum stm32_bank_id {
STM32_BANK1,
STM32_BANK2,
STM32_ALL_BANKS
};
struct stm32l4_wrp {
enum stm32l4_flash_reg_index reg_idx;
uint32_t value;
bool used;
int first;
int last;
int offset;
};
/* human readable list of families this drivers supports (sorted alphabetically) */
static const char *device_families = "STM32G0/G4/L4/L4+/L5/U5/WB/WL";
static const struct stm32l4_rev stm32l47_l48xx_revs[] = {
{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
};
static const struct stm32l4_rev stm32l43_l44xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32g05_g06xx_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32l4_rev stm32_g07_g08xx_revs[] = {
{ 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32l49_l4axx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32l45_l46xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32l41_L42xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};
static const struct stm32l4_rev stm32g03_g04xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32g0b_g0cxx_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32l4_rev stm32g43_g44xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
};
static const struct stm32l4_rev stm32g47_g48xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
};
static const struct stm32l4_rev stm32l4r_l4sxx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
};
static const struct stm32l4_rev stm32l4p_l4qxx_revs[] = {
{ 0x1001, "Z" },
};
static const struct stm32l4_rev stm32l55_l56xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32g49_g4axx_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32l4_rev stm32u57_u58xx_revs[] = {
{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32wb1xx_revs[] = {
{ 0x1000, "A" }, { 0x2000, "B" },
};
static const struct stm32l4_rev stm32wb5xx_revs[] = {
{ 0x2001, "2.1" },
};
static const struct stm32l4_rev stm32wb3xx_revs[] = {
{ 0x1000, "A" },
};
static const struct stm32l4_rev stm32wle_wl5xx_revs[] = {
{ 0x1000, "1.0" },
};
static const struct stm32l4_part_info stm32l4_parts[] = {
{
.id = DEVID_STM32L47_L48XX,
.revs = stm32l47_l48xx_revs,
.num_revs = ARRAY_SIZE(stm32l47_l48xx_revs),
.device_str = "STM32L47/L48xx",
.max_flash_size_kb = 1024,
.flags = F_HAS_DUAL_BANK,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32L43_L44XX,
.revs = stm32l43_l44xx_revs,
.num_revs = ARRAY_SIZE(stm32l43_l44xx_revs),
.device_str = "STM32L43/L44xx",
.max_flash_size_kb = 256,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32G05_G06XX,
.revs = stm32g05_g06xx_revs,
.num_revs = ARRAY_SIZE(stm32g05_g06xx_revs),
.device_str = "STM32G05/G06xx",
.max_flash_size_kb = 64,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32G07_G08XX,
.revs = stm32_g07_g08xx_revs,
.num_revs = ARRAY_SIZE(stm32_g07_g08xx_revs),
.device_str = "STM32G07/G08xx",
.max_flash_size_kb = 128,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32L49_L4AXX,
.revs = stm32l49_l4axx_revs,
.num_revs = ARRAY_SIZE(stm32l49_l4axx_revs),
.device_str = "STM32L49/L4Axx",
.max_flash_size_kb = 1024,
.flags = F_HAS_DUAL_BANK,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32L45_L46XX,
.revs = stm32l45_l46xx_revs,
.num_revs = ARRAY_SIZE(stm32l45_l46xx_revs),
.device_str = "STM32L45/L46xx",
.max_flash_size_kb = 512,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32L41_L42XX,
.revs = stm32l41_L42xx_revs,
.num_revs = ARRAY_SIZE(stm32l41_L42xx_revs),
.device_str = "STM32L41/L42xx",
.max_flash_size_kb = 128,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32G03_G04XX,
.revs = stm32g03_g04xx_revs,
.num_revs = ARRAY_SIZE(stm32g03_g04xx_revs),
.device_str = "STM32G03x/G04xx",
.max_flash_size_kb = 64,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32G0B_G0CXX,
.revs = stm32g0b_g0cxx_revs,
.num_revs = ARRAY_SIZE(stm32g0b_g0cxx_revs),
.device_str = "STM32G0B/G0Cx",
.max_flash_size_kb = 512,
.flags = F_HAS_DUAL_BANK,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32G43_G44XX,
.revs = stm32g43_g44xx_revs,
.num_revs = ARRAY_SIZE(stm32g43_g44xx_revs),
.device_str = "STM32G43/G44xx",
.max_flash_size_kb = 128,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32G47_G48XX,
.revs = stm32g47_g48xx_revs,
.num_revs = ARRAY_SIZE(stm32g47_g48xx_revs),
.device_str = "STM32G47/G48xx",
.max_flash_size_kb = 512,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32L4R_L4SXX,
.revs = stm32l4r_l4sxx_revs,
.num_revs = ARRAY_SIZE(stm32l4r_l4sxx_revs),
.device_str = "STM32L4R/L4Sxx",
.max_flash_size_kb = 2048,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32L4P_L4QXX,
.revs = stm32l4p_l4qxx_revs,
.num_revs = ARRAY_SIZE(stm32l4p_l4qxx_revs),
.device_str = "STM32L4P/L4Qxx",
.max_flash_size_kb = 1024,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32L55_L56XX,
.revs = stm32l55_l56xx_revs,
.num_revs = ARRAY_SIZE(stm32l55_l56xx_revs),
.device_str = "STM32L55/L56xx",
.max_flash_size_kb = 512,
.flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x0BFA05E0,
.otp_base = 0x0BFA0000,
.otp_size = 512,
},
{
.id = DEVID_STM32G49_G4AXX,
.revs = stm32g49_g4axx_revs,
.num_revs = ARRAY_SIZE(stm32g49_g4axx_revs),
.device_str = "STM32G49/G4Axx",
.max_flash_size_kb = 512,
.flags = F_NONE,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32U57_U58XX,
.revs = stm32u57_u58xx_revs,
.num_revs = ARRAY_SIZE(stm32u57_u58xx_revs),
.device_str = "STM32U57/U58xx",
.max_flash_size_kb = 2048,
.flags = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
.flash_regs_base = 0x40022000,
.fsize_addr = 0x0BFA07A0,
.otp_base = 0x0BFA0000,
.otp_size = 512,
},
{
.id = DEVID_STM32WB1XX,
.revs = stm32wb1xx_revs,
.num_revs = ARRAY_SIZE(stm32wb1xx_revs),
.device_str = "STM32WB1x",
.max_flash_size_kb = 320,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32WB5XX,
.revs = stm32wb5xx_revs,
.num_revs = ARRAY_SIZE(stm32wb5xx_revs),
.device_str = "STM32WB5x",
.max_flash_size_kb = 1024,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32WB3XX,
.revs = stm32wb3xx_revs,
.num_revs = ARRAY_SIZE(stm32wb3xx_revs),
.device_str = "STM32WB3x",
.max_flash_size_kb = 512,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
{
.id = DEVID_STM32WLE_WL5XX,
.revs = stm32wle_wl5xx_revs,
.num_revs = ARRAY_SIZE(stm32wle_wl5xx_revs),
.device_str = "STM32WLE/WL5x",
.max_flash_size_kb = 256,
.flags = F_NONE,
.flash_regs_base = 0x58004000,
.fsize_addr = 0x1FFF75E0,
.otp_base = 0x1FFF7000,
.otp_size = 1024,
},
};
/* flash bank stm32l4x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
struct stm32l4_flash_bank *stm32l4_info;
if (CMD_ARGC < 6)
return ERROR_COMMAND_SYNTAX_ERROR;
/* fix-up bank base address: 0 is used for normal flash memory */
if (bank->base == 0)
bank->base = STM32_FLASH_BANK_BASE;
stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
if (!stm32l4_info)
return ERROR_FAIL; /* Checkme: What better error to use?*/
bank->driver_priv = stm32l4_info;
stm32l4_info->probed = false;
stm32l4_info->otp_enabled = false;
stm32l4_info->user_bank_size = bank->size;
return ERROR_OK;
}
/* bitmap helper extension */
struct range {
unsigned int start;
unsigned int end;
};
static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
struct range *ranges, unsigned int *ranges_count) {
*ranges_count = 0;
bool last_bit = 0, cur_bit;
for (unsigned int i = 0; i < nbits; i++) {
cur_bit = test_bit(i, bitmap);
if (cur_bit && !last_bit) {
(*ranges_count)++;
ranges[*ranges_count - 1].start = i;
ranges[*ranges_count - 1].end = i;
} else if (cur_bit && last_bit) {
/* update (increment) the end this range */
ranges[*ranges_count - 1].end = i;
}
last_bit = cur_bit;
}
}
static inline int range_print_one(struct range *range, char *str)
{
if (range->start == range->end)
return sprintf(str, "[%d]", range->start);
return sprintf(str, "[%d,%d]", range->start, range->end);
}
static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
{
/* each range will be printed like the following: [start,end]
* start and end, both are unsigned int, an unsigned int takes 10 characters max
* plus 3 characters for '[', ',' and ']'
* thus means each range can take maximum 23 character
* after each range we add a ' ' as separator and finally we need the '\0'
* if the ranges_count is zero we reserve one char for '\0' to return an empty string */
char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
char *ptr = str;
for (unsigned int i = 0; i < ranges_count; i++) {
ptr += range_print_one(&(ranges[i]), ptr);
if (i < ranges_count - 1)
*(ptr++) = ' ';
}
return str;
}
/* end of bitmap helper extension */
static inline bool stm32l4_is_otp(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return bank->base == stm32l4_info->part_info->otp_base;
}
static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (!stm32l4_is_otp(bank))
return ERROR_FAIL;
char *op_str = enable ? "enabled" : "disabled";
LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
bank->bank_number,
stm32l4_info->otp_enabled == enable ? "already " : "",
op_str);
stm32l4_info->otp_enabled = enable;
return ERROR_OK;
}
static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_info->otp_enabled;
}
static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
bool tzen = false;
if (stm32l4_info->part_info->flags & F_HAS_TZ)
tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;
uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;
/* for devices without TrustZone:
* RDP level 0 and 2 values are to 0xAA and 0xCC
* Any other value corresponds to RDP level 1
* for devices with TrusZone:
* RDP level 0 and 2 values are 0xAA and 0xCC
* RDP level 0.5 value is 0x55 only if TZEN = 1
* Any other value corresponds to RDP level 1, including 0x55 if TZEN = 0
*/
if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
rdp = RDP_LEVEL_1;
}
stm32l4_info->tzen = tzen;
stm32l4_info->rdp = rdp;
}
static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_info->flash_regs_base + reg_offset;
}
static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
}
static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}
static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index, uint32_t *value)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}
static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}
static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
enum stm32l4_flash_reg_index reg_index, uint32_t value)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}
static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t status;
int retval = ERROR_OK;
/* wait for busy to clear */
for (;;) {
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
if (retval != ERROR_OK)
return retval;
LOG_DEBUG("status: 0x%" PRIx32 "", status);
if ((status & stm32l4_info->sr_bsy_mask) == 0)
break;
if (timeout-- <= 0) {
LOG_ERROR("timed out waiting for flash");
return ERROR_FAIL;
}
alive_sleep(1);
}
if (status & FLASH_WRPERR) {
LOG_ERROR("stm32x device protected");
retval = ERROR_FAIL;
}
/* Clear but report errors */
if (status & FLASH_ERROR) {
if (retval == ERROR_OK)
retval = ERROR_FAIL;
/* If this operation fails, we ignore it and report the original
* retval
*/
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
}
return retval;
}
/** set all FLASH_SECBB registers to the same value */
static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
{
/* This function should be used only with device with TrustZone, do just a security check */
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
assert(stm32l4_info->part_info->flags & F_HAS_TZ);
/* based on RM0438 Rev6 for STM32L5x devices:
* to modify a page block-based security attribution, it is recommended to
* 1- check that no flash operation is ongoing on the related page
* 2- add ISB instruction after modifying the page security attribute in SECBBxRy
* this step is not need in case of JTAG direct access
*/
int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
/* write SECBBxRy registers */
LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);
const uint8_t secbb_regs[] = {
FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4), /* bank 1 SECBB register offsets */
FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4) /* bank 2 SECBB register offsets */
};
unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);
/* in single bank mode, it's useless to modify FLASH_SECBB2Rx registers
* then consider only the first half of secbb_regs
*/
if (!stm32l4_info->dual_bank_mode)
num_secbb_regs /= 2;
for (unsigned int i = 0; i < num_secbb_regs; i++) {
retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
}
static int stm32l4_unlock_reg(struct flash_bank *bank)
{
const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
uint32_t ctrl;
/* first check if not already unlocked
* otherwise writing on STM32_FLASH_KEYR will fail
*/
int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_LOCK) == 0)
return ERROR_OK;
/* unlock flash registers */
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_LOCK) {
LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
uint32_t ctrl;
int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if ((ctrl & FLASH_OPTLOCK) == 0)
return ERROR_OK;
/* unlock option registers */
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
if (retval != ERROR_OK)
return retval;
if (ctrl & FLASH_OPTLOCK) {
LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
return ERROR_TARGET_FAILURE;
}
return ERROR_OK;
}
static int stm32l4_perform_obl_launch(struct flash_bank *bank)
{
int retval, retval2;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
* but the RMs explicitly do *NOT* list this as power-on reset cause, and:
* "Note: If the read protection is set while the debugger is still
* connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
*/
/* "Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset" */
/* Due to this reset ST-Link reports an SWD_DP_ERROR, despite the write was successful,
* then just ignore the returned value */
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
/* Need to re-probe after change */
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
stm32l4_info->probed = false;
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
FLASH_LOCK | FLASH_OPTLOCK);
if (retval != ERROR_OK)
return retval;
return retval2;
}
static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
uint32_t value, uint32_t mask)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
uint32_t optiondata;
int retval, retval2;
retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
if (retval != ERROR_OK)
return retval;
/* for STM32L5 and similar devices, use always non-secure
* registers for option bytes programming */
const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_unlock_option_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
optiondata = (optiondata & ~mask) | (value & mask);
retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
FLASH_LOCK | FLASH_OPTLOCK);
stm32l4_info->flash_regs = saved_flash_regs;
if (retval != ERROR_OK)
return retval;
return retval2;
}
static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
enum stm32l4_flash_reg_index reg_idx, int offset)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int ret;
wrpxy->reg_idx = reg_idx;
wrpxy->offset = offset;
ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
if (ret != ERROR_OK)
return ret;
wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
wrpxy->used = wrpxy->first <= wrpxy->last;
return ERROR_OK;
}
static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int ret;
*n_wrp = 0;
/* for single bank devices there is 2 WRP regions.
* for dual bank devices there is 2 WRP regions per bank,
* if configured as single bank only 2 WRP are usable
* except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
* note: this should be revised, if a device will have the SWAP banks option
*/
int wrp2y_sectors_offset = -1; /* -1 : unused */
/* if bank_id is BANK1 or ALL_BANKS */
if (dev_bank_id != STM32_BANK2) {
/* get FLASH_WRP1AR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
if (ret != ERROR_OK)
return ret;
/* get WRP1BR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
if (ret != ERROR_OK)
return ret;
/* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
wrp2y_sectors_offset = 0;
}
/* if bank_id is BANK2 or ALL_BANKS */
if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
if (wrp2y_sectors_offset >= 0) {
/* get WRP2AR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
if (ret != ERROR_OK)
return ret;
/* get WRP2BR */
ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
if (ret != ERROR_OK)
return ret;
}
return ERROR_OK;
}
static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int wrp_start = wrpxy->first - wrpxy->offset;
int wrp_end = wrpxy->last - wrpxy->offset;
uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
}
static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
{
int ret;
for (unsigned int i = 0; i < n_wrp; i++) {
ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
if (ret != ERROR_OK)
return ret;
}
return ERROR_OK;
}
static int stm32l4_protect_check(struct flash_bank *bank)
{
unsigned int n_wrp;
struct stm32l4_wrp wrpxy[4];
int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
/* initialize all sectors as unprotected */
for (unsigned int i = 0; i < bank->num_sectors; i++)
bank->sectors[i].is_protected = 0;
/* now check WRPxy and mark the protected sectors */
for (unsigned int i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
bank->sectors[s].is_protected = 1;
}
}
return ERROR_OK;
}
static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
unsigned int last)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int retval, retval2;
assert((first <= last) && (last < bank->num_sectors));
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot erase OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* set all FLASH pages as secure */
retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
if (retval != ERROR_OK) {
/* restore all FLASH pages as non-secure */
stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
return retval;
}
}
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/*
Sector Erase
To erase a sector, follow the procedure below:
1. Check that no Flash memory operation is ongoing by
checking the BSY bit in the FLASH_SR register
2. Set the PER bit and select the page and bank
you wish to erase in the FLASH_CR register
3. Set the STRT bit in the FLASH_CR register
4. Wait for the BSY bit to be cleared
*/
for (unsigned int i = first; i <= last; i++) {
uint32_t erase_flags;
erase_flags = FLASH_PER | FLASH_STRT;
if (i >= stm32l4_info->bank1_sectors) {
uint8_t snb;
snb = i - stm32l4_info->bank1_sectors;
erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
} else
erase_flags |= i << FLASH_PAGE_SHIFT;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
if (retval != ERROR_OK)
break;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
if (retval != ERROR_OK)
break;
}
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* restore all FLASH pages as non-secure */
int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
if (retval3 != ERROR_OK)
return retval3;
}
if (retval != ERROR_OK)
return retval;
return retval2;
}
static int stm32l4_protect_same_bank(struct flash_bank *bank, enum stm32_bank_id bank_id, int set,
unsigned int first, unsigned int last)
{
unsigned int i;
/* check if the desired protection is already configured */
for (i = first; i <= last; i++) {
if (bank->sectors[i].is_protected != set)
break;
else if (i == last) {
LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
return ERROR_OK;
}
}
/* all sectors from first to last (or part of them) could have different
* protection other than the requested */
unsigned int n_wrp;
struct stm32l4_wrp wrpxy[4];
int ret = stm32l4_get_all_wrpxy(bank, bank_id, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
/* use bitmap and range helpers to optimize the WRP usage */
DECLARE_BITMAP(pages, bank->num_sectors);
bitmap_zero(pages, bank->num_sectors);
for (i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
set_bit(p, pages);
}
}
/* we have at most 'n_wrp' WRP areas
* add one range if the user is trying to protect a fifth range */
struct range ranges[n_wrp + 1];
unsigned int ranges_count = 0;
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
/* pretty-print the currently protected ranges */
if (ranges_count > 0) {
char *ranges_str = range_print_alloc(ranges, ranges_count);
LOG_DEBUG("current protected areas: %s", ranges_str);
free(ranges_str);
} else
LOG_DEBUG("current protected areas: none");
if (set) { /* flash protect */
for (i = first; i <= last; i++)
set_bit(i, pages);
} else { /* flash unprotect */
for (i = first; i <= last; i++)
clear_bit(i, pages);
}
/* check the ranges_count after the user request */
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
/* pretty-print the requested areas for protection */
if (ranges_count > 0) {
char *ranges_str = range_print_alloc(ranges, ranges_count);
LOG_DEBUG("requested areas for protection: %s", ranges_str);
free(ranges_str);
} else
LOG_DEBUG("requested areas for protection: none");
if (ranges_count > n_wrp) {
LOG_ERROR("cannot set the requested protection "
"(only %u write protection areas are available)" , n_wrp);
return ERROR_FAIL;
}
/* re-init all WRPxy as disabled (first > last)*/
for (i = 0; i < n_wrp; i++) {
wrpxy[i].first = wrpxy[i].offset + 1;
wrpxy[i].last = wrpxy[i].offset;
}
/* then configure WRPxy areas */
for (i = 0; i < ranges_count; i++) {
wrpxy[i].first = ranges[i].start;
wrpxy[i].last = ranges[i].end;
}
/* finally write WRPxy registers */
return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
}
static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot protect/unprotect OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* refresh the sectors' protection */
int ret = stm32l4_protect_check(bank);
if (ret != ERROR_OK)
return ret;
/* the requested sectors could be located into bank1 and/or bank2 */
if (last < stm32l4_info->bank1_sectors) {
return stm32l4_protect_same_bank(bank, STM32_BANK1, set, first, last);
} else if (first >= stm32l4_info->bank1_sectors) {
return stm32l4_protect_same_bank(bank, STM32_BANK2, set, first, last);
} else {
ret = stm32l4_protect_same_bank(bank, STM32_BANK1, set, first, stm32l4_info->bank1_sectors - 1);
if (ret != ERROR_OK)
return ret;
return stm32l4_protect_same_bank(bank, STM32_BANK2, set, stm32l4_info->bank1_sectors, last);
}
}
/* count is the size divided by stm32l4_info->data_width */
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
struct working_area *write_algorithm;
struct working_area *source;
uint32_t address = bank->base + offset;
struct reg_param reg_params[5];
struct armv7m_algorithm armv7m_info;
int retval = ERROR_OK;
static const uint8_t stm32l4_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
};
if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
&write_algorithm) != ERROR_OK) {
LOG_WARNING("no working area available, can't do block memory writes");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
retval = target_write_buffer(target, write_algorithm->address,
sizeof(stm32l4_flash_write_code),
stm32l4_flash_write_code);
if (retval != ERROR_OK) {
target_free_working_area(target, write_algorithm);
return retval;
}
/* data_width should be multiple of double-word */
assert(stm32l4_info->data_width % 8 == 0);
const size_t extra_size = sizeof(struct stm32l4_work_area);
uint32_t buffer_size = target_get_working_area_avail(target) - extra_size;
/* buffer_size should be multiple of stm32l4_info->data_width */
buffer_size &= ~(stm32l4_info->data_width - 1);
if (buffer_size < 256) {
LOG_WARNING("large enough working area not available, can't do block memory writes");
target_free_working_area(target, write_algorithm);
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
} else if (buffer_size > 16384) {
/* probably won't benefit from more than 16k ... */
buffer_size = 16384;
}
if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) {
LOG_ERROR("allocating working area failed");
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
}
armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
armv7m_info.core_mode = ARM_MODE_THREAD;
/* contrib/loaders/flash/stm32/stm32l4x.c:write() arguments */
init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* stm32l4_work_area ptr , status (out) */
init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (of stm32l4_info->data_width) */
buf_set_u32(reg_params[0].value, 0, 32, source->address);
buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
buf_set_u32(reg_params[2].value, 0, 32, address);
buf_set_u32(reg_params[3].value, 0, 32, count);
/* write algo stack pointer */
init_reg_param(&reg_params[4], "sp", 32, PARAM_OUT);
buf_set_u32(reg_params[4].value, 0, 32, source->address +
offsetof(struct stm32l4_work_area, stack) + LDR_STACK_SIZE);
struct stm32l4_loader_params loader_extra_params;
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_addr,
stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_cr_addr,
stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_word_size,
stm32l4_info->data_width);
target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_bsy_mask,
stm32l4_info->sr_bsy_mask);
retval = target_write_buffer(target, source->address, sizeof(loader_extra_params),
(uint8_t *) &loader_extra_params);
if (retval != ERROR_OK)
return retval;
retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
0, NULL,
ARRAY_SIZE(reg_params), reg_params,
source->address + offsetof(struct stm32l4_work_area, fifo),
source->size - offsetof(struct stm32l4_work_area, fifo),
write_algorithm->address, 0,
&armv7m_info);
if (retval == ERROR_FLASH_OPERATION_FAILED) {
LOG_ERROR("error executing stm32l4 flash write algorithm");
uint32_t error;
stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &error);
error &= FLASH_ERROR;
if (error & FLASH_WRPERR)
LOG_ERROR("flash memory write protected");
if (error != 0) {
LOG_ERROR("flash write failed = %08" PRIx32, error);
/* Clear but report errors */
stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
retval = ERROR_FAIL;
}
}
target_free_working_area(target, source);
target_free_working_area(target, write_algorithm);
destroy_reg_param(&reg_params[0]);
destroy_reg_param(&reg_params[1]);
destroy_reg_param(&reg_params[2]);
destroy_reg_param(&reg_params[3]);
destroy_reg_param(&reg_params[4]);
return retval;
}
/* count is the size divided by stm32l4_info->data_width */
static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
struct target *target = bank->target;
uint32_t address = bank->base + offset;
int retval = ERROR_OK;
/* wait for BSY bit */
retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
/* set PG in FLASH_CR */
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
if (retval != ERROR_OK)
return retval;
/* write directly to flash memory */
const uint8_t *src = buffer;
const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
while (count--) {
retval = target_write_memory(target, address, 4, data_width_in_words, src);
if (retval != ERROR_OK)
return retval;
/* wait for BSY bit */
retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
if (retval != ERROR_OK)
return retval;
src += stm32l4_info->data_width;
address += stm32l4_info->data_width;
}
/* reset PG in FLASH_CR */
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
if (retval != ERROR_OK)
return retval;
return retval;
}
static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
uint32_t offset, uint32_t count)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
int retval = ERROR_OK, retval2;
if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
LOG_ERROR("OTP memory is disabled for write commands");
return ERROR_FAIL;
}
if (bank->target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* ensure that stm32l4_info->data_width is 'at least' a multiple of dword */
assert(stm32l4_info->data_width % 8 == 0);
/* The flash write must be aligned to the 'stm32l4_info->data_width' boundary.
* The flash infrastructure ensures it, do just a security check */
assert(offset % stm32l4_info->data_width == 0);
assert(count % stm32l4_info->data_width == 0);
/* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
* data to be written does not go into a gap:
* suppose buffer is fully contained in bank from sector 0 to sector
* num->sectors - 1 and sectors are ordered according to offset
*/
struct flash_sector *head = &bank->sectors[0];
struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
while ((head < tail) && (offset >= (head + 1)->offset)) {
/* buffer does not intersect head nor gap behind head */
head++;
}
while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
/* buffer does not intersect tail nor gap before tail */
--tail;
}
LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
/* Now check that there is no gap from head to tail, this should work
* even for multiple or non-symmetric gaps
*/
while (head < tail) {
if (head->offset + head->size != (head + 1)->offset) {
LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
bank->base + head->offset + head->size,
bank->base + (head + 1)->offset - 1);
retval = ERROR_FLASH_DST_OUT_OF_BANK;
}
head++;
}
if (retval != ERROR_OK)
return retval;
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* set all FLASH pages as secure */
retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
if (retval != ERROR_OK) {
/* restore all FLASH pages as non-secure */
stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
return retval;
}
}
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/* For TrustZone enabled devices, when TZEN is set and RDP level is 0.5,
* the debug is possible only in non-secure state.
* Thus means the flashloader will run in non-secure mode,
* and the workarea need to be in non-secure RAM */
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
LOG_WARNING("RDP = 0x55, the work-area should be in non-secure RAM (check SAU partitioning)");
/* first try to write using the loader, for better performance */
retval = stm32l4_write_block(bank, buffer, offset,
count / stm32l4_info->data_width);
/* if resources are not available write without a loader */
if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
LOG_WARNING("falling back to programming without a flash loader (slower)");
retval = stm32l4_write_block_without_loader(bank, buffer, offset,
count / stm32l4_info->data_width);
}
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* restore all FLASH pages as non-secure */
int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
if (retval3 != ERROR_OK)
return retval3;
}
if (retval != ERROR_OK) {
LOG_ERROR("block write failed");
return retval;
}
return retval2;
}
static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
{
int retval = ERROR_OK;
struct target *target = bank->target;
/* try reading possible IDCODE registers, in the following order */
uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
retval = target_read_u32(target, dbgmcu_idcode[i], id);
if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
return ERROR_OK;
}
/* Workaround for STM32WL5x devices:
* DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
* to solve this read the UID64 (IEEE 64-bit unique device ID register) */
struct armv7m_common *armv7m = target_to_armv7m_safe(target);
if (!armv7m) {
LOG_ERROR("Flash requires Cortex-M target");
return ERROR_TARGET_INVALID;
}
/* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
* Using HLA adapters armv7m.debug_ap is null, and checking ap_num triggers a segfault */
if (cortex_m_get_partno_safe(target) == CORTEX_M0P_PARTNO &&
armv7m->debug_ap && armv7m->debug_ap->ap_num == 1) {
uint32_t uid64_ids;
/* UID64 is contains
* - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
* - Bits 31:08 : STID (company ID) = 0x0080E1
* - Bits 07:00 : DEVID (device ID) = 0x15
*
* read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
*/
retval = target_read_u32(target, UID64_IDS, &uid64_ids);
if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
/* force the DEV_ID to DEVID_STM32WLE_WL5XX and the REV_ID to unknown */
*id = DEVID_STM32WLE_WL5XX;
return ERROR_OK;
}
}
LOG_ERROR("can't get the device id");
return (retval == ERROR_OK) ? ERROR_FAIL : retval;
}
static const char *get_stm32l4_rev_str(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
assert(part_info);
const uint16_t rev_id = stm32l4_info->idcode >> 16;
for (unsigned int i = 0; i < part_info->num_revs; i++) {
if (rev_id == part_info->revs[i].rev)
return part_info->revs[i].str;
}
return "'unknown'";
}
static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
assert(stm32l4_info->part_info);
return stm32l4_is_otp(bank) ? "OTP" :
stm32l4_info->dual_bank_mode ? "Flash dual" :
"Flash single";
}
static int stm32l4_probe(struct flash_bank *bank)
{
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info;
uint16_t flash_size_kb = 0xffff;
if (!target_was_examined(target)) {
LOG_ERROR("Target not examined yet");
return ERROR_TARGET_NOT_EXAMINED;
}
struct armv7m_common *armv7m = target_to_armv7m_safe(target);
if (!armv7m) {
LOG_ERROR("Flash requires Cortex-M target");
return ERROR_TARGET_INVALID;
}
stm32l4_info->probed = false;
/* read stm32 device id registers */
int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
if (retval != ERROR_OK)
return retval;
const uint32_t device_id = stm32l4_info->idcode & 0xFFF;
for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
if (device_id == stm32l4_parts[n].id) {
stm32l4_info->part_info = &stm32l4_parts[n];
break;
}
}
if (!stm32l4_info->part_info) {
LOG_WARNING("Cannot identify target as an %s family device.", device_families);
return ERROR_FAIL;
}
part_info = stm32l4_info->part_info;
const char *rev_str = get_stm32l4_rev_str(bank);
const uint16_t rev_id = stm32l4_info->idcode >> 16;
LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);
stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
stm32l4_info->cr_bker_mask = FLASH_BKER;
stm32l4_info->sr_bsy_mask = FLASH_BSY;
/* Set flash write alignment boundaries.
* Ask the flash infrastructure to ensure required alignment */
bank->write_start_alignment = bank->write_end_alignment = stm32l4_info->data_width;
/* Initialize the flash registers layout */
if (part_info->flags & F_HAS_L5_FLASH_REGS)
stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
else
stm32l4_info->flash_regs = stm32l4_flash_regs;
/* read flash option register */
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
if (retval != ERROR_OK)
return retval;
stm32l4_sync_rdp_tzen(bank);
/* for devices with TrustZone, use flash secure registers when TZEN=1 and RDP is LEVEL_0 */
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
if (part_info->flags & F_HAS_L5_FLASH_REGS) {
stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
stm32l4_info->flash_regs = stm32l5_s_flash_regs;
} else {
LOG_ERROR("BUG: device supported incomplete");
return ERROR_NOT_IMPLEMENTED;
}
}
if (part_info->flags & F_HAS_TZ)
LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
stm32l4_info->tzen,
stm32l4_info->tzen ? "enabled" : "disabled");
LOG_INFO("RDP level %s (0x%02X)",
stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
stm32l4_info->rdp);
if (stm32l4_is_otp(bank)) {
bank->size = part_info->otp_size;
LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);
/* OTP memory is considered as one sector */
free(bank->sectors);
bank->num_sectors = 1;
bank->sectors = alloc_block_array(0, part_info->otp_size, 1);
if (!bank->sectors) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
stm32l4_info->probed = true;
return ERROR_OK;
} else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
LOG_ERROR("invalid bank base address");
return ERROR_FAIL;
}
/* get flash size from target. */
retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
/* failed reading flash size or flash size invalid (early silicon),
* default to max target family */
if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
|| flash_size_kb > part_info->max_flash_size_kb) {
LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
part_info->max_flash_size_kb);
flash_size_kb = part_info->max_flash_size_kb;
}
/* if the user sets the size manually then ignore the probed value
* this allows us to work around devices that have a invalid flash size register value */
if (stm32l4_info->user_bank_size) {
LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
flash_size_kb = stm32l4_info->user_bank_size / 1024;
}
LOG_INFO("flash size = %d KiB", flash_size_kb);
/* did we assign a flash size? */
assert((flash_size_kb != 0xffff) && flash_size_kb);
const bool is_max_flash_size = flash_size_kb == stm32l4_info->part_info->max_flash_size_kb;
stm32l4_info->bank1_sectors = 0;
stm32l4_info->hole_sectors = 0;
int num_pages = 0;
int page_size_kb = 0;
stm32l4_info->dual_bank_mode = false;
switch (device_id) {
case DEVID_STM32L47_L48XX:
case DEVID_STM32L49_L4AXX:
/* if flash size is max (1M) the device is always dual bank
* STM32L47/L48xx: has variants with 512K
* STM32L49/L4Axx: has variants with 512 and 256
* for these variants:
* if DUAL_BANK = 0 -> single bank
* else -> dual bank without gap
* note: the page size is invariant
*/
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
/* check DUAL_BANK option bit if the flash is less than 1M */
if (is_max_flash_size || (stm32l4_info->optr & FLASH_L4_DUAL_BANK)) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case DEVID_STM32L43_L44XX:
case DEVID_STM32G05_G06XX:
case DEVID_STM32G07_G08XX:
case DEVID_STM32L45_L46XX:
case DEVID_STM32L41_L42XX:
case DEVID_STM32G03_G04XX:
case DEVID_STM32G43_G44XX:
case DEVID_STM32G49_G4AXX:
case DEVID_STM32WB1XX:
/* single bank flash */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;
case DEVID_STM32G0B_G0CXX:
/* single/dual bank depending on DUAL_BANK option bit */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
stm32l4_info->cr_bker_mask = FLASH_BKER_G0;
/* check DUAL_BANK bit */
if (stm32l4_info->optr & FLASH_G0_DUAL_BANK) {
stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case DEVID_STM32G47_G48XX:
/* STM32G47/8 can be single/dual bank:
* if DUAL_BANK = 0 -> single bank
* else -> dual bank WITH gap
*/
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if (stm32l4_info->optr & FLASH_G4_DUAL_BANK) {
stm32l4_info->dual_bank_mode = true;
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages / 2;
/* for devices with trimmed flash, there is a gap between both banks */
stm32l4_info->hole_sectors =
(part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
}
break;
case DEVID_STM32L4R_L4SXX:
case DEVID_STM32L4P_L4QXX:
/* STM32L4R/S can be single/dual bank:
* if size = 2M check DBANK bit
* if size = 1M check DB1M bit
* STM32L4P/Q can be single/dual bank
* if size = 1M check DBANK bit
* if size = 512K check DB512K bit (same as DB1M bit)
*/
page_size_kb = 8;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L4R_DBANK)) ||
(!is_max_flash_size && (stm32l4_info->optr & FLASH_LRR_DB1M))) {
stm32l4_info->dual_bank_mode = true;
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case DEVID_STM32L55_L56XX:
/* STM32L55/L56xx can be single/dual bank:
* if size = 512K check DBANK bit
* if size = 256K check DB256K bit
*
* default page size is 4kb, if DBANK = 1, the page size is 2kb.
*/
page_size_kb = (stm32l4_info->optr & FLASH_L5_DBANK) ? 2 : 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DBANK)) ||
(!is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DB256))) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case DEVID_STM32U57_U58XX:
/* if flash size is max (2M) the device is always dual bank
* otherwise check DUALBANK
*/
page_size_kb = 8;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
if (is_max_flash_size || (stm32l4_info->optr & FLASH_U5_DUALBANK)) {
stm32l4_info->dual_bank_mode = true;
stm32l4_info->bank1_sectors = num_pages / 2;
}
break;
case DEVID_STM32WB5XX:
case DEVID_STM32WB3XX:
/* single bank flash */
page_size_kb = 4;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
break;
case DEVID_STM32WLE_WL5XX:
/* single bank flash */
page_size_kb = 2;
num_pages = flash_size_kb / page_size_kb;
stm32l4_info->bank1_sectors = num_pages;
/* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
* Using HLA adapters armv7m->debug_ap is null, and checking ap_num triggers a segfault */
if (armv7m->debug_ap && armv7m->debug_ap->ap_num == 1)
stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
break;
default:
LOG_ERROR("unsupported device");
return ERROR_FAIL;
}
/* ensure that at least there is 1 flash sector / page */
if (num_pages == 0) {
if (stm32l4_info->user_bank_size)
LOG_ERROR("The specified flash size is less than page size");
LOG_ERROR("Flash pages count cannot be zero");
return ERROR_FAIL;
}
LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
if (gap_size_kb != 0) {
LOG_INFO("gap detected from 0x%08x to 0x%08x",
STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
* page_size_kb * 1024,
STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
* page_size_kb + gap_size_kb) * 1024 - 1);
}
/* number of significant bits in WRPxxR differs per device,
* always right adjusted, on some devices non-implemented
* bits read as '0', on others as '1' ...
* notably G4 Cat. 2 implement only 6 bits, contradicting the RM
*/
/* use *max_flash_size* instead of actual size as the trimmed versions
* certainly use the same number of bits
*/
uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
/* in dual bank mode number of pages is doubled, but extra bit is bank selection */
stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
free(bank->sectors);
bank->size = (flash_size_kb + gap_size_kb) * 1024;
bank->num_sectors = num_pages;
bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
if (!bank->sectors) {
LOG_ERROR("failed to allocate bank sectors");
return ERROR_FAIL;
}
for (unsigned int i = 0; i < bank->num_sectors; i++) {
bank->sectors[i].offset = i * page_size_kb * 1024;
/* in dual bank configuration, if there is a gap between banks
* we fix up the sector offset to consider this gap */
if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
bank->sectors[i].offset += gap_size_kb * 1024;
bank->sectors[i].size = page_size_kb * 1024;
bank->sectors[i].is_erased = -1;
bank->sectors[i].is_protected = 1;
}
stm32l4_info->probed = true;
return ERROR_OK;
}
static int stm32l4_auto_probe(struct flash_bank *bank)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_info->probed) {
uint32_t optr_cur;
/* save flash_regs_base */
uint32_t saved_flash_regs_base = stm32l4_info->flash_regs_base;
/* for devices with TrustZone, use NS flash registers to read OPTR */
if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
stm32l4_info->flash_regs_base &= ~STM32L5_REGS_SEC_OFFSET;
/* read flash option register and re-probe if optr value is changed */
int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);
/* restore saved flash_regs_base */
stm32l4_info->flash_regs_base = saved_flash_regs_base;
if (retval != ERROR_OK)
return retval;
if (stm32l4_info->optr == optr_cur)
return ERROR_OK;
}
return stm32l4_probe(bank);
}
static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
{
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
if (part_info) {
const uint16_t rev_id = stm32l4_info->idcode >> 16;
command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
get_stm32l4_rev_str(bank), rev_id);
if (stm32l4_info->probed)
command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
} else {
command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
}
return ERROR_OK;
}
static int stm32l4_mass_erase(struct flash_bank *bank)
{
int retval, retval2;
struct target *target = bank->target;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot erase OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
uint32_t action = FLASH_MER1;
if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
action |= FLASH_MER2;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* set all FLASH pages as secure */
retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
if (retval != ERROR_OK) {
/* restore all FLASH pages as non-secure */
stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
return retval;
}
}
retval = stm32l4_unlock_reg(bank);
if (retval != ERROR_OK)
goto err_lock;
/* mass erase flash memory */
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
if (retval != ERROR_OK)
goto err_lock;
retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
err_lock:
retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
/* restore all FLASH pages as non-secure */
int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
if (retval3 != ERROR_OK)
return retval3;
}
if (retval != ERROR_OK)
return retval;
return retval2;
}
COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
if (CMD_ARGC < 1) {
command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_mass_erase(bank);
if (retval == ERROR_OK)
command_print(CMD, "stm32l4x mass erase complete");
else
command_print(CMD, "stm32l4x mass erase failed");
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_read_command)
{
if (CMD_ARGC < 2) {
command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
uint32_t reg_offset, reg_addr;
uint32_t value = 0;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
if (retval != ERROR_OK)
return retval;
command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
return retval;
}
COMMAND_HANDLER(stm32l4_handle_option_write_command)
{
if (CMD_ARGC < 3) {
command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
return ERROR_COMMAND_SYNTAX_ERROR;
}
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
uint32_t reg_offset;
uint32_t value = 0;
uint32_t mask = 0xFFFFFFFF;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
if (CMD_ARGC > 3)
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
command_print(CMD, "%s Option written.\n"
"INFO: a reset or power cycle is required "
"for the new settings to take effect.", bank->driver->name);
retval = stm32l4_write_option(bank, reg_offset, value, mask);
return retval;
}
COMMAND_HANDLER(stm32l4_handle_trustzone_command)
{
if (CMD_ARGC < 1 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
LOG_ERROR("This device does not have a TrustZone");
return ERROR_FAIL;
}
retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
if (retval != ERROR_OK)
return retval;
stm32l4_sync_rdp_tzen(bank);
if (CMD_ARGC == 1) {
/* only display the TZEN value */
LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
return ERROR_OK;
}
bool new_tzen;
COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);
if (new_tzen == stm32l4_info->tzen) {
LOG_INFO("The requested TZEN is already programmed");
return ERROR_OK;
}
if (new_tzen) {
if (stm32l4_info->rdp != RDP_LEVEL_0) {
LOG_ERROR("TZEN can be set only when RDP level is 0");
return ERROR_FAIL;
}
retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
FLASH_TZEN, FLASH_TZEN);
} else {
/* Deactivation of TZEN (from 1 to 0) is only possible when the RDP is
* changing to level 0 (from level 1 to level 0 or from level 0.5 to level 0). */
if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
return ERROR_FAIL;
}
retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
}
if (retval != ERROR_OK)
return retval;
return stm32l4_perform_obl_launch(bank);
}
COMMAND_HANDLER(stm32l4_handle_option_load_command)
{
if (CMD_ARGC != 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
retval = stm32l4_perform_obl_launch(bank);
if (retval != ERROR_OK) {
command_print(CMD, "stm32l4x option load failed");
return retval;
}
command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_lock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot lock/unlock OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* set readout protection level 1 by erasing the RDP option byte */
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
command_print(CMD, "%s failed to lock device", bank->driver->name);
return ERROR_OK;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
struct target *target = NULL;
if (CMD_ARGC < 1)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("cannot lock/unlock OTP memory");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
target = bank->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR("Target not halted");
return ERROR_TARGET_NOT_HALTED;
}
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
command_print(CMD, "%s failed to unlock device", bank->driver->name);
return ERROR_OK;
}
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
{
if (CMD_ARGC < 1 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (stm32l4_is_otp(bank)) {
LOG_ERROR("OTP memory does not have write protection areas");
return ERROR_FLASH_OPER_UNSUPPORTED;
}
struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
if (CMD_ARGC == 2) {
if (strcmp(CMD_ARGV[1], "bank1") == 0)
dev_bank_id = STM32_BANK1;
else if (strcmp(CMD_ARGV[1], "bank2") == 0)
dev_bank_id = STM32_BANK2;
else
return ERROR_COMMAND_ARGUMENT_INVALID;
}
if (dev_bank_id == STM32_BANK2) {
if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
LOG_ERROR("this device has no second bank");
return ERROR_FAIL;
} else if (!stm32l4_info->dual_bank_mode) {
LOG_ERROR("this device is configured in single bank mode");
return ERROR_FAIL;
}
}
int ret;
unsigned int n_wrp, i;
struct stm32l4_wrp wrpxy[4];
ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
if (ret != ERROR_OK)
return ret;
/* use bitmap and range helpers to better describe protected areas */
DECLARE_BITMAP(pages, bank->num_sectors);
bitmap_zero(pages, bank->num_sectors);
for (i = 0; i < n_wrp; i++) {
if (wrpxy[i].used) {
for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
set_bit(p, pages);
}
}
/* we have at most 'n_wrp' WRP areas */
struct range ranges[n_wrp];
unsigned int ranges_count = 0;
bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
if (ranges_count > 0) {
/* pretty-print the protected ranges */
char *ranges_str = range_print_alloc(ranges, ranges_count);
command_print(CMD, "protected areas: %s", ranges_str);
free(ranges_str);
} else
command_print(CMD, "no protected areas");
return ERROR_OK;
}
COMMAND_HANDLER(stm32l4_handle_otp_command)
{
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
struct flash_bank *bank;
int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
if (retval != ERROR_OK)
return retval;
if (!stm32l4_is_otp(bank)) {
command_print(CMD, "the specified bank is not an OTP memory");
return ERROR_FAIL;
}
if (strcmp(CMD_ARGV[1], "enable") == 0)
stm32l4_otp_enable(bank, true);
else if (strcmp(CMD_ARGV[1], "disable") == 0)
stm32l4_otp_enable(bank, false);
else if (strcmp(CMD_ARGV[1], "show") == 0)
command_print(CMD, "OTP memory bank #%d is %s for write commands.",
bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
else
return ERROR_COMMAND_SYNTAX_ERROR;
return ERROR_OK;
}
static const struct command_registration stm32l4_exec_command_handlers[] = {
{
.name = "lock",
.handler = stm32l4_handle_lock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Lock entire flash device.",
},
{
.name = "unlock",
.handler = stm32l4_handle_unlock_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Unlock entire protected flash device.",
},
{
.name = "mass_erase",
.handler = stm32l4_handle_mass_erase_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Erase entire flash device.",
},
{
.name = "option_read",
.handler = stm32l4_handle_option_read_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset",
.help = "Read & Display device option bytes.",
},
{
.name = "option_write",
.handler = stm32l4_handle_option_write_command,
.mode = COMMAND_EXEC,
.usage = "bank_id reg_offset value mask",
.help = "Write device option bit fields with provided value.",
},
{
.name = "trustzone",
.handler = stm32l4_handle_trustzone_command,
.mode = COMMAND_EXEC,
.usage = "<bank_id> [enable|disable]",
.help = "Configure TrustZone security",
},
{
.name = "wrp_info",
.handler = stm32l4_handle_wrp_info_command,
.mode = COMMAND_EXEC,
.usage = "bank_id [bank1|bank2]",
.help = "list the protected areas using WRP",
},
{
.name = "option_load",
.handler = stm32l4_handle_option_load_command,
.mode = COMMAND_EXEC,
.usage = "bank_id",
.help = "Force re-load of device options (will cause device reset).",
},
{
.name = "otp",
.handler = stm32l4_handle_otp_command,
.mode = COMMAND_EXEC,
.usage = "<bank_id> <enable|disable|show>",
.help = "OTP (One Time Programmable) memory write enable/disable",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration stm32l4_command_handlers[] = {
{
.name = "stm32l4x",
.mode = COMMAND_ANY,
.help = "stm32l4x flash command group",
.usage = "",
.chain = stm32l4_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
const struct flash_driver stm32l4x_flash = {
.name = "stm32l4x",
.commands = stm32l4_command_handlers,
.flash_bank_command = stm32l4_flash_bank_command,
.erase = stm32l4_erase,
.protect = stm32l4_protect,
.write = stm32l4_write,
.read = default_flash_read,
.probe = stm32l4_probe,
.auto_probe = stm32l4_auto_probe,
.erase_check = default_flash_blank_check,
.protect_check = stm32l4_protect_check,
.info = get_stm32l4_info,
.free_driver_priv = default_flash_free_driver_priv,
};